• 回答数

    9

  • 浏览数

    208

木糖不纯
首页 > 期刊论文 > 离散数学测度论论文

9个回答 默认排序
  • 默认排序
  • 按时间排序

往事随风@遗忘

已采纳

110 数学 a.. 110.11 数学史 b.. 110.14 数理逻辑与数学基础 a.. 110.1410 演绎逻辑学 亦称符号逻辑学 b.. 110.1420 证明论 亦称元数学 c.. 110.1430 递归论 d.. 110.1440 模型论 e.. 110.1450 公理集合论 f.. 110.1460 数学基础 g.. 110.1499 数理逻辑与数学基础其他学科 c.. 110.17 数论 a.. 110.1710 初等数论 b.. 110.1720 解析数论 c.. 110.1730 代数数论 d.. 110.1740 超越数论 e.. 110.1750 丢番图逼近 f.. 110.1760 数的几何 g.. 110.1770 概率数论 h.. 110.1780 计算数论 i.. 110.1799 数论其他学科 d.. 110.21 代数学 a.. 110.2110 线性代数 b.. 110.2115 群论 c.. 110.2120 域论 d.. 110.2125 李群 e.. 110.2130 李代数 f.. 110.2135 Kac-Moody代数 g.. 110.2140 环论 包括交换环与交换代数,结合环与结合代数,非结合环与非结合代数等 h.. 110.2145 模论 i.. 110.2150 格论 j.. 110.2155 泛代数理论 k.. 110.2160 范畴论 l.. 110.2165 同调代数 m.. 110.2170 代数K理论 n.. 110.2175 微分代数 o.. 110.2180 代数编码理论 p.. 110.2199 代数学其他学科 e.. 110.24 代数几何学 f.. 110.27 几何学 a.. 110.2710 几何学基础 b.. 110.2715 欧氏几何学 c.. 110.2720 非欧几何学 包括黎曼几何学等 d.. 110.2725 球面几何学 e.. 110.2730 向量和张量分析 f.. 110.2735 仿射几何学 g.. 110.2740 射影几何学 h.. 110.2745 微分几何学 i.. 110.2750 分数维几何 j.. 110.2755 计算几何学 k.. 110.2799 几何学其他学科 g.. 110.31 拓扑学 a.. 110.3110 点集拓扑学 b.. 110.3115 代数拓扑学 c.. 110.3120 同伦论 d.. 110.3125 低维拓扑学 e.. 110.3130 同调论 f.. 110.3135 维数论 g.. 110.3140 格上拓扑学 h.. 110.3145 纤维丛论 i.. 110.3150 几何拓扑学 j.. 110.3155 奇点理论 k.. 110.3160 微分拓扑学 l.. 110.3199 拓扑学其他学科 h.. 110.34 数学分析 a.. 110.3410 微分学 b.. 110.3420 积分学 c.. 110.3430 级数论 d.. 110.3499 数学分析其他学科 i.. 110.37 非标准分析 j.. 110.41 函数论 a.. 110.4110 实变函数论 b.. 110.4120 单复变函数论 c.. 110.4130 多复变函数论 d.. 110.4140 函数逼近论 e.. 110.4150 调和分析 f.. 110.4160 复流形 g.. 110.4170 特殊函数论 h.. 110.4199 函数论其他学科 k.. 110.44 常微分方程 a.. 110.4410 定性理论 b.. 110.4420 稳定性理论 c.. 110.4430 解析理论 d.. 110.4499 常微分方程其他学科 l.. 110.47 偏微分方程 a.. 110.4710 椭圆型偏微分方程 b.. 110.4720 双曲型偏微分方程 c.. 110.4730 抛物型偏微分方程 d.. 110.4740 非线性偏微分方程 e.. 110.4799 偏微分方程其他学科 m.. 110.51 动力系统 a.. 110.5110 微分动力系统 b.. 110.5120 拓扑动力系统 c.. 110.5130 复动力系统 d.. 110.5199 动力系统其他学科 n.. 110.54 积分方程 o.. 110.57 泛函分析 a.. 110.5710 线性算子理论 b.. 110.5715 变分法 c.. 110.5720 拓扑线性空间 d.. 110.5725 希尔伯特空间 e.. 110.5730 函数空间 f.. 110.5735 巴拿赫空间 g.. 110.5740 算子代数 h.. 110.5745 测度与积分 i.. 110.5750 广义函数论 j.. 110.5755 非线性泛函分析 k.. 110.5799 泛函分析其他学科 p.. 110.61 计算数学 a.. 110.6110 插值法与逼近论 b.. 110.6120 常微分方程数值解 c.. 110.6130 偏微分方程数值解 d.. 110.6140 积分方程数值解 e.. 110.6150 数值代数 f.. 110.6160 连续问题离散化方法 g.. 110.6170 随机数值实验 h.. 110.6180 误差分析 i.. 110.6199 计算数学其他学科 q.. 110.64 概率论 a.. 110.6410 几何概率 b.. 110.6420 概率分布 c.. 110.6430 极限理论 d.. 110.6440 随机过程 包括正态过程与平稳过程、点过程等 e.. 110.6450 马尔可夫过程 f.. 110.6460 随机分析 g.. 110.6470 鞅论 h.. 110.6480 应用概率论 具体应用入有关学科 i.. 110.6499 概率论其他学科 r.. 110.67 数理统计学 a.. 110.6710 抽样理论 包括抽样分布、抽样调查等 b.. 110.6715 假设检验 c.. 110.6720 非参数统计 d.. 110.6725 方差分析 e.. 110.6730 相关回归分析 f.. 110.6735 统计推断 g.. 110.6740 贝叶斯统计 包括参数估计等 h.. 110.6745 试验设计 i.. 110.6750 多元分析 j.. 110.6755 统计判决理论 k.. 110.6760 时间序列分析 l.. 110.6799 数理统计学其他学科 s.. 110.71 应用统计数学 a.. 110.7110 统计质量控制 b.. 110.7120 可靠性数学 c.. 110.7130 保险数学 d.. 110.7140 统计模拟 t.. 110.7199 应用统计数学其他学科 u.. 110.74 运筹学 a.. 110.7410 线性规划 b.. 110.7415 非线性规划 c.. 110.7420 动态规划 d.. 110.7425 组合最优化 e.. 110.7430 参数规划 f.. 110.7435 整数规划 g.. 110.7440 随机规划 h.. 110.7445 排队论 i.. 110.7450 对策论 亦称博奕论 j.. 110.7455 库存论 k.. 110.7460 决策论 l.. 110.7465 搜索论 m.. 110.7470 图论 n.. 110.7475 统筹论 o.. 110.7480 最优化 p.. 110.7499 运筹学其他学科 v.. 110.77 组合数学 w.. 110.81 离散数学 x.. 110.84 模糊数学 y.. 110.87 应用数学 具体应用入有关学科 z.. 110.99 数学其他学科

