yiliudewendu
公共交通管理系统中查询是非常重要的操作。例如:用户甲要从A站点出发,最终到达B站点。而在中途必须经过c站点,这时用户甲应如何选择自己的路径呢?最短路径算法可以求得从A站点到达B站点的最短、最快路径。可是这条路径中不一定会经过C站点。对于外地游客,他们更希望从起点到终点的路途中在尽可能短的时间里经过更多的风景点,或者尽可能不在两站点间转车。本文所设计的算法就是为了满足这种个性化的需求。它能够将从A站点到B站点的所有路径都查找出来并给出相应的时间或费用方面的代价,再由用户自己进行选取。如图1所示,以A为起点,A∞为终点,找出所有通路为例,说明算法。怎么不多给悬赏分数啊,做着也没有意思啊!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!给分的话后面的也给你
janetwen1390
数学建模随着人类的进步,科技的发展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。强调数学应用及培养应用数学意识对推动素质教育的实施意义十分巨大。数学建模在数学教育中的地位被提到了新的高度,通过数学建模解数学应用题,提高学生的综合素质。本文将结合数学应用题的特点,把怎样利用数学建模解好数学应用问题进行剖析,希望得到同仁的帮助和指正。一、数学应用题的特点我们常把来源于客观世界的实际,具有实际意义或实际背景,要通过数学建模的方法将问题转化为数学形式表示,从而获得解决的一类数学问题叫做数学应用题。数学应用题具有如下特点:第一、数学应用题的本身具有实际意义或实际背景。这里的实际是指生产实际、社会实际、生活实际等现实世界的各个方面的实际。如与课本知识密切联系的源于实际生活的应用题;与模向学科知识网络交汇点有联系的应用题;与现代科技发展、社会市场经济、环境保护、实事政治等有关的应用题等。第二、数学应用题的求解需要采用数学建模的方法,使所求问题数学化,即将问题转化成数学形式来表示后再求解。第三、数学应用题涉及的知识点多。是对综合运用数学知识和方法解决实际问题能力的检验,考查的是学生的综合能力,涉及的知识点一般在三个以上,如果某一知识点掌握的不过关,很难将问题正确解答。第四、数学应用题的命题没有固定的模式或类别。往往是一种新颖的实际背景,难于进行题型模式训练,用“题海战术”无法解决变化多端的实际问题。必须依靠真实的能力来解题,对综合能力的考查更具真实、有效性。因此它具有广阔的发展空间和潜力。二、数学应用题如何建模建立数学模型是解数学应用题的关键,如何建立数学模型可分为以下几个层次:第一层次:直接建模。根据题设条件,套用现成的数学公式、定理等数学模型,注解图为:将题材设条件翻译成数学表示形式应用题 审题 题设条件代入数学模型 求解选定可直接运用的数学模型第二层次:直接建模。可利用现成的数学模型,但必须概括这个数学模型,对应用题进行分析,然后确定解题所需要的具体数学模型或数学模型中所需数学量需进一步求出,然后才能使用现有数学模型。第三层次:多重建模。对复杂的关系进行提炼加工,忽略次要因素,建立若干个数学模型方能解决问题。第四层次:假设建模。要进行分析、加工和作出假设,然后才能建立数学模型。如研究十字路口车流量问题,假设车流平稳,没有突发事件等才能建模。三、建立数学模型应具备的能力从实际问题中建立数学模型,解决数学问题从而解决实际问题,这一数学全过程的教学关键是建立数学模型,数学建模能力的强弱,直接关系到数学应用题的解题质量,同时也体现一个学生的综合能力。3.1提高分析、理解、阅读能力。阅读理解能力是数学建模的前提,数学应用题一般都创设一个新的背景,也针对问题本身使用一些专门术语,并给出即时定义。如1999年高考题第22题给出冷轧钢带的过程叙述,给出了“减薄率”这一专门术语,并给出了即时定义,能否深刻理解,反映了自身综合素质,这种理解能力直接影响数学建模质量。3.2强化将文字语言叙述转译成数学符号语言的能力。将数学应用题中所有表示数量关系的文字、图象语言翻译成数学符号语言即数、式子、方程、不等式、函数等,这种译释能力是数学建成模的基础性工作。例如:一种产品原来的成本为a元,在今后几年内,计划使成本平均每一年比上一年降低p%,经过五年后的成本为多少?将题中给出的文字翻译成符号语言,成本y=a(1-p%)53.3增强选择数学模型的能力。选择数学模型是数学能力的反映。