tracy07280917
1. 有些人运气好, 但并非所有人都运气好 2.自然数不是奇数就是偶数, 且奇数不能被2整除 3. 每个人的指纹都不相同。 4. 存在一个唯一的偶素数 5. 有些大学生不尊敬老人。 6证明:对任意集合 A, B, C,有(A ∩ B)UC=A ∩ (B ∪ C)当且仅当 C ⊆ A 7.已知集合A={1,2, ..., 6}上的等价关系R定义为:R=IA∪ {<1,5>,<5,1>,<2,3>,<3,2>,<2,6>,<6,2>,<3,6>,<6,3>}求出由R诱导的A的划分(即由R的商集诱导的划分) 解: A/R ={{1,5},{2,3,6},{4}}8.设R是非空集合A上的二元关系, R满足条件:(1)R是自反的;(2) 若∈ R ∧∈ R, 则∈ R;试证明R是A上的等价关系。 解: 要证明R是等价关系,只需证明R具有反身性、对称性和传递性。①由条件(1)可知,对于任意的a∈A,均有a R a,故R具有反身性。 ②对于任意的a、b∈A,若a R b,a R a,根据条件(2),则有b R a,故R具有对称性。 ③对于任意的a、b、c∈A,若a R b,b R c,因为R具有对称性,则有b R a,c R b,由条件(2)可得a R c,故R具有传递性。 综上所述,R是等价关系。9.用“ »” 表示等势, 试证明(0,1]» ( a , b ] ( a , b Î R , a < b , R 为实数集) 证明:集合里的等势是指,两个集合之间一一对应,或者说在两个集合间存在一个一一映射.也说是具有“相等的势”.可以构造一个从f: (0,1]->(a,b] 的一一映射 f(x)=a+(b-a)x x∈(0,1],y ∈(a,b]显然f是入射函数 构造函数g: (a,b] →(0,1],g(x) = (x-a)/(b-a) 显然g是入射函数。 故(0,1]和(a,b]等势。 10. G是 n 个顶点的简单连同平面图且每个面的度数(也称次数)都是 3, 则此图的边数是多少? 解:根据题意,n≥3由于G是简单连通平面图,且每个面的度数都是3,那么我们可以先用3个顶点构成一个面,然后每增加一个顶点就增加一个面,则面数f与定点数n的关系为n=f+2,同理,我们可以先用两条边构成一个面,然后每增加两条边则又构成一个面,则总面数f与边数e的关系为e=2f+1。根据上述两个关系式,我们可以推出此图的边数e=2n-311.设T是一棵有13个顶点的树,树中度为1的顶点为叶子。 如果T的顶点的度只可能是1,2,5且T恰好有3个度为2的顶点, 那么,T中有多少个叶子? 解:主要应用的定理有: D(v) = 2m m = n -1设T中有x个叶子,由于n = 13, 根据公式边数m = n-1 = 12 因此顶点的总度数d(v) = 2m = 24因为叶子节点的度数为1,度数为2的节点数为2, 且由于顶点的度数只有1,2,5三种,所以剩余的节点都是5度节点,其个数为13-x-3 = 10-x因此所有顶点的度数和d(v)= x *1 + 2*3 + (10-x)*5 = 24 解方程得x=812、具有 n 个顶点的连通图至少有________条边。 解:具有n个顶点的连通图至少有n-1条边。这是一个与生成树相关的问题。生成树是一个连通图,它具有能够连通图中任何两个顶点的最小边集,任何一个生成树都具有n-1边。因此,具有n个顶点的连通图至少有n-1条边。13、设图 G 有14个顶点, 27条边, 每个顶点的度只可能为3、4或5, 且 G 有6个度为4的顶点, 问 G 有多少个度为3的顶点? 多少个度为5的顶点? 解: 设有x个三度顶点,y个5度顶点。则有方程:x+y+6 = 14 3x+6*4+5y =27*2 (握手定理)解得x=5 y=314. 