193 评论

亲爱的小慧慧

很遗憾,没有帮你找到向量值函数的确切分类号,但我查遍了中图网亦无所获,根据:O183向量(矢量)和张量分析 也许它属于O18 几何 拓扑类吧,下面的这个网址包含了所有的分类号,你可以再去查找一下,再下面就是我所知的分类号: • • • O1-0数学理论 • O1-6数学参考工具书 • O1-8计算工具 • O11古典数学 • O119中国数学 • O12初等数学 • O13高等数学 • O14数理逻辑、数学基础 • O15代数、数论、组合理论 • O17数学分析 • O18几何、拓扑 • O19动力系统理论 • O21概率论与数理统计 • O22运筹学 • O23控制论、信息论(数学理论) • O24计算数学 • O29应用数学 • • • O1-64数学表 • • O1-641乘法表、因数表、质数表 • O1-642倒数表 • O1-643乘方与开方表 • O1-644对数表 • O1-645三角函数表 • O1-646积分表 • O1-647概率论、数理统计用表 • O1-648特殊函数表 • O1-649计算数学用表 • O112中国古典数学 • O113/117各国古典数学 • O121算术 • O122初等代数 • O123初等几何 • O124三角 • O122.1代数式 • O122.2方程式 • O122.3不等式 • O122.4排列、组合、二项定理 • O122.5极大与极小 • O122.6对数、指数 • O122.7级数 • O123.1平面几何 • O123.2立体几何 • O123.3几何各论 • O123.4极大与极小 • O123.5轨迹与几何作图 • O123.6三角形与圆的几何学、近世几何学 • O124.1平面三角 • O124.2球面三角 • O141数理逻辑(符号逻辑) • O142应用数理逻辑 • O143数学基础 • O144集合论 • O141.1命题演算、谓词演算、类演算 • O141.2证明论 • O141.3递归论(递归函数、能行性理论) • O141.4模型理论 • O141.12谓词演算(命题函项演算) • O141.13类演算 • O141.41非标准分析 • O144.1基本概念 • O144.2悖论 • O144.3公理集合论 • O144.4类型论 • O144.5描述集合论(解析集合论) • O151代数方程论、线性代数 • O152群论 • O153抽象代数(近世代数) • O154范畴论、同调代数 • O155微分代数、差分代数 • O156数论 • O157组合数学(组合学) • O158离散数学 • O159模糊数学 • O151.1代数方程论 • O151.2线性代数 • O152.1有限群论 • O152.2交换群论(阿贝尔群论) • O152.3线性群论 • O152.4拓扑群论 • O152.5李群 • O152.6群表示论 • O152.7群的推广 • O152.8群论的应用 • O153.1偏序集合与格论 • O153.2布尔代数 • O153.3环论 • O153.4域论 • O153.5泛代数 • O154.1范畴论 • O154.2同调代数 • O154.3代数K-理论 • O156.1初等数论 • O156.2代数数论 • O156.3几何数论 • O156.4解析数论 • O156.5二次型(二次齐式) • O156.6超越数论 • O156.7丢番图分析(丢番图数论) • O157.1组合分析 • O157.2组合设计 • O157.3组合几何 • O157.4编码理论(代数码理论) • O157.5图论 • O157.6图论的应用 • O171分析基础 • O172微积分 • O173无穷级数论(级数论) • O174函数论 • O175微分方程、积分方程 • O176变分法 • O177泛函分析 • O178不等式及其他 • O172.1微分学 • O172.2积分学 • O174.1实分析、实变函数 • O174.2傅里叶分析(经典调和分析) • O174.3调和函数与位势论 • O174.4函数构造论 • O174.5复分析、复变函数 • O174.6特殊函数 • O174.61贝赛尔函数 • O174.62球面调和函数 • O174.63圆柱面调和函数 • O174.64椭圆面调和函数 • O174.66欧拉积分 • O174.51单复变数函数几何理论 • O174.52整数函数论、亚纯函数论(半纯函数论) • O174.53代数函数论 • O174.54椭圆函数、阿贝尔函数、自守函数 • O174.55拟共形映射(拟保角变换)、拟解析函数、广义解析函数 • O174.56多复变数函数 • O174.41逼近论 • O174.42插值论 • O174.43矩量问题 • O174.21正交级数(傅里叶级数) • O174.22傅里叶积分(傅里叶变换) • O174.23殆周期函数 • O174.11描述理论 • O174.12测度论 • O174.13凸函数、凸集理论 • O174.14多项式理论 • O175.1常微分方程 • O175.2偏微分方程 • O175.3微分算子理论 • O175.4高阶偏微分方程(组) • O175.5积分方程 • O175.6积分微分方程 • O175.7差分微分方程 • O175.8边值问题 • O175.9特征值及特征值函数问题 • O175.11解析理论 • O175.12定性理论 • O175.13稳定性理论 • O175.14非线性常微分方程 • O175.15抽象空间常微分方程 • O175.21稳定性理论 • O175.22一阶偏微分方程 • O175.23二阶偏微分方程 • O175.24数理方程 • O175.25椭圆型方程 • O175.26抛物型方程 • O175.27双曲型方程 • O175.28混合型方程 • O175.29非线性偏微分方程 • O176.1极小曲面方程 • O176.2等周问题 • O176.3大范围变分法 • O177.1希尔伯特空间及其线性算子理论 • O177.2巴拿赫空间及其线性算子理论 • O177.3线性空间理论(向量空间) • O177.4广义函数论 • O177.5巴拿赫代数(赋范代数)、拓扑代数、抽象调和分析 • O177.6积分变换及算子演算 • O177.7谱理论 • O177.8积分论(基于泛函分析观点的) • O177.91非线性泛函分析 • O177.92泛函分析的应用 • O177.99其他 • O181几何基础(几何学原理) • O182解析几何 • O183向量(矢量)和张量分析 • O184非欧几何、多维空间几何 • O185射影(投影)几何、画法几何 • O186微分几何、积分几何 • O187代数几何 • O189拓扑(形势几何学) • v O183.1向量分析 • O183.2张量分析 • O192整体分析、流形上分析、突变理论 • O193微分动力系统 • O221规划论(数学规划) • O223统筹方法 • O224最优化的数学理论 • O225对策论(博弈论) • O226排队论(随机服务系统) • O227库存论 • O228更新理论 • O229搜索理论 • v O241数值分析 • O242数学模拟、近似计算 • O243图解数学、图算数学 • [O244]程序设计 • O245数值软件 • O246数值并行计算 • O241.1误差理论 • {O241.2}最小二乘法 • O241.3插值法 • O241.4数值积分法、数值微分法 • O241.5数值逼近 • O241.6线性代数的计算方法 • O241.7非线性代数方程和超越方程的数值解法 • O241.8微分方程、积分方程的数值解法 • O242.1数学模拟 • O242.2近似计算 •