数学模型的建立有多种方法,怎样选择一个最佳的模型,体现数学能力的强弱。建立数学模型主要涉及到方程、函数、不等式、数列通项公式、求和公式、曲线方程等类型。结合教学内容,以函数建模为例,以下实际问题所选择的数学模型列表:函数建模类型 实际问题一次函数 成本、利润、销售收入等二次函数 优化问题、用料最省问题、造价最低、利润最大等幂函数、指数函数、对数函数 细胞分裂、生物繁殖等三角函数 测量、交流量、力学问题等3.4加强数学运算能力。数学应用题一般运算量较大、较复杂,且有近似计算。有的尽管思路正确、建模合理,但计算能力欠缺,就会前功尽弃。所以加强数学运算推理能力是使数学建模正确求解的关键所在,忽视运算能力,特别是计算能力的培养,只重视推理过程,不重视计算过程的做法是不可取的。利用数学建模解数学应用题对于多角度、多层次、多侧面思考问题,培养学生发散思维能力是很有益的,是提高学生素质,进行素质教育的一条有效途径。同时数学建模的应用也是科学实践,有利于实践能力的培养,是实施素质教育所必须的,需要引起教育工作者的足够重视。加强高中数学建模教学培养学生的创新能力摘要:通过对高中数学新教材的教学,结合新教材的编写特点和高中研究性学习的开展,对如何加强高中数学建模教学,培养学生的创新能力方面进行探索。关键词:创新能力;数学建模;研究性学习。《全日制普通高级中学数学教学大纲(试验修订版)》对学生提出新的教学要求,要求学生:(1)学会提出问题和明确探究方向;(2)体验数学活动的过程;(3)培养创新精神和应用能力。其中,创新意识与实践能力是新大纲中最突出的特点之一,数学学习不仅要在数学基础知识,基本技能和思维能力,运算能力,空间想象能力等方面得到训练和提高,而且在应用数学分析和解决实际问题的能力方面同样需要得到训练和提高,而培养学生的分析和解决实际问题的能力仅仅靠课堂教学是不够的,必须要有实践、培养学生的创新意识和实践能力是数学教学的一个重要目的和一条基本原则,要使学生学会提出问题并明确探究方向,能够运用已有的知识进行交流,并将实际问题抽象为数学问题,就必须建立数学模型,从而形成比较完整的数学知识结构。数学模型是数学知识与数学应用的桥梁,研究和学习数学模型,能帮助学生探索数学的应用,产生对数学学习的兴趣,培养学生的创新意识和实践能力,加强数学建模教学与学习对学生的智力开发具有深远的意义,现就如何加强高中数学建模教学谈几点体会。一.要重视各章前问题的教学,使学生明白建立数学模型的实际意义。教材的每一章都由一个有关的实际问题引入,可直接告诉学生,学了本章的教学内容及方法后,这个实际问题就能用数学模型得到解决,这样,学生就会产生创新意识,对新数学模型的渴求,实践意识,学完要在实践中试一试。如新教材“三角函数”章前提出:有一块以O点为圆心的半圆形空地,要在这块空地上划出一个内接矩形ABCD辟为绿册,使其册边AD落在半圆的直径上,另两点BC落在半圆的圆周上,已知半圆的半径长为a,如何选择关于点O对称的点A、D的位置,可以使矩形面积最大?这是培养创新意识及实践能力的好时机要注意引导,对所考察的实际问题进行抽象分析,建立相应的数学模型,并通过新旧两种思路方法,提出新知识,激发学生的知欲,如不可挫伤学生的积极性,失去“亮点”。这样通过章前问题教学,学生明白了数学就是学习,研究和应用数学模型,同时培养学生追求新方法的意识及参与实践的意识。因此,要重视章前问题的教学,还可据市场经济的建设与发展的需要及学生实践活动中发现的问题,补充一些实例,强化这方面的教学,使学生在日常生活及学习中重视数学,培养学生数学建模意识。2.通过几何、三角形测量问题和列方程解应用题的教学渗透数学建模的思想与思维过程。学习几何、三角的测量问题,使学生多方面全方位地感受数学建模思想,让学生认识更多现在数学模型,巩固数学建模思维过程、教学中对学生展示建模的如下过程:现实原型问题数学模型数学抽象简化原则演算推理现实原型问题的解数学模型的解反映性原则返回解释列方程解应用题体现了在数学建模思维过程,要据所掌握的信息和背景材料,对问题加以变形,使其简单化,以利于解答的思想。且解题过程中重要的步骤是据题意更出方程,从而使学生明白,数学建模过程的重点及难点就是据实际问题特点,通过观察、类比、归纳、分析、概括等基本思想,联想现成的数学模型或变换问题构造新的数学模型来解决问题。如利息(复利)的数列模型、利润计算的方程模型决策问题的函数模型以及不等式模型等。3.