设kn是n个顶点(n为正整数) 的完全图, 对kn的每条边进行红、 蓝两种颜色任意着色, 至少存在一个红色边三角形或蓝色边三角形,则最小的n是多少? 解: 红蓝颜色组成红色边三角形或者蓝色边三角形所以需要有红色边3条或者蓝色边三条,此题转化为 有n条边分到一个红色区域和蓝色区域,至少有3个红色或者三个蓝色。根据鸽巢原理,[n/2]>=3 所以有n >=6 ,所以最小n为6.15.设G是一个顶点个数为n(n>=5)、边数为m的连通平面图,如果G的最小圈的长度是5,证明:m <= (5/3)*(n-2) 证明:设G的平面的个数为f。因为G的最小圈的长度为5,故G的每个面的度数至少为5. 因为边数m的连通平面图是指除了任何两条边除了端点之外没有其他交点。所以有面的度数之和等于边数的2倍,由于最小圈的长度是5,按最小圈算便有。5f <= 2m 根据欧拉公式: n-m+f =2, 所以f = m+2-n 将f代入上面公式。 5m + 10 -5n <= 2m 3m <= 5(n-2) 所以m <= (5/3 )*(n-2)16. 设Q 是一个有理数集。 对任意的a,b∈ Q,定义二元运算a△b =(a× b)/2, 则Q关于运算△的单位元是多少?, 其中“× ” 是有理数中通常的乘法运算。解:单位元又叫幺元。 任取一个x属于非空集合S,如若在非空集合S中存在一个元素e,e*x=x且x*e=x就表示e是的单位元,也就是幺元。 任取一个x属于非空集合S,如若在非空集合S中存在一个元素o,o*x=0且x*o=0就表示o是的零元。 任取一个b属于非空集合S,如若在非空集合S中存在一个元素a,a*b=e且b*a=e就表示a是b的逆元,也可以说b是a的逆元。 所以e △x = x 即e * x /2 = x 所以e = 2同样若求0元设为o, 则 有 o △ x = 0,即 (o * x)/2 = 0 由于x不是0, 所以o = 0.
loveless0122
选择题1.设p:天下大雨,q:小王乘公共汽车上班,命题“只有天下大雨,小王才乘公共汽车上班”的符号化形式为( B )A)p→q B)q→p C)p→┐q D)┐p→q2.设解释I如下,个体域D={a,b}, F(a,a)=F(b,b)=0,F(a,b)=F(b,a)=1,在解释I下,下列公式中真值为1的是( A )A) VxヨyF(x,y) B)ヨxVyF(x,y) C)VxVyF(x,y) D)┐ヨxヨyF(x,y)3.下列命题公式中不是重言式的是( A )A.p→(q→r) B.p→(q→p)C. p→( p→ p) D.(p→(q→r)) (q→(p→r))4. 关于谓词公式( x)( y)(P(x,y)∧Q(y,z))∧( x)p(x,y),下面的描述中错误的是( B )A.( x)的辖域是( y)(P(x,y)∧Q(y,z))B.z是该谓词公式的约束变元C.( x)的辖域是P(x,y)D.x是该谓词公式的约束变元5. 设A={1,2,3,4,5},A上二元关系R={〈1,2〉,〈3,4〉,〈2,2〉},S={〈2,4〉,〈3,1〉,〈4,2〉},则S-1 R-1的运算结果是( A )A.{〈4,1〉,〈2,3〉,〈4,2〉} B.{〈2,4〉,〈2,3〉,〈4,2〉}C.{〈4,1〉,〈2,3〉,〈2,4〉} D.{〈2,2〉,〈3,1〉,〈4,4〉}6、设R,S是集合X={1,2,3,4}上的两个关系,其中R={<1,1>,<2,2>,<2,3>,<4,4>},S={<1,1>,<2,2>,<2,3>,<3,2>,<4,4>}。则S是R的( B )闭包。 A.自反 B.对称 C.传递 D.