186 评论

虫子郭郭

编辑本段简介名称来源 数学(mathematics;希腊语:μαθηματικ?)这一词在西方源自于古希腊语的μ?θημα(máthēma),其有学习、学问、科学,以及另外还有个较狭隘且技术性的意义-“数学研究”,即使在其语源内。其形容词意义为和学习有关的或用功的,亦会被用来指数学的。其在英语中表面上的复数形式,及在法语中的表面复数形式les mathématiques,可溯至拉丁文的中性复数mathematica,由西塞罗译自希腊文复数τα μαθηματικ?(ta mathēmatiká),此一希腊语被亚里士多德拿来指“万物皆数”的概念。(拉丁文:Mathemetica)原意是数和数数的技术。 我国古代把数学叫算术,又称算学,最后才改为数学。 要想学好数学,勤练才可以。数学史 基础数学的知识与运用是个人与团体生活中不可或缺的一部分。其基本概念的精炼早在古埃及、美索不达米亚及古印度内的古代数学文本内便可观见。从那时开始,其发展便持续不断地有小幅度的进展,直至16世纪的文艺复兴时期,因着和新科学发现相作用而生成的数学革新导致了知识的加速,直至今日。 今日,数学被使用在世界不同的领域上,包括科学、工程、医学和经济学等。数学对这些领域的应用通常被称为应用数学,有时亦会激起新的数学发现,并导致全新学科的发展。数学家也研究纯数学,也就是数学本身,而不以任何实际应用为目标。虽然许多以纯数学开始的研究,但之后会发现许多应用。 创立于二十世纪三十年代的法国的布尔巴基学派认为:数学,至少纯数学,是研究抽象结构的理论。结构,就是以初始概念和公理出发的演绎系统。布学派认为,有三种基本的抽象结构:代数结构(群,环,域……),序结构(偏序,全序……),拓扑结构(邻域,极限,连通性,维数……)。 编辑本段数学研究的各领域 数学主要的学科首要产生于商业上计算的需要、了解数字间的关系、测量土地及预测天文事件。这四种需要大致地与数量、结构、空间及变化(即算术、代数、几何及分析)等数学上广泛的子领域相关连著。除了上述主要的关注之外,亦有用来探索由数学核心至其他领域上之间的连结的子领域:至逻辑、至集合论(基础)、至不同科学的经验上的数学(应用数学)、及较近代的至不确定性的严格学习。 数量 数量的学习起于数,一开始为熟悉的自然数及整数与被描述在算术内的自然数及整数的算术运算。整数更深的性质被研究于数论中,此一理论包括了如费马最后定理之著名的结果。数论还包括两个被广为探讨的未解问题:孪生素数猜想及哥德巴赫猜想。 当数系更进一步发展时,整数被承认为有理数的子集,而有理数则包含于实数中,连续的数量即是以实数来表示的。实数则可以被进一步广义化成复数。数的进一步广义化可以持续至包含四元数及八元数。自然数的考虑亦可导致超限数,它公式化了计数至无限的这一概念。另一个研究的领域为其大小,这个导致了基数和之后对无限的另外一种概念:艾礼富数,它允许无限集合之间的大小可以做有意义的比较。 结构 许多如数及函数的集合等数学物件都有着内含的结构。这些物件的结构性质被探讨于群、环、体及其他本身即为此物件的抽象系统中。此为抽象代数的领域。在此有一个很重要的概念,即向量,且广义化至向量空间,并研究于线性代数中。向量的研究结合了数学的三个基本领域:数量、结构及空间。向量分析则将其扩展至第四个基本的领域内,即变化。 空间 空间的研究源自于几何-尤其是欧式几何。三角学则结合了空间及数,且包含有著名的勾股定理。现今对空间的研究更推广到了更高维的几何、非欧几何(其在广义相对论中扮演著核心的角色)及拓扑学。数和空间在解析几何、微分几何和代数几何中都有着很重要的角色。在微分几何中有着纤维丛及流形上的计算等概念。在代数几何中有着如多项式方程的解集等几何物件的描述,结合了数和空间的概念;亦有着拓扑群的研究,结合了结构与空间。李群被用来研究空间、结构及变化。在其许多分支中,拓扑学可能是二十世纪数学中有着最大进展的领域,并包含有存在久远的庞加莱猜想及有争议的四色定理,其只被电脑证明,而从来没有由人力来验证过. 基础与哲学 为了搞清楚数学基础,数学逻辑和集合论等领域被发展了出来。德国数学家康托(Georg Cantor,1845-1918)首创集合论,大胆地向“无穷大”进军,为的是给数学各分支提供一个坚实的基础,而它本身的内容也是相当丰富的,提出了实无穷的存在,为以后的数学发展作出了不可估量的贡献。Cantor的工作给数学发展带来了一场革命。由于他的理论超越直观,所以曾受到当时一些大数学家的反对,就连被誉为“博大精深,富于创举”的数学家Pioncare也把集合论比作有趣的“病理情形”,甚至他的老师Kronecker还击Cantor是“神经质”,“走进了超越数的地狱”.对于这些非难和指责,Cantor仍充满信心,他说:“我的理论犹如磐石一般坚固,任何反对它的人都将搬起石头砸自己的脚.”他还指出:“数学的本质在于它的自由性,不必受传统观念束缚。”这种争辩持续了十年之久。Cantor由于经常处于精神压抑之中,致使他1884年患了精神分裂症,最后死于精神病院。 然而,历史终究公平地评价了他的创造,集合论在20世纪初已逐渐渗透到了各个数学分支,成为了分析理论,测度论,拓扑学及数理科学中必不可少的工具。20世纪初世界上最伟大的数学家Hilbert在德国传播了Cantor的思想,把他称为“数学家的乐园”和“数学思想最惊人的产物”。