结合各章研究性课题的学习,培养学生建立数学模型的能力,拓展数学建模形式的多样性式与活泼性。高中新大纲要求每学期至少安排一个研究性课题,就是为了培养学生的数学建模能力,如“数列”章中的“分期付款问题”、“平面向是‘章中’向量在物理中的应用”等,同时,还可设计类似利润调查、洽谈、采购、销售等问题。设计了如下研究性问题。例1根据下表给出的数据资料,确定该国人口增长规律,预测该国2000年的人口数。时间(年份) 人中数(百万) 39 50 63 76 92 106 123 132 145分析:这是一个确定人口增长模型的问题,为使问题简化,应作如下假设:(1)该国的政治、经济、社会环境稳定;(2)该国的人口增长数由人口的生育,死亡引起;(3)人口数量化是连续的。基于上述假设,我们认为人口数量是时间函数。建模思路是根据给出的数据资料绘出散点图,然后寻找一条直线或曲线,使它们尽可能与这些散点吻合,该直线或曲线就被认为近似地描述了该国人口增长规律,从而进一步作出预测。通过上题的研究,既复习巩固了函数知识更培养了学生的数学建模能力和实践能力及创新意识。在日常教学中注意训练学生用数学模型来解决现实生活问题;培养学生做生活的有心人及生活中“数”意识和观察实践能力,如记住一些常用及常见的数据,如:人行车、自行车的速度,自己的身高、体重等。利用学校条件,组织学生到操场进行实习活动,活动一结束,就回课堂把实际问题化成相应的数学模型来解决。如:推铅球的角度与距离关系;全班同学手拉手围成矩形圈,怎样围使围成的面积最大等,用砖块搭成多米诺牌骨等。四、培养学生的其他能力,完善数学建模思想。由于数学模型这一思想方法几乎贯穿于整个中小学数学学习过程之中,小学解算术运用题中学建立函数表达式及解析几何里的轨迹方程等都孕育着数学模型的思想方法,熟练掌握和运用这种方法,是培养学生运用数学分析问题、解决问题能力的关键,我认为这就要求培养学生以下几点能力,才能更好的完善数学建模思想:(1)理解实际问题的能力;(2)洞察能力,即关于抓住系统要点的能力;(3)抽象分析问题的能力;(4)“翻译”能力,即把经过一生抽象、简化的实际问题用数学的语文符号表达出来,形成数学模型的能力和对应用数学方法进行推演或计算得到注结果能自然语言表达出来的能力;(5)运用数学知识的能力;(6)通过实际加以检验的能力。只有各方面能力加强了,才能对一些知识触类旁通,举一反三,化繁为简,如下例就要用到各种能力,才能顺利解出。例2:解方程组x+y+z=1 (1)x2+y2+z2=1/3 (2)x3+y3+z3=1/9 (3)分析:本题若用常规解法求相当繁难,仔细观察题设条件,挖掘隐含信息,联想各种知识,即可构造各种等价数学模型解之。方程模型:方程(1)表示三根之和由(1)(2)不难得到两两之积的和(XY+YZ+ZX)=1/3,再由(3)又可将三根之积(XYZ=1/27),由韦达定理,可构造一个一元三次方程模型。(4)x,y,z 恰好是其三个根t3-t2+1/3t-1/27=0 (4)函数模型:由(1)(2)知若以xz(x+y+z)为一次项系数,(x2+y2+z2)为常数项,则以3=(12+12+12)为二次项系数的二次函f(x)=(12+12+12)t2-2(x+y+z)t+(x2+y2+z2)=(t-x)2+(t-y)2+(t-z)2为完全平方函数3(t-1/3)2,从而有t-x=t-y=t-z,而x=y=z再由(1)得x=y=z=1/3,也适合(3)平面解析模型方程(1)(2)有实数解的充要条件是直线x+y=1-z与圆x2+y2=1/3-z2有公共点后者有公共点的充要条件是圆心(O、O)到直线x+y的距离不大于半径。总之,只要教师在教学中通过自学出现的实际的问题,根据当地及学生的实际,使数学知识与生活、生产实际联系起来,就能增强学生应用数学模型解决实际问题的意识,从而提高学生的创新意识与实践能力。数学建模随着人类的进步,科技的发展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。强调数学应用及培养应用数学意识对推动素质教育的实施意义十分巨大。数学建模在数学教育中的地位被提到了新的高度,通过数学建模解数学应用题,提高学生的综合素质。本文将结合数学应用题的特点,把怎样利用数学建模解好数学应用问题进行剖析,希望得到同仁的帮助和指正。一、数学应用题的特点我们常把来源于客观世界的实际,具有实际意义或实际背景,要通过数学建模的方法将问题转化为数学形式表示,从而获得解决的一类数学问题叫做数学应用题。