以上都不是7、设集合A={1, 2, 3 },A上的关系R={<1, 1 >,<2, 2 > },则R不具有( A )性质。 A.自反性 B.对称性 C.传递性 D. 反对称性 8、设命题公式G= (P→Q), H=P→(Q→ P),则G与H的关系是( 答案没写全 ) A.GH B.HG C.可满足 D.以上都不是 9、设G=x P(x),H=x P(x),则G→H是( 题目没写全 ) A.永真的 B.永假的 C.可满足的 D.以上都不是 10、设论域E={a, b },且P(a,a)=T P(a,b)=F P(b,a)=T P(b,b)=F 则在下列公式中真值为T的是( 答案没写全,和第二题类似 ) A.xyP(x,y) B.xyP(x,y) C.xP(x,x) D. xyP(x,y) 11、设A={a,{a}},下列式子中正确的有( A )。 A. {a}∈ρ(A) B. a∈ρ(A) C. {a}ρ(A) D. 以上都不是12、设R,S是集合X={1,2,3,4}上的两个关系,其中R={<1,1>,<2,2>,<2,3>,<4,4>},S={<1,1>,<2,2>,<2,3>,<3,2>,<4,4>}。则S是R的( B )闭包。 A.自反 B.对称 C.传递 D.以上都不是13、设集合A={a,b },A上的关系R={, },则R是( C ) A. 是等价关系但不是偏序关系 B.是偏序关系但不是等价关系 C. 既是等价关系又是偏序关系 D. 既不是等价关系又不是偏序关系 14、G是连通的平面图,有5个结点,6个面,则G的边数为( D ) A. 6 B. 5 C.11 D. 9 15. 下列关系矩阵所对应的关系具有自反性的是(答案不全)A. B. C. D.
恰恰小资
数学与应用数学毕业论文篇3 浅谈离散数学的应用及教学 我国传统数学教育模式内容相对陈旧、体系单一、知识面窄、偏重符号演算和解题技巧,脱离实际应用,缺乏应用数学知识解决实际问题的实践意识和能力,创新精神和创新能力不足。然而,高科技信息时代的迅速发展对学生的数学素质又提出了新的要求,现有教育模式所培养的学生在某种程度上已经不能适应社会的需要。实践表明,数学研究化图论能激发学生学习欲望,是培养学生主动探索、努力进取的学风和团结协作精神的有力 措施 ;是数学知识和应用能力共同提高的最佳结合点;是启迪创新意识和 创新思维 、锻炼创新能力、培养高层次人才的一条重要途径。因此高校教师在实际的教学过程中要把数学研究化图论的思想、方法及内容融入到当今的大学数学教学中去,是一种行之有效的素质教育方法。本文主要从以下几个方面对图论部分的教学进行了讨论: 一、整合教学资源,重视双基学习,激发学生兴趣 图是一类相当广泛的实际问题的数学模型,有着极其丰富的内容,是数据结构等课程的先修内容。学习时应掌握好图论的基本概念、基本方法、基本算法,善于把实际问题抽象为图论的问题,然后用图论的方法解决问题。那在实际的教学过程中,要充分利用课堂上的时间让学生掌握好这些基本概念、基本方法、基本算法则是显示一名大学教师基本功的时候。因此,教师在讲解最常用的概念如:无向图,有向图,顶点集,边集,n阶图,多重图,简单图,完全图,图的同构,入度,出度,度,孤立点等时,要细讲而精讲,要讲到根上,不仅要帮助学生理解每个概念的具体含义,更重要的是要引导学生总结规律,探索方法,培养能力。教师要充分相信学生,注意从学生的思维角度去剖析问题,运用设疑、讨论、启发、诱导等方式,给他们充分的时间去思考、体会和消化。 图与网络有个自然的对应关系,网络设计和分析中的许多问题可以归结图论问题。因此,图论是网络设计和软件分析的最有力的数学工具。图论数学是应用最广的数学分支之一,不仅在网络设计和软件分析中有着重要的应用价值,在 企业管理 ,交通规划,战争指挥,金融分析等领域都有重要的应用。