英国哲学家Russell把Cantor的工作誉为“这个时代所能夸耀的最巨大的工作”。 数学逻辑专注在将数学置于一坚固的公理架构上,并研究此一架构的成果。就其本身而言,其为哥德尔第二不完备定理的产地,而这或许是逻辑中最广为流传的成果-总存在一不能被证明的真实定理。现代逻辑被分成递归论、模型论和证明论,且和理论计算机科学有着密切的关连性。 恩格斯说:“数学是研究现定世界的数量关系与空间形式的科学。”编辑本段数学的分类 离散数学 模糊数学数学的五大分支 1.经典数学 2.近代数学 3.计算机数学 4.随机数学 5.经济数学数学分支 1.算术 2.初等代数 3.高等代数 4. 数论 5.欧几里得几何 6.非欧几里得几何 7.解析几何 8.微分几何 9.代数几何 10.射影几何学 11.几何拓扑学 12.拓扑学 13.分形几何 14.微积分学 15. 实变函数论 16.概率和统计学 17.复变函数论 18.泛函分析 19.偏微分方程 20.常微分方程 21.数理逻辑 22.模糊数学 23.运筹学 24.计算数学 25.突变理论 26.数学物理学广义的数学分类 从纵向划分: 1.初等数学和古代数学:这是指17世纪以前的数学。主要是古希腊时期建立的欧几里得几何学,古代中国、古印度和古巴比伦时期建立的算术,欧洲文艺复兴时期发展起来的代数方程等。 2.变量数学:是指17--19世纪初建立与发展起来的数学。从17世纪上半叶开始的变量数学时期,可以分为两个阶段:17世纪的创建阶段(英雄时代)与18世纪的发展阶段(创造时代)。 3.近代数学:是指19世纪的数学。近代数学时期的19世纪是数学的全面发展与成熟阶段,数学的面貌发生了深刻的变化,数学的绝大部分分支在这一时期都已经形成,整个数学呈现现出全面繁荣的景象。 4.现代数学:是指20世纪的数学。1900年德国著名数学家希尔伯特(D. Hilbert)在世界数学家大会上发表了一个著名演讲,提出了23个预测和知道今后数学发展的数学问题(见下),拉开了20世纪现代数学的序幕。 1900年,在巴黎国际数学家代表大会上,希尔伯特发表了题为《数学问题》的著名讲演。他根据过去特别是十九世纪数学研究的成果和发展趋势,提出了23个最重要的数学问题。这23个问题通称希尔伯特问题,后来成为许多数学家力图攻克的难关,对现代数学的研究和发展产生了深刻的影响,并起了积极的推动作用,希尔伯特问题中有些现已得到圆满解决,有些至今仍未解决。他在讲演中所阐发的想信每个数学问题都可以解决的信念,对于数学工作者是一种巨大的鼓舞。 希尔伯特的23个问题分属四大块:第1到第6问题是数学基础问题;第7到第12问题是数论问题;第13到第18问题属于代数和几何问题;第19到第23问题属于数学分析。 现在只列出一张清单: (1)康托的连续统基数问题。 (2)算术公理系统的无矛盾性。 (3)只根据合同公理证明等底等高的两个四面体有相等之体积是不可能的。 (4)两点间以直线为距离最短线问题。 (5)拓扑学成为李群的条件(拓扑群)。 (6)对数学起重要作用的物理学的公理化。 (7)某些数的超越性的证明。 (8)素数分布问题,尤其对黎曼猜想、哥德巴赫猜想和孪生素共问题。 (9)一般互反律在任意数域中的证明。 (10)能否通过有限步骤来判定不定方程是否存在有理整数解? (11)一般代数数域内的二次型论。 (12)类域的构成问题。 (13)一般七次代数方程以二变量连续函数之组合求解的不可能性。 (14)某些完备函数系的有限的证明。 (15)建立代数几何学的基础。 (16)代数曲线和曲面的拓扑研究。 (17)半正定形式的平方和表示。 (18)用全等多面体构造空间。 (19)正则变分问题的解是否总是解析函数? (20)研究一般边值问题。 (21)具有给定奇点和单值群的Fuchs类的线性微分方程解的存在性证明。 (22)用自守函数将解析函数单值化。 (23)发展变分学方法的研究。 从横向划分: 1.基础数学(Pure Mathematics)。又称为理论数学或纯粹数学,是数学的核心部分,包含代数、几何、分析三大分支,分别研究数、形和数形关系。 2.应用数学(Applied mathematics)。简单地说,也即数学的应用。 3 .计算数学(Computation mathematics)。研究诸如计算方法(数值分析)、数理逻辑、符号数学、计算复杂性、程序设计等方面的问题。该学科与计算机密切相关。 4.概率统计(Probability and mathematical statistics)。分概率论与数理统计两大块。 5.运筹学与控制论(Op-erations research and control)。运筹学是利用数学方法,在建立模型的基础上,解决有关人力、物资、金钱等的复杂系统的运行、组织、管理等方面所出现的问题的一门学科。编辑本段符号、语言与严谨 在现代的符号中,简单的表示式可能描绘出复杂的概念。此一图像即是由一简单方程所产生的。 我们现今所使用的大部分数学符号都是到了16世纪后才被发明出来的。在此之前,数学被文字书写出来,这是个会限制住数学发展的刻苦程序。现今的符号使得数学对于专家而言更容易去控作,但初学者却常对此感到怯步。它被极度的压缩:少量的符号包含著大量的讯息。