繁星若雨
洛必达法则是在一定条件下通过分子分母分别求导再求极限来确定未定式值的方法。
众所周知,两个无穷小之比或两个无穷大之比的极限可能存在,也可能不存在。因此,求这类极限时往往需要适当的变形,转化成可利用极限运算法则或重要极限的形式进行计算。
洛必达法则便是应用于这类极限计算的通用方法。
因为当分子分母都趋近于0或无穷大时,如果单纯的代入极限值是不能求出极限的,但是直观的想,不管是趋近于0或无穷大,都会有速率问题,就是说谁趋近于0或无穷大快一些,而速率可以通过求导来实现,所以就会有洛必达法则
应用条件
在运用洛必达法则之前,首先要完成两项任务:一是分子分母的极限是否都等于零(或者无穷大);二是分子分母在限定的区域内是否分别可导。
如果这两个条件都满足,接着求导并判断求导之后的极限是否存在:如果存在,直接得到答案;如果不存在,则说明此种未定式不可用洛必达法则来解决;如果不确定,即结果仍然为未定式,再在验证的基础上继续使用洛必达法则。
注意事项
求极限是高等数学中最重要的内容之一,也是高等数学的基础部分,因此熟练掌握求极限的方法对学好高等数学具有重要的意义。洛比达法则用于求分子分母同趋于零的分式极限 [3] 。
⑴ 在着手求极限以前,首先要检查是否满足 或 型构型,否则滥用洛必达法则会出错(其实 形式分子并不需要为无穷大,只需分母为无穷大即可)。当不存在时(不包括 情形),就不能用洛必达法则,这时称洛必达法则不适用,应从另外途径求极限。比如利用泰勒公式求解。
⑵ 若条件符合,洛必达法则可连续多次使用,直到求出极限为止。
⑶ 洛必达法则是求未定式极限的有效工具,但是如果仅用洛必达法则,往往计算会十分繁琐,因此一定要与其他方法相结合,比如及时将非零极限的乘积因子分离出来以简化计算、乘积因子用等价量替换等。
⑷ 洛必达法则常用于求不定式极限。基本的不定式极限: 型; 型( 或 ),而其他的如 型, 型,以及 型, 型和 型等形式的极限则可以通过相应的变换转换成上述两种基本的不定式形式来求解。
参考资料:百度百科 洛必达法则
淡粉浅蓝
洛必达(L 'Hopital)法则是在一定条件下通过分子分母分别求导再求极限来确定未定式值的方法。
洛必达法则(定理)
设函数f(x)和F(x)满足下列条件:
⑴x→a时,lim f(x)=0,lim F(x)=0;
⑵在点a的某去心邻域内f(x)与F(x)都可导,且F(x)的导数不等于0;
⑶x→a时,lim(f'(x)/F'(x))存在或为无穷大
则 x→a时,lim(f(x)/F(x))=lim(f'(x)/F'(x))
也就是说,满足上述条件时有
太极武者NO1
洛必达法则是在一定条件下通过分子分母分别求导再求极限来确定未定式值的方法。
应用条件:
在运用洛必达法则之前,首先要完成两项任务:一是分子分母的极限是否都等于零(或者无穷大);二是分子分母在限定的区域内是否分别可导。
如果这两个条件都满足,接着求导并判断求导之后的极限是否存在:如果存在,直接得到答案;如果不存在,则说明此种未定式不可用洛必达法则来解决;如果不确定,即结果仍然为未定式,再在验证的基础上继续使用洛必达法则。
扩展资料:
洛必达是法国中世纪的王公贵族,他喜欢并且酷爱数学,后拜伯努利为师学习数学。知名的洛必达法则,其实并非洛必达本人研究,而是他的师父伯努利。
当时由于伯努利境遇困顿,生活困难,而学生洛必达又是王公贵族,洛必达表示愿意用财物换取伯努利的学术论文,伯努利也欣然接受。“洛必达法则”的内容:
对于一定条件下的不定式求极限问题,可以先对分母和分子求导后再求极限,比如0/0型:
简要分析:对于各种存在极限的不定式,比如0^∞,∞^0, ∞/∞,1^∞, ∞-∞等等,一般都可以化为0/0型,两个函数的极限都趋于一个点,那么从他们曲线上来看,该点处他们函数极限值的比值,其实就是他们在此处切线斜率之比,也就是求导后的函数,在此处的值之比。
参考资料:百度百科——洛必达法则
唐伯兔吃小白兔
e^x^2的不定积分是-2
分析:
0/0,洛必达法则
=lim(1-e^x²)/(1-cosx)
=lim-x²/(x²/2)
=-2
人物形象
洛必达是法国中世纪的王公贵族,他喜欢并且酷爱数学,后拜伯努利为师学习数学。但洛必达法则并非洛必达本人研究。实际上,洛必达法则是洛必达的老师伯努利的学术论文,由于当时伯努利境遇困顿,生活困难,而学生洛必达又是王公贵族,洛必达表示愿意用财物换取伯努利的学术论文,伯努利也欣然接受。
此篇论文即为影响数学界的洛必达法则。在洛必达死后,伯努利宣称洛必达法则是自己的研究成果,但欧洲的数学家并不认可,他们认为洛必达的行为是正常的物物交换,因此否认了伯努利的说法。
北京市殡葬改革30年成果概况北京市殡葬管理机构是北京解放以后,从接收和改造“杠房”等旧的殡葬服务行业发展而来。作为政府管理殡葬事务的职能部门??北京市殡葬管理处
在《达洛维夫人》中,伍尔芙通过达洛维夫人的人生经历,向我们展示了达洛维夫人在不断抗争与妥协中前行的人生。抗争是对现实的反抗,妥协是对生活无奈的选择。空虚无聊的生
写毕业论文的研究方法有哪些 写毕业论文的研究方法有哪些?又到了一年一度的毕业季,大学生毕业的时候是需要写毕业论文的,不少人好奇写毕业论文的有什么研究方法。接下来
可以围绕九朝古都,以及栾川,等等来回答。你可以去瞻望一下洛阳的旅游的未来,
西周主要刑法原则与刑事政策:(1)因地因时制宜,三国三典的适用原则《尚书·吕刑》中称作“轻重诸罚有权,刑罚世轻世重。” 《周礼》称“刑新国,用轻典;刑乱国,用重