数学应用题具有如下特点:第一、数学应用题的本身具有实际意义或实际背景。这里的实际是指生产实际、社会实际、生活实际等现实世界的各个方面的实际。如与课本知识密切联系的源于实际生活的应用题;与模向学科知识网络交汇点有联系的应用题;与现代科技发展、社会市场经济、环境保护、实事政治等有关的应用题等。第二、数学应用题的求解需要采用数学建模的方法,使所求问题数学化,即将问题转化成数学形式来表示后再求解。第三、数学应用题涉及的知识点多。是对综合运用数学知识和方法解决实际问题能力的检验,考查的是学生的综合能力,涉及的知识点一般在三个以上,如果某一知识点掌握的不过关,很难将问题正确解答。第四、数学应用题的命题没有固定的模式或类别。往往是一种新颖的实际背景,难于进行题型模式训练,用“题海战术”无法解决变化多端的实际问题。必须依靠真实的能力来解题,对综合能力的考查更具真实、有效性。因此它具有广阔的发展空间和潜力。二、数学应用题如何建模建立数学模型是解数学应用题的关键,如何建立数学模型可分为以下几个层次:第一层次:直接建模。根据题设条件,套用现成的数学公式、定理等数学模型,注解图为:将题材设条件翻译成数学表示形式应用题 审题 题设条件代入数学模型 求解选定可直接运用的数学模型第二层次:直接建模。可利用现成的数学模型,但必须概括这个数学模型,对应用题进行分析,然后确定解题所需要的具体数学模型或数学模型中所需数学量需进一步求出,然后才能使用现有数学模型。第三层次:多重建模。对复杂的关系进行提炼加工,忽略次要因素,建立若干个数学模型方能解决问题。第四层次:假设建模。要进行分析、加工和作出假设,然后才能建立数学模型。如研究十字路口车流量问题,假设车流平稳,没有突发事件等才能建模。三、建立数学模型应具备的能力从实际问题中建立数学模型,解决数学问题从而解决实际问题,这一数学全过程的教学关键是建立数学模型,数学建模能力的强弱,直接关系到数学应用题的解题质量,同时也体现一个学生的综合能力。3.1提高分析、理解、阅读能力。阅读理解能力是数学建模的前提,数学应用题一般都创设一个新的背景,也针对问题本身使用一些专门术语,并给出即时定义。如1999年高考题第22题给出冷轧钢带的过程叙述,给出了“减薄率”这一专门术语,并给出了即时定义,能否深刻理解,反映了自身综合素质,这种理解能力直接影响数学建模质量。3.2强化将文字语言叙述转译成数学符号语言的能力。将数学应用题中所有表示数量关系的文字、图象语言翻译成数学符号语言即数、式子、方程、不等式、函数等,这种译释能力是数学建成模的基础性工作。例如:一种产品原来的成本为a元,在今后几年内,计划使成本平均每一年比上一年降低p%,经过五年后的成本为多少?将题中给出的文字翻译成符号语言,成本y=a(1-p%)53.3增强选择数学模型的能力。选择数学模型是数学能力的反映。数学模型的建立有多种方法,怎样选择一个最佳的模型,体现数学能力的强弱。建立数学模型主要涉及到方程、函数、不等式、数列通项公式、求和公式、曲线方程等类型。结合教学内容,以函数建模为例,以下实际问题所选择的数学模型列表:函数建模类型 实际问题一次函数 成本、利润、销售收入等二次函数 优化问题、用料最省问题、造价最低、利润最大等幂函数、指数函数、对数函数 细胞分裂、生物繁殖等三角函数 测量、交流量、力学问题等3.4加强数学运算能力。数学应用题一般运算量较大、较复杂,且有近似计算。有的尽管思路正确、建模合理,但计算能力欠缺,就会前功尽弃。所以加强数学运算推理能力是使数学建模正确求解的关键所在,忽视运算能力,特别是计算能力的培养,只重视推理过程,不重视计算过程的做法是不可取的。利用数学建模解数学应用题对于多角度、多层次、多侧面思考问题,培养学生发散思维能力是很有益的,是提高学生素质,进行素质教育的一条有效途径。同时数学建模的应用也是科学实践,有利于实践能力的培养,是实施素质教育所必须的,需要引起教育工作者的足够重视。
魔女小楠