如同音乐符号一般,现今的数学符号有明确的语法和难以以其他方法书写的讯息编码。 数学语言亦对初学者而言感到困难。如何使这些字有着比日常用语更精确的意思。亦困恼着初学者,如开放和域等字在数学里有着特别的意思。数学术语亦包括如同胚及可积性等专有名词。但使用这些特别符号和专有术语是有其原因的:数学需要比日常用语更多的精确性。数学家将此对语言及逻辑精确性的要求称为“严谨”。 严谨是数学证明中很重要且基本的一部份。数学家希望他们的定理以系统化的推理依着公理被推论下去。这是为了避免错误的“定理”,依着不可靠的直观,而这情形在历史上曾出现过许多的例子。在数学中被期许的严谨程度因着时间而不同:希腊人期许着仔细的论点,但在牛顿的时代,所使用的方法则较不严谨。牛顿为了解决问题所做的定义到了十九世纪才重新以小心的分析及正式的证明来处理。今日,数学家们则持续地在争论电脑辅助证明的严谨度。当大量的计量难以被验证时,其证明亦很难说是有效地严谨。编辑本段数学的发展史 世界数学发展史 数学,起源于人类早期的生产活动,为中国古代六艺之一,亦被古希腊学者视为哲学之起点。数学的希腊语μαθηματικ??(mathematikós)意思是“学问的基础”,源于μ?θημα(máthema)(“科学,知识,学问”)。 数学的演进大约可以看成是抽象化的持续发展,或是题材的延展。第一个被抽象化的概念大概是数字,其对两个苹果及两个橘子之间有某样相同事物的认知是人类思想的一大突破。 除了认知到如何去数实际物质的数量,史前的人类亦了解如何去数抽象物质的数量,如时间-日、季节和年。算术(加减乘除)也自然而然地产生了。古代的石碑亦证实了当时已有几何的知识。 更进一步则需要写作或其他可记录数字的系统,如符木或于印加帝国内用来储存数据的奇普。历史上曾有过许多且分歧的记数系统。 从历史时代的一开始,数学内的主要原理是为了做税务和贸易等相关计算,为了了解数字间的关系,为了测量土地,以及为了预测天文事件而形成的。这些需要可以简单地被概括为数学对数量、结构、空间及时间方面的研究。 到了16世纪,算术、初等代数、以及三角学等初等数学已大体完备。17世纪变量概念的产生使人们开始研究变化中的量与量的互相关系和图形间的互相变换。在研究经典力学的过程中,微积分的方法被发明。随着自然科学和技术的进一步发展,为研究数学基础而产生的集合论和数理逻辑等也开始慢慢发展。 数学从古至今便一直不断地延展,且与科学有丰富的相互作用,并使两者都得到好处。数学在历史上有着许多的发现,并且直至今日都还不断地发现中。依据Mikhail B. Sevryuk于美国数学会通报2006年1月的期刊中所说,“存在于数学评论数据库中论文和书籍的数量自1940年(数学评论的创刊年份)现已超过了一百九十万份,而且每年还增加超过七万五千份的细目。此一学海的绝大部份为新的数学定理及其证明。”编辑本段国外数学名家高斯 数 学 天 才 —— 高 斯 高斯是德国数学家、物理学家和天文学家。 高斯一生下来,就对一切现象和事物十分好奇,而且决心弄个水落石出。7岁那年,高斯第一次上学了。 在全世界广为流传的一则故事说,高斯10岁时算出布特纳给学生们出的将1到100的所有整数加起来的算术题,布特纳当时给孩子们出的是一道更难的加法题:81297+81495+81693+…+100899。说完高斯也算完并把写有答案的小石板交了上去,当时只有他写的答案是正确的。数学史家们倾向于认为,高斯当时已掌握了等差数列求和的方法。一位年仅10岁的孩子,能独立发现这一数学方法实属很不平常。 高斯的学术地位,历来被人们推崇得很高。他有“数学王子”、“数学家之王”的美称。牛顿 牛顿是英国物理学家和数学家。 在学校里,牛顿是个古怪的孩子,就喜欢自己设计、自己动手,做风筝、日晷、滴漏之类器物。他对周围的一切充满好奇,但并不显得特别聪明。 后来,家里叫他停学,到他母亲的农场上去帮忙。在他母亲的农场上,看到一个苹果落在地上,便开始捉摸,这种将苹果往下拉的力会不会也在控制着月球。由此牛顿推导出物体的下落速度改变率与重力的大小成正比,而重力大小与距地心距离的平方成反比。后来牛顿的棱镜实验也使他一举成名。 牛顿有两句名言是大家所熟知的。他在一封信中写道:“如果我比别人看得远些,那是因为我站在巨人们的肩上。”据说他还讲过:“我不知道世人对我怎么看;但在我自己看来就好像只是一个在海滨嬉戏的孩子,不时地为比别人找到一块光滑的卵石或一只更美丽的贝壳而感到高兴,而我面前的 浩瀚的真理海洋,却还完全是个谜。”莱布尼茨 戈特弗里德·威廉·凡·莱布尼茨(Gottfried Wilhelm von Leibniz,1646年7月1日~1716年11月14日)德国最重要的自然科学家、数学家、物理学家、历史学家和哲学家,一位举世罕见的科学天才,和牛顿(1643年1月4日—1727年3月31日)同为微积分的创建人。他博览群书,涉猎百科,对丰富人类的科学知识宝库做出了不可磨灭的贡献。阿基米德 阿基米德(公元前287年—公元前212年),古希腊哲学家、数学家、物理学家。出生于西西里岛的叙拉古。阿基米德到过亚历山大里亚,据说他住在亚历山大里亚时期发明了阿基米德式螺旋抽水机。后来阿基米德成为兼数学家与力学家的伟大学者,并且享有“力学之父”的美称。阿基米德流传于世的数学著作有10余种,多为希腊文手稿。

