我是伙星人
1、第一型曲面积分:又称对面积的曲面积分
定义在曲面上的函数关于该曲面的积分。第一型曲线积分物理意义来源于对给定密度函数的空间曲面,计算该曲面的质量。
2、第二型曲面积分是关于在坐标面投影的曲面积分,其物理背景是流量的计算问题。
第二型曲线积分与积分路径有关,第二型曲面积分同样依赖于曲面的取向,第二型曲面积分与曲面的侧有关,如果改变曲面的侧(即法向量从指向某一侧改变为指另一侧),显然曲面积分要改变符号,注意在上述记号中未指明哪侧。
必须另外指出,第二型曲面积分有类似于第二型曲线积分的一些性质。
3、数学上,对称性由群论来表述。群分别对应着伽利略群,洛伦兹群和U(1)群。对称群为连续群和分立群的情形分别被称为连续对称性和分立对称性。德国数学家威尔(Hermann Weyl)是把这套数学方法运用於物理学中并意识到规范对称重要性的第一人。
4、积分轮换对称性是指坐标的轮换对称性,简单的说就是将坐标轴重新命名,如果积分区间的函数表达不变,则被积函数中的x,y,z也同样作变化后,积分值保持不变。
扩展资料:
1、对称操作:
当分子有对称中心时,从分子中任意一原子至对称中心连一直线,将次线延长,必可在和对称中心等距离的另一侧找到另一相同原子,即每一点都关于中心对称。依据对称中心进行的对称操作为反演操作,是按照对称中心反演,记为i;n为偶数时in=E,n为奇数时in=i
反轴:
反轴In的基本操作为绕轴转360°/n,接着按轴上的中心点进行反演,它是C1n和i相继进行的联合操作:I1n=iC1n; 绕In轴转360°/n,接着按中心反演。
映轴:
映轴Sn的基本操作为绕轴转360°/n,接着按垂直于轴的平面进行反映,是C1n和σ相继进行的联合操作: S1n=σC1n;绕Sn轴转360°/n,接着按垂直于轴的平面反映。
2、第一型曲面积分和第二型曲面积分的区别
1、第一类没方向,有几何意义和物理意义;第二类有方向,只有物理意义。
2、一类曲线是对曲线的长度,二类是对x,y坐标.例已知一根线的线密度,求线的质量,就要用一类.已知路径曲线方程,告诉你x,y两个方向的力,求功,就用二类.二类曲线也可以把x,y分开,一二类曲线积分之间就差一个余弦比例。
一二类曲面积分区别,一类是对面积的积分,二类是对坐标的.如已知面密度,求面质量,就用一类.已知x,y,z分别方向上的流速和面方程,求流量,就用第二类.同理,x,y,z方向也是可以分开的。
参考资料:百度百科-第一型曲面积分
参考资料:百度百科-第二型曲面积分
参考资料:百度百科-对称性
参考资料:百对百科-积分轮换对称性
我是漂亮小小妞
就是各个变量替换后值依然不变……你这个可以用变量替换来解答的∮(x^2+y^2)= (2/3)x∮(x^2+y^2+z^2)ds,直接将曲面方程中的球方程带入就可以了……然后就是求周长……
托尼小吃货
你好!答案如图所示:
这里先要注意一点:
第一类 曲线/曲面 积分 具有 偶倍奇零 性质
第二类 曲线/曲面 积分 具有 偶零奇倍 性质
所以这两类的 奇偶性 是相反的,因为第二类积分涉及方向性的问题
第一类曲线积分:
第二类曲线积分:
第一类曲面积分:
第二类曲面积分
很高兴能回答您的提问,您不用添加任何财富,只要及时采纳就是对我们最好的回报
。若提问人还有任何不懂的地方可随时追问,我会尽量解答,祝您学业进步,谢谢。
如果问题解决后,请点击下面的“选为满意答案”
学习高等数学最重要是持之以恒,其实无论哪种科目都是的,除了多书里的例题外,平时还要多亲自动手做练习,每种类型和每种难度的题目都挑战一番,不会做的也不用气馁,多些向别人请教,从别人那里学到的知识就是自己的了,然后再加以自己钻研的话一定会有不错的效果。所以累积经验是很重要的,最好的方法就是常来帮别人解答题目,增加历练和做题经验了!
参考论文: 我认为,一定要把教材看懂,我第一次微分方程部分来不及看,结果微分方程部分的题目不会做,就差4分,我如果做了一道微分方程的5分题就不用再考第二
1、首先打开【ppt文档】,进入到幻灯片的主页面。 2、然后点击【编辑框】,输入要显示的内容。 3、这时选择上方的【设计】,点击右侧的【背景】,如下图所示。 4
摘 要: 教育硕士是为了适应实施素质教育、提高办学质量的需要而设立的一个新兴的专业学位.山东师大教育科学学院从1997年开始招收教育管理专业的教育硕士,目前已有
微积分是高等数学的一部分知识,关于微积分的论文有哪些?接下来我为你整理了数学微积分论文的 范文 ,一起来看看吧。 摘要:初等微积分作为高等数学的一部分,属于
不要等别人给你发了,你自己去现代市场营销这本期刊上看看相关文献吧,结合自己的实际情况,多看看几篇文献你就能自己写了