中国人口增长预测的数学模型 摘要: 本文针对中国的实际情况及人口增长的主要特点建立了数学模型,分别对中国人口增长的中短期和长期趋势做出预测。 文中共涉及两个基本模型,灰色预测模型和基于系统要素法的预测模型。首先,由于人口增长的规律受到多种复杂因素的影响,可以先把人口系统看作一个灰色系统,通过对原始人口总数的生成处理来寻求人口总数变动的规律,得到具有较强规律性的数据序列,建立相应的优化灰色模型,从而预测人口总数的发展趋势与未来状态,同时采用残差、关联度、后验差三种方法检验模型合理性。然后综合考虑老龄化进程加速、出生人口性别比持续升高及乡村人口城镇化等因素的作用,建立了两个基于系统要素法的子模型,分别用来做人口增长的中短期和长期预测。在初步只考虑老龄化(年龄构成)与出生人口性别比因素条件下,做出合理化假设,认为在短期内从乡村迁往城镇的人口数为零,建立要素法短期模型,采用多种方法拟合确定相关参数后,与原始数据相结合得到对于中短期人口总数的预测,并与灰色预测模型所得结果相互比较印证;进一步兼顾乡村人口城镇化的影响,基于系统要素法做长期预测时,加入了三个控制因子:总和生育率、出生人口性别比和乡村与城镇之间的人口迁移率,分别对三个因子进行单因素分析,考虑其不同取值对人口发展趋势的影响,得到人口发展趋势与三个控制因子的定量或定性关系,再结合政府可能采取的政策及控制力度,对人口发展趋势做出长期预测。利用 Matlab 和 Excel 软件联合求解,给出各项指标下的图表与曲线,有效的分析了各因素的作用,如人口金字塔图直观表明总和生育率对年龄结构的影响等。 最后,针对相应模型预测的可信性与有效性的分析指出模型的优缺点。 关键词:人口预测、灰色预测、要素法、单因素分析 1 --------------------------------------------------------------------------------Page 2 目录 1 问题的提出 ............................................................3 2 问题的分析 ............................................................3 3 模型假设及概念说明.....................................................34 符号说明 ...........................................................4 5 模型建立及求解........................ ...............................5 5.1 灰色预测模型 5.1.1 模型建立 ................... ............................... 5 5.1.2 模型求解及分析...............................................6 5.2 基于系统要素法的短期预测模型 5.2.1 模型建立.....................................................7 5.2.2 参数确定.....................................................8 5.2.3 模型求解与分析...............................................9 5.3 基于系统要素法的长期预测模型 5.3.1 模型建立.....................................................9 5.3.2 参数确定.....................................................9 5.3.3 模型求解与分析..............................................10 6 模型扩展 ...........................................................16 7 模型评价 ...........................................................16 8 参考文献 ...........................................................17 9 附录 ...........................................................17 2 --------------------------------------------------------------------------------Page 3 1问题的提出中国是一个人口大国,人口问题始终是制约我国发展的关键因素之一。