95 评论

耗耗和妞妞

毕业论文是教学科研过程的一个环节,也是学业成绩考核和评定的一种重要方式。毕业论文的目的在于总结学生在校期间的学习成果,培养学生具有综合地创造性地运用所学的全部专业知识和技能解决较为复杂问题的能力并使他们受到科学研究的基本训练。标题标题是文章的眉目。各类文章的标题,样式繁多,但无论是何种形式,总要以全部或不同的侧面体现作者的写作意图、文章的主旨。毕业论文的标题一般分为总标题、副标题、分标题几种。总标题总标题是文章总体内容的体现。常见的写法有:①揭示课题的实质。这种形式的标题,高度概括全文内容,往往就是文章的中心论点。它具有高度的明确性,便于读者把握全文内容的核心。诸如此类的标题很多,也很普遍。如《关于经济体制的模式问题》、《经济中心论》、《县级行政机构改革之我见》等。②提问式。这类标题用设问句的方式,隐去要回答的内容,实际上作者的观点是十分明确的,只不过语意婉转,需要读者加以思考罢了。这种形式的标题因其观点含蓄,轻易激起读者的注重。如《家庭联产承包制就是单干吗?》、《商品经济等同于资本主义经济吗?》等。③交代内容范围。这种形式的标题,从其本身的角度看,看不出作者所指的观点,只是对文章内容的范围做出限定。拟定这种标题,一方面是文章的主要论点难以用一句简短的话加以归纳;另一方面,交代文章内容的范围,可引起同仁读者的注重,以求引起共鸣。这种形式的标题也较普遍。如《试论我国农村的双层经营体制》、《正确处理中心和地方、条条与块块的关系》、《战后西方贸易自由化剖析》等。④用判定句式。这种形式的标题给予全文内容的限定,可伸可缩,具有很大的灵活性。文章研究对象是具体的,面较小,但引申的思想又须有很强的概括性,面较宽。这种从小处着眼,大处着手的标题,有利于科学思维和科学研究的拓展。如《从乡镇企业的兴起看中国农村的希望之光》、《科技进步与农业经济》、《从“劳动创造了美”看美的本质》等。

185 评论

xiaoze2000

免费查阅文献的刊物,你可以看看(计算机科学与应用)等等这些

200 评论

搜奇猎怪

关于【组合数学】的论文 生活中矩阵的应用摘要:矩阵作为一种重要的工具,在生活的方方面面都存在应用。比如科学地选彩票号码,图形的变换处理,控制监控系统都存在了矩阵的痕迹。矩阵在各个领域的应用为我们展示了矩阵的广泛实用性。矩阵实现了对组合的优化,对质量的管理优化,会变得越来越重要。关键词:矩阵 应用 优化 一.矩阵的概念在开始讨论矩阵应用前,先了解一下矩阵及相关的一些概念。在数学上,矩阵是指纵横排列的二维数据表格,最早来自于方程组的系数及常数所构成的方阵,这一概念由19世纪英国数学家凯利首先提出。一些矩阵在农业,经济,通信等领域都存在许多特别的应用。二.矩阵的特别的应用 1.矩阵应用在选彩票号码一些彩民由于未了解“旋转矩阵”的作用,都采取旧式的复式投注方式(即完全复式),完完整整地拿去打彩,一些对复式投注进行深入研究的彩民发现进行复式投注浪费了不少成本。据研究者发现约有三分之一号码组合,实际上是不可能中奖或极难中奖的。据说在美国彩票史上,Gail Howard运用一种叫做“旋转矩阵”投注选号法,奇迹般地中出了74个大奖。这种“旋转矩阵”法,是一种基于“旋转矩阵”数学原理构造的选号法,其核心是:以极低的成本实现复式投注的效果。那么如何以极低的成本实现复式投注的最佳效果呢?这是由“旋转矩阵”法优点决定的。实际上,旋转矩阵是教你如何科学地组合号码。与完全复式投注组合号码的方法相比,旋转矩阵有着投入低、中奖保证高的优点。举个例子讲,10个号码的中6保5型的旋转矩阵的含义就是,你选择了10个号码,如果其中包含了6个中奖号码,那么运用该矩阵提供的14注号码,你至少有一注中对5个号码的奖。本矩阵只要投入28元,而相应的复式投注需要投入420元。大家知道,用10个号码,只购买其中的14注,如果你胡乱组合的话,即使这10个号码中包含有6个中奖号码,你也很可能只中得一些小奖。而运用旋转矩阵的话,就可以得到一个对5个号码的奖的最低中奖保证。旋转矩阵是世界上著名的彩票专家、澳大利亚数学家底特罗夫研究的,它可以帮助您锁定喜爱的号码,提高中奖的机会。首先您要先选一些号码,然后,运用某一种旋转矩阵,将你挑选的数字填入相应位置。如果您选择的数字中有一些与开奖号码一样,您将一定会中一定奖级的奖。当然运用这种旋转矩阵,可以最小的成本获得最大的收益,且远远小于复式投注的成本。 (1)旋转矩阵的原理在数学上涉及到的是一种组合设计:覆盖设计。而覆盖设计,填装设计,斯坦纳系,t-设计都是离散数学中的组合优化问题。2.矩阵在透视投影应用三维计算机图形学中另外一种重要的变换是透视投影。与平行投影沿着平行线将物体投影到图像平面上不同,透视投影按照从投影中心这一点发出的直线将物体投影到图像平面。这就意味着距离投影中心越远投影越小,距离越近投影越大。 最简单的透视投影将投影中心作为坐标原点,z = 1 作为图像平面,这样投影变换为 x' = x / z; y' = y / z,用齐次坐标表示为:这个乘法的计算结果是 (xc,yc,zc,wc) = (x,y,z,z)。在进行乘法计算之后,通常齐次元素 wc 并不为 1,所以为了映射回真实平面需要进行齐次除法,即每个元素都除以 wc: 更加复杂的透视投影可以是与旋转、缩放、平移、切变等组合在一起对图像进行变换。比如给定n个点,m个操作,构造O(m+n)的算法输出m个操作后各点的位置。操作有平移、缩放、翻转和旋转 这里的操作是对所有点同时进行的。其中翻转是以坐标轴为对称轴进行翻转(两种情况),旋转则以原点为中心。如果对每个点分别进行模拟,那么m个操作总共耗时O(mn)。利用矩阵乘法可以在O(m)的时间里把所有操作合并为一个矩阵,然后每个点与该矩阵相乘即可直接得出最终该点的位置,总共耗时O(m+n)。假设初始时某个点的坐标为x和y,下面5个矩阵可以分别对其进行平移、旋转、翻转和旋转操作。预先把所有m个操作所对应的矩阵全部乘起来,再乘以(x,y,1),即可一步得出最终点的位置。3.矩阵在质量问题中的运用 矩阵是从多维问题的事件中,找出成对的因素,排列成矩阵图,然后根据矩阵图来分析问题,确定关键点的方法,它是一种通过多因素综合思考,探索问题的好方法。 在复杂的质量问题中,往往存在许多成对的质量因素.将这些成对因素找出来,分别排列成行和列,其交点就是其相互关联的程度,在此基础上再找出存在的问题及问题的形态,从而找到解决问题的思路。 矩阵图的形式:A为某一个因素群,a1、a2、a3、a4、…是属于A这个因素群的具体因素,将它们排列成行;B为另一个因素群,b1、b2、b3、b4、…为属于B这个因素群的具体因素,将它们排列成列;行和列的交点表示A和B各因素之间的关系。按照交点上行和列因素是否相关联及其关联程度的大小,可以从中得到解决问题的启示。 质量管理中所使用的矩阵图,其成对因素往往是要着重分析的质量问题的两个侧面,如生产过程中出现了不合格品时,着重需要分析不合格的现象和不合格的原因之间的关系,为此,需要把所有缺陷形式和造成这些缺陷的原因都罗列出来,逐一分析具体现象与具体原因之间的关系,这些具体现象和具体原因分别构成矩阵图中的行元素和列元素。 矩阵图法的用途十分广泛.在质量管理中,常用矩阵图法解决以下问题: ①把系列产品的硬件功能和软件功能相对应,从中找出研制新产品或改进老产品的切入点,进行多变量分析、研究从何处入手以及以什么方式收集数据 。②明确应保证产品质量特性及与管理机构或保证部门的关系,使质量保证体制更可靠; ③当生产工序中存在多种不良现象,且它们具有若干个共同的原因时,搞清这些不良现象及其产生原因的相互关系,进而把这些不良现象一举消除。 ④明确产品的质量特性与试验测定仪器、试验测定项目之间的关系,力求强化质量评价体制或使之提高效率;(2)三,对矩阵应用的感悟 上述的矩阵应用说明了矩阵不仅仅是解方程组的工具,而且它是一种有用的工具,不仅仅在数学领域,还在经济,计算机领域等领域。相信在不久的未来,矩阵会变得越来越重要。矩阵的作用会越来越多地让人们发现。在线性代数数学书中,方程组可以转换为矩阵,再通过矩阵来简单,快速地解决问题。在质量管理问题上,它采用矩阵图来找出切入点,了解原因,使质量效率提高。 相信在不久的未来,矩阵对于优化问题的应用会越来越广泛,触及面会越来越多。矩阵是生活变得更简单,方便。参考文献:[1] 《科学通报》蒋昌俊,吴哲辉..,1989. [2] 求解约束矩阵方程及其最佳逼近的迭代法的研究彭亚新.湖南大学,2005.