因此在图论数学的教学中不能仅仅注重讲授概念、定理,还要用实例使学生对图论数学产生兴趣,进而解决生活中出现的一些简单的图论数学问题,以达到培养能力为主的教育目标。例如,我在讲解通路、回路、图的连通性时,为了更好的让学生理解这些概念,我提出一个问题:人、狼、羊、菜用一条只能同时载两位的小船渡河,“狼羊”、“羊菜”不能在无人在场时共处,当然只有人能架船。这种情况下怎样安排才能达到最优的状态呢?这个问题的提出,极大的激发了同学们的兴趣,他们努力思索问题的解决之道。在此基础上,我进一步引导他们建立图模型:顶点表示“原岸的状态”,两点之间有边当且仅当一次合理的渡河“操作”能够实现该状态的转变。起始状态是“人狼羊菜”,结束状态是“空”。问题的解决:找到一条从起始状态到结束状态的尽可能短的通路。最后得出这样的结论:在“人狼羊菜”的16种组合中允许出现的只有10种。即下图所示: 这样我就完成把单纯的图论概念和实际生活相结合的转变。同学们在这个过程中通过自己动手具体分析、积极思索,提高了分析问题、解决问题和运用数学的能力。 二、积极采用多媒体教学,使抽象复杂的内容变得具体形象 大学教材中关于图论部分的定义、定理很多,而且内容比较抽象。在教学中,如果教师沿用传统的教学方法,即:介绍定义——引入定理——证明定理,这种讲课方法不仅时间长,而且也不能吸引学生的兴趣。再加上该课程具有较强的抽象性与推理性,一些问题无法在黑板上讲清楚。因此,在数学化研究图论教学中,在继承传统教学的基础上适当使用现代教育技术进行辅助教学,可以把语言、文字、声音、图形、动画、视频图象等多种媒体有机地集成一体,制作和应用多媒体课件。使学生通过多个感觉器官来获取相关信息,提高教学信息传播效率,把抽象问题具体化和形象化,有效地激发学生的学习兴趣,使得教学效果更加形象、生动、具体、准确。 例如,教师在讲授关于“中国邮递员问题”的知识时,可以先用PPT 展示一个实心的正十二面体,20个顶点标上邮递员途经街道的名称,要求邮递员从邮局出发,遍历各街道一次,最后回到邮局。给学生一段时间寻找路径后,用动画显示出寻找路径的过程。然后教师引导学生将上述的中国邮递员问题建立成一个数学模型即:在一个赋权连通图上求一个含所有边的回路,且使此回路的权最小。显然,若此连通赋权图是 Euler 图,则可用 Fleury 算法求 Euler 回路,此回路即为所求。给出Euler 图的定义以及Fleury 算法,从中让学生归纳演示Fleury 算法。这些知识都掌握以后,可以向学生介绍一下赋权连通图在计算机网络布局中的应用,学生在对赋权连通图的认识从具体—抽象—具体的过程中达到了对赋权连通图的深刻理解。 当然制作一个多媒体课件并不是简单的把书本上的概念和定理照搬到PPT 上,而是用具体形象的媒体冲击同学的感官视觉效果,使其能从中更加深刻体会抽象的概念和定义。例如,在讲解图的相关概念时,对于每一种图可以用具体的图形来演示说明,这样学生可以通过形象的图形对抽象的文字有更加深刻的理解。除了教学课堂上使用多媒体之外,教师还可以通过网络辅导学生课后的学习以及布置与指导,通过电子信箱、BBS讨论等多种形式和手段提供学习支持服务。 三、加强师生课堂互动,调动学生学习的主动性图论中的图是由若干给定的点及连接两点的线所构成的图形,这种图形通常用来描述某些事物之间的某种特定关系,用点代表事物,用连接两点的线表示相应两个事物间具有这种关系。图论数学知识的 应用无所不在,在教学过程中, 我们可根据教学内容结合学生熟悉的生活、生产、科技和当前商品 经济中的一些实际问题如利息、股票、利润、人口等,引导学生从生活中熟悉的方面入手开始学习数学。 