近年来中国的人口发展出现了一些新的特点,例如,老龄化进程加速、出生人口性别比持续升高,以及乡村人口城镇化等因素,这些都影响着中国人口的增长。虽然我国自 1973 年全面推行计划生育以来,生育率迅速下降,取得了一些举世瞩目的成就,一是实现了人口再生产类型的历史性转变、二是有效缓解了人口增长对经济社会资源环境的压力、三是人口素质状况明显改善、四是生育率下降导致人口抚养比下降 1/3 ,为经济增长创造了 40年左右的“人口红利 ”期、五是为世界人口与发展做出了重要贡献,但是人口发展面临着的严峻挑战仍然不容小视:人口总量持续增长影响全面建设小康社会目标的实现、人口素质难以适应日趋激烈的综合国力竞争、人口结构性矛盾对社会稳定与和谐的影响日益显现、人口调控和管理难度不断加大,低生育水平面临反弹风险。因此,根据已有数据,运用数学建模的方法,对中国人口做出分析和预测是一个重要问题。可以试从中国的实际情况和人口增长的上述特点出发,参考相关数据、搜索相关文献和补充新的数据,建立中国人口增长的数学模型,并由此对中国人口增长的中短期和长期趋势做出预测;并指出模型中的优点与不足之处。 2 问题的分析 本题是一个中国人口增长的预测问题。所谓预测,是指根据客观事物的发展趋势和变化规律对特定的对象未来发展的趋势或状态做出科学的推测和判断。我们通过分析相关数据认识人口数量的变化规律,建立人口增长预测模型,做出较准确的预报,可以有效控制人口的增长,而这里需要考虑到中国的实际情况及人口增长中老龄化加速、出生人口性别比升高、农村人口城镇化等的因素的影响,建立综合考虑这些因素的模型对中国人口增长的趋势做出预测。 预测都是建立在对以往数据的分析统计上做出事先的推测或测定,本题所给调查数据包括 2001 至 2005 年的市、镇和乡的不同性别的人在该类人口中所占的百分比、各年龄段的死亡率及生育率,但这些相关信息往往具有不完全性,且个别数据有异常,在允许一定统计漏报率的条件下通过与国家统计局的一些相关数据[1]的比对提取所需数据并做出相应的简化假设,从而建立相应模型。 首先是数据的分析,题给数据中关于市、镇、乡男女人口总数的数值所给统计指标不准确,统计数据的调查百分比也有偏差,通过网上查阅国家统计局相关资料获得所需数据。在数据中可以统计获得 01~05 年老龄化指标、出生性别比及城镇化水平;从这 5年的数据里也可以得到市、镇、乡的总和生育率及各年龄段死亡率的指标进而预测以后的总和生育率及死亡率;另外从总的人口的变化趋势可以基本判断未来人口总数的走势。 其次是模型的建立。利用资料中提取的数据和网上搜集到的信息,可以在考虑系统间因素对系统未来影响的预测建立要素法模型,同时也考虑灰色系统建立相应模型共同预测我国人口增长。最后分析了相关模型在预测时的应用上的优劣以及模型考虑长短 3 模型假设及概念说明 3.1 表中的统计数据具有代表性和典型性,即能正确反映01年至05年出生人口性别比及生育率和死亡率 3.2 表中的统计数据与实际情况大致相同,即数据具有正确性统计误差很小 3 -----------------------------------------------------------------------..............................见:
在人类的历史长河中,10年只是短暂的一瞬;但对于中国的科技事业,却实现了巨大的跃升。盘点10年来我国科技成就,不妨从一些数字的变化谈起:国家科技进步贡献率超过5
受人口结构的影响,包括蔡?等学者提出,在2013年左右,中国的人口抚养比将跌至低谷,人口红利从那时便消失了。借用前些年的经济资料,我们以“人口抚养比”作为显示性
中国人口增长预测的数学模型 摘要: 本文针对中国的实际情况及人口增长的主要特点建立了数学模型,分别对中国人口增长的中短期和长期趋势做出预测。 文中共涉及两个基本
中国人口增长预测的数学模型 摘要: 本文针对中国的实际情况及人口增长的主要特点建立了数学模型,分别对中国人口增长的中短期和长期趋势做出预测。 文中共涉及两个基本
21世纪初期我国财政形势与政策选择综述 21世纪初期,我国财政将面临许多新的问题与挑战。如何进一步深化财政体制改革,加快建立稳固、规范、高效、健康的财政体系和财