174 评论

JeffRen1966

生活的无奈,有时并不源于自我,别人无心的筑就,那是一种阴差阳错。生活本就是矛盾的,白天与黑夜间的距离,春夏秋冬之间的轮回,于是有了挑剔的喜爱,让无奈加上了喜悦的等待。 2.一个安静的夜晚,我独自一人,有些空虚,有些凄凉。坐在星空下,抬头仰望美丽天空,感觉真实却由虚幻,闪闪烁烁,似乎看来还有些跳动。美的一切总在瞬间,如同“海市蜃楼”般,也只是刹那间的一闪而过,当天空变得明亮,而这星星也早已一同退去…… 3.喜欢海,不管湛蓝或是光灿,不管平静或是波涛汹涌,那起伏荡漾的,那丝丝的波动;喜欢听海的声音,不管是浪击礁石,或是浪涛翻滚,那轻柔的,那澎湃的;喜欢看海,不管心情是舒畅的或是沉闷的,不管天气是晴朗的或是阴沉的,那舒心的,那松弛的…… 4.翻开早已发黄的页张,试着寻找过去所留下的点点滴滴的足迹。多年前的好友似乎现在看来已变得陌生,匆忙之间,让这维持了多年的友谊变淡,找不出什么亲切感,只是偶尔遇上,淡淡地微笑,如今也只能在这发黄的页张中找寻过去的那些让人难忘的,至少我可以握住这仅剩下一段的“丝线头”…… 5.天又快黑了,这座忙碌的城市又将入睡,让这劳累的“身躯”暂别白日的辛勤,让它入睡,陪伴着城市中的人们进入梦乡。当空的弯月正深情地注视着这座城市与城市中的人们,看着家家户户的灯渐渐熄灭,它在床头悄悄奏响“明月曲”…… 6.听,是谁的琴声,如此凄凉,低调的音,缓慢的节奏,仿佛正诉说着什么。音低调得略微有些抖动,听起来似乎心也有些抖动,我感觉到一种压抑的沉闷气息,是否已凝结在这空气中…… 7.灯,带有一种明亮的光,每当深夜来临,是它陪伴着你,如此默默无闻。它是平凡的,外表华丽与否,那都是一样的,珍珠点缀,水晶加饰的灯它只能用以装饰,来满足人们的虚荣心,比起这,普普通通的日光灯是幸运的,因为它照明的本性没有改变,如同生活中的一部分人平平凡凡却实实在在。 8.今天阳光很好,坐在窗前,看窗外如此晴朗的天感觉特别舒心,雨过天晴后的世界总给人一种明媚,仿佛阳光照耀在“心田”上空,让前些天被风雨践踏的花朵重新得到爱的关怀,重现生命的活力! 9.无知者为梦想中的虚幻而苦苦等待,换回的不是所求的,而是岁月在脸上留下的印痕,一事无成的人一生便是虚度。生活中,与其花时间去等待,不如加快步伐去追寻理想,试着与时间赛跑,也许身躯、心理会感到劳累,但这样的生活毕竟是充实的。 10.有些冷,有些凉,心中有些无奈,我一个人走在黑夜中,有些颤抖,身体瑟缩着,新也在抖动着,我看不清前方的路,何去何从,感觉迷茫,胸口有些闷,我环视了一下周围,无人的街头显得冷清,感到整个世界都要将我放弃。脚步彷徨之间,泪早已滴下…… 11.风,渐渐吹起,吹乱了我的发丝,也让我的长裙有些飘动。绿叶仿佛在风中起舞,离开了树,投向了大地,却不知这样会枯萎,我弯下腰,轻轻拾起一片树叶,那非常有序的茎脉,是一种美的点缀。我有些哀叹:绿叶啊,绿叶,你这般美丽地从树上轻轻飘下,随风起舞,却不知已被人称之为落叶! 12.整个世界,因为有了阳光,城市有了生机;细小心灵,因为有了阳光,内心有了舒畅。明媚的金黄色,树丛间小影成像在叶片上泛有的点点破碎似的金灿,海面上直射反映留有的随波浪层层翻滚的碎片,为这大自然创造了美景,惹人醉的温馨之感,浓浓暖意中夹杂着的明朗与柔情,让雨过天晴后久违阳光的心灵重新得到了滋润! 13.当浮华给予我们过多欺,现实中的虚假几乎让我们忘却了真的存在,是真情唤回了迷离的心,是真情带给了我们最纯、最真的感觉,它流露的是美的誓言,渗透的是永恒执著的真爱。 14.青春,有嬉笑声与哭泣声夹杂的年华,青春的少年是蓝天中翱翔的幼鹰,虽然没有完全长大,有些稚气,有些懵懂,脱不开父母的双手却极力想去找寻属于自己的一片天空,为的是一时的激情,为的是一种独自翱翔的感觉!15.感叹人生,是因为曾经没有过轰轰烈烈的壮举,觉得渺小,觉得平庸,似乎生活过于简单,简单得让人感觉烦躁。没有大言不惭地说过将来,只是比较现实地握住了现在,我想,这是一条路,每个人所必须踏上的一次旅程,曾经看到过这样一句话:成长的过程漫长却充实,自毁的过程短暂却留下一生痛苦,人生可以说是一次考验,何去何从取决于自我。 16.