图论的教学决不能只是告诉学生现有的结论,然后让他们死记硬背一些公理算法之后,就希望他们立马可以解答出理论很深奥、算法很复杂的数学问题。为了调动学生主动学习的积极性,我在实际的教学过程中会利用好课堂提问这个环节。上课前几分钟的提问,可以通过学生的回答来了解他们对上节课程的掌握程度。而课堂上的提问,可以让学生不宜走神、时刻保持警惕、仔细认真听讲老师讲课的每一个环节,可以积极促使学生在课堂上通过回答教师的提问而解读信息,实施对信息的加工,进而加深对信息的理解。当然教师的提问不应该是随意的、盲目的,而应该是精心准备的,紧扣课堂上所讲授内容的重点及学生最容易混淆、模糊的环节。对于当代大学生而言,老师提问的问题应当有一定的深度和广度,能引导学生深入思考, 把课堂上被动的吸收知识、填鸭式的教学模式变成主动的思考问题、积极回答问题的过程。学生主体参与是数学图论教学的核心,教师主导作用是数学图论教学的保障。在数学图论教学中,通过提问可以引发学生进行深入思考,充分调动他们的积极性,发挥他们的潜能,这样就可以使学生的能动性、自主性、创造性得到长足的进步。 四、加强学生的图论数学思想及运用 网络工具 图论的数学教学实际上就是帮助同学们形成把现实问题转化成点和线的数学思维过程。而教师在具体的教学过程中,就要有目的的引导学生运用数学思想来认识世界。通过这样的教学过程,可以增加学生对图论知识的了解,培养他们提高运用数学图论思维的能力。比如,我在讲解图论之前会给同学们介绍图论问题的由来,即追溯到1736年哥尼斯堡七桥问题,或给学生介绍中外数学名家的光辉 事迹 与献身精神。让他们在加强数学思想的同时,不忘加强自身思想品德的 教育。 图论即形象地运用一些点以及点与点之间的连线构成的图或网络来表示具体问题。利用图与网络的特点来解决系统中的问题,比用线性规划等其他模型来求解往往要简单、有效得多。图论就是研究图和网络模型特点、性质和方法的理论。图和网络之间存在密切的 联系,因此,教师要创设条件, 因材施教,例如运用一些优秀的数学软件如Matlab,MathCAD, 几何画板等,充分利用网络画图的能力来培养学生的数学思维逻辑能力,使每个学生都得到不同程度的 发展和提高,同时培养学生的思想品德和世界观, 让学生的综合素质得到提高。 总之,若教师通过知识的载体,对学生实施能动的 心理和智能的引导教学,提高了学生的数学素质,培养了他们创造性应用的能力,这就算是一种成功的教学。当然教师的职责是通过教学培养学生数学思想,并把这种思想应用到实际的生活中。但传统的教育模式已经根深蒂固的深入到我们的思想当中,尤其是教师也是传统教育模式培养出来的,所以,要想跳出这个怪圈,教师和学校都需要努力去思索和探讨。根据新时代的需求,培养出适应新时代发展的具有自学能力乃至科研能力的更高的人才,这需要我们共同的努力。 猜你喜欢: 1. 应用数学专业论文 2. 数学与应用数学毕业论文 3. 应用数学毕业论文题目 4. 应用数学系毕业论文 5. 数学应用数学本科毕业论文
毕业论文是教学科研过程的一个环节,也是学业成绩考核和评定的一种重要方式。毕业论文的目的在于总结学生在校期间的学习成果,培养学生具有综合地创造性地运用所学的全部专
大学数学是大学生必修的课程之一,由于大一是过渡期,在大一开设数学这门课程对于教学质量有着重要的作用。下面是我为大家整理的大一数学论文,供大家参考。大一数学论文
你自己有没有想好具体些什么题目的论文 ?先确定好你自己的题目呀,是在没思路你就参看范文,(理论数学)等上面的题目你看下,找到你自己想写的方向~
1. 有些人运气好, 但并非所有人都运气好 2.自然数不是奇数就是偶数,
我们写作古代文学论文时,首要任务就是要确定论文的题目,一个好的题目起到了事半功倍的作用。下面是我带来的关于古代文学论文题目的内容,欢迎阅读参考! 古