风,那么轻柔,带动着小树、小草一起翩翩起舞,当一阵清风飘来,如同母亲的手轻轻抚摸自己的脸庞,我喜欢那种感觉,带有丝丝凉意,让人心旷神怡。享受生活,不一定要有山珍海味、菱罗绸缎为伴,大自然便是上帝所赐予人类最为珍贵的。 17.生活中受伤难免,失败跌倒并不可怕,可怕的是因此而一蹶不振,失去了对人生的追求与远大的理想。没有一个人的前进道路是平平稳稳的,就算是河中穿梭航行的船只也难免颠簸,生活中所遇上的坎坷磨难不是偶尔给予的为难,而是必然所经受的磨练。 18.在每个人心中,都曾停留过那些值得怀念的人,也许还在,也许早已消逝,在茫茫人海中丢失,于是,那份怀念便得凄凉,因为模糊的记忆中只剩下一个“空壳”,没有什么,甚至连自己的心都装不下,时间把一切抹平,也把当日的泪水封锁,因为已经没有,怀念只是悲凉! 19.闷热的天,蝉儿耐不住寂寞地不停在鸣叫,我孤单一人,寂静的身旁没有一个知音,想疯狂地听摇滚乐,听歇斯底里的歌声,那只为逃避无人的世界里那浓烈的孤单气息。一个人是清冷,两个人便是精彩,于是,莫名的冲动让我格外想念旧日的好友,怀念过去的日子,尽管不够现实的遐想追回不了曾经一切,但却希望思绪可以飞扬于闭上双目后的世界中,印有微笑,印有舞动的身姿,翩翩起舞…… 20.最为值得珍惜的是今天,因为最容易流逝的就是今天,把握今天就是把握希望,分分秒秒只是瞬间,而所乘载的分分秒秒就叫做一天,时间的流逝往往是在不经意之间,人生几回,青春更珍贵,对于我们这个年龄的青少年来说,青春已不足二十载,在学习的生活中我们必须靠自己的力量,驾驭着自己的小船驶向希望的彼岸。

91 评论

杨枝甘露儿

O13 高等数学 好吧,只把主要内容给你贴出来。我的意思是,让你通过读下面的文章,知道向量值函数一般出现在《高等数学》中,从而推出它属于 高等数学 一类,其实你用排除法也能推出他属于 高等数学 一类。中外《微积分》教材的比较与分析(涉及向量值函数的部分) 分析:两种教材在向量代数和空间解析几何方面的内容基本相同。国内微积分教材一般不介绍向量值函数的导数及其物理意义,从而容易造成学生处理向量值函数的能力的薄弱,并影响到后继内容的学习。基于此,最近修订的高等数学教学基本要求已经提高了这方面的要求。国内一些新编的教材,包括同济大学主编的《高等数学》(5版)和《微积分》也写进了这方面的部分内容供学生选学。 分析:通过表格可以发现,这部分内容中国教材比国外教材在“量”上要多一些,但外版教材更加突出等量线(面)、梯度和向量值函数的应用和对极值条件和拉格朗日乘子法的几何解释,所以在教学中与我们习惯的处理方法有互补作用。

286 评论

嗜吃福將

我参考了一下CNKI上的一些论文,与向量值函数有关的论文都是O172.2在你提供的这些分类的分类号,应该是O17

246 评论

相关问答

  • 有关离散学术的论文

    毕业论文是教学科研过程的一个环节,也是学业成绩考核和评定的一种重要方式。毕业论文的目的在于总结学生在校期间的学习成果,培养学生具有综合地创造性地运用所学的全部专

    飞龙在天了 4人参与回答 2023-12-08
  • 离散数学论文结束语

    大学数学是大学生必修的课程之一,由于大一是过渡期,在大一开设数学这门课程对于教学质量有着重要的作用。下面是我为大家整理的大一数学论文,供大家参考。大一数学论文

    吃是王道呼 4人参与回答 2023-12-07
  • 与离散数学有关的学术论文

    你自己有没有想好具体些什么题目的论文 ?先确定好你自己的题目呀,是在没思路你就参看范文,(理论数学)等上面的题目你看下,找到你自己想写的方向~

    淘气别闹 5人参与回答 2023-12-09
  • 论文聚散功能的检测

    写完一篇论文后,我们都需要检测论文,但有些人可能不知道在检测论文时会检测哪些部分,所以让paperfree小编谈谈论文检测需要检测哪些内容? 1、论文正文:正文

    色恋粉雪 5人参与回答 2023-12-07
  • 关于离散数学的论文题目

    1. 有些人运气好, 但并非所有人都运气好 2.自然数不是奇数就是偶数,

    snowwhite白雪 3人参与回答 2023-12-10