• 回答数

    4

  • 浏览数

    189

草莓牛奶L
首页 > 期刊论文 > 锅炉煤气氨法脱硫毕业论文

4个回答 默认排序
  • 默认排序
  • 按时间排序

喝汽水的小蜗牛

已采纳

氨法脱硫是利用气氨或氨水做为吸收剂,气液在脱硫塔内逆流接触,脱除烟气中的SO2。 氨是一种良好的碱性吸收剂,从吸收化学机理上分析,二氧化硫的吸收是酸碱中和反应,吸收剂碱性越强,越有利于吸收,氨的碱性强于钙基吸收剂;而且从吸收物理机理分析,钙基吸收剂吸收二氧化硫是一种气固反应,反应速率慢,反应不完全,吸收剂利用率低,需要大量的设备和能耗进行磨细、雾化、循环等以提高吸收剂利用率,设备庞大、系统复杂、能耗高;氨吸收烟气中的二氧化硫是气液反应,反应速率快,反应完全、吸收剂利用效率高,可以做到很高的脱硫效率。同时相对于钙基脱硫工艺来说系统简单、设备体积小、能耗低。 脱硫副产品硫酸铵是一种农用废料,销售收入能降低一部分成本。就吸收SO2而言,氨是一种比任何钙基吸收剂都理想的脱硫吸收剂,就技术流程可知,整个脱硫系统的脱硫原料是氨和水,脱硫产品是固体硫铵,过程不产生新的废气、废水和废渣,既回收了硫资源,又不产生二次污染。 1、氨蒸发系统 液氨由储罐出来经蒸发变为气氨,气氨进入储罐,供中和吸收系统使用。 2、吸收系统 烟气进入吸收塔,经过下部喷淋的含氨母液和浮化层含氨母液充分吸收,反应后,达标排放,母液循环使用,氨气通过控制加入,母液循环到一定浓度,部分移入高倍中和槽,循环槽补充低浓度母液或清水继续吸收。 3、中和系统 母液打入中和槽后,根据比重、母液温度情况决定何时通氨母液温度适合时通氨,通入氨后定时测PH值和中和温度。根据中和温度控制通氨量,达到终点后,待溶液温度降下后通知包装工离料出产品,并取样,交化验进行质量检定。 4、循环水系统 因为母液吸收和中和过程均有热量,为了移走热量,在循环槽内和中和槽内均加装冷却管束,用循环水移走多余热量,热水经冷却塔降温后循环使用。 氨法脱硫工艺主要由脱硫洗涤系统、浓缩系统、烟气系统、氨贮存系统、硫酸铵生产系统(若非氨-硫铵法则是于其工艺相对应的副产物制造系统)、电气自动控制系统等组成。 锅炉排出的烟气通过引风机增压后进入FGD系统,引风机用来克服整个FGD系统的压降。烟道上设有挡板系统,以便于FGD系统正常运行或旁路运行,不考虑增设脱硫增压风机。烟气通过引风机后,进入脱硫塔。 吸收塔分为三个区域:分别为吸收区、浆池区和除雾区,烟气向上通过脱硫塔,从脱硫塔内喷淋管组喷出的悬浮液滴向下降落,烟气与氨/硫酸铵浆液液滴逆流接触,发生传质与吸收反应,以脱除烟气中的SO2、SO3。脱硫后的烟气经除雾器去除烟气中夹带的液滴后,从顶部离开脱硫塔,通过原烟道进入烟囱排放。脱硫塔下部浆池中的氨/硫酸铵浆液由循环泵循环送至浆液喷雾系统的喷嘴,产生细小的液滴沿脱硫塔横截面均匀向下喷淋。SO2和SO3与浆液中的氨反应,生成亚硫酸铵和硫酸铵。 在脱硫塔浆池中鼓入空气,将生成的亚硫酸铵氧化成硫酸铵,由于充分利用了烟气中的热量,使得脱硫塔中的水蒸气过饱和而析出硫酸铵结晶,硫酸铵浆液经过旋流器的脱水提浓厚再进入离心机进一步脱水,最后经干燥后得到硫酸铵产品。 整个脱硫系统的脱硫原料是氨和水,脱硫产品是固体硫铵,过程不产生新的废气、废水和废渣。既回收了硫资源,又不产生二次污染。 其主要技术特点如下: 1)单塔设计,有效降低成本,节约空间; 2)空塔喷淋,降低系统压降,节约电能; 3)大循环量,增大液气比来弥补因浓度上升,脱硫效率下降的缺点,保证脱硫效率; 4)烟气喷淋降温技术,使烟气温度尽快达到氨法脱硫的最佳温度,增加脱硫效率,从而尽量降低塔本身的高度; 5)烟气直排工艺,彻底解决了原烟囱腐蚀的问题,降低了烟气加热的设备投资,运行成本和维修成本; 6)改进搅拌方式,降低成本,增强氨法脱硫技术的市场竞争力; 7)硫酸铵回收系统采用新工艺,根本上解决了传统硫酸铵回收; 8)整个过程中不产生废水、废气、废渣,无二次污染; 9)工艺与石灰石-石膏类似,但副产品是以硫酸铵的形式出现的,而硫酸铵是重要的化肥产品,它的工艺符合循环经济的原则。 1、氨逃逸 这里所述的氨逃逸专指气态氨随烟气排出脱硫装置的现象。在氨法脱硫工程中,通常造成氨逃逸的主要原因是脱硫循环液中游离氨含量高。氨是极易挥发的物质,常温常压下氨是气体。所以在氨法脱硫的工程中需要将氨的浓度和温度降到尽量低。脱硫所需要的氨是由脱除烟气中的二氧化硫的量所决定的,所以为了使吸收液中氨的浓度降低,只能加大吸收液的循环量,同时,吸收液温度降低。 另外,亚硫酸铵氧化率低也是造成氨逃逸严重的另一个原因。脱硫生成的亚硫酸铵是不稳定的化合物,如果不及时氧化成稳定的硫酸铵,容易分解成二氧化硫和氨,造成排放烟气中二氧化硫升高同时氨逃逸加剧。 2、气溶胶 在氨法脱硫方法中,所谓气溶胶是指气态酸性氧化物在一定条件下与气态氨反应,生成相应的极细的铵盐固体微粒,如同烟尘漂浮在气体中。根据生成气溶胶氧化物的酸性程度,可以分为弱酸性气溶胶和强酸性气溶胶,主要是亚硫酸铵和硫酸铵。 氨法脱硫的工程越来越多,规模越来越大,人们注意到所谓的“白烟”问题,主要是气溶胶的原因。在气态氨和水存在的条件下与烟气中的二氧化硫和三氧化硫反应生成了硫酸铵和亚硫酸铵固体微粒,不容易除去。 石灰石-石膏法脱硫工程中也出现了气溶胶问题,尤其是安装了脱硝装置的工程,会出现“蓝烟”、“黄烟”现象。不过这种气溶胶是硫酸酸雾,与硫酸铵气溶胶有区别。 1、选择合理的液气比 氨逃逸和气溶胶的形成与液气比关系密切,从抑制气溶胶的角度考虑,选择较大的液气比可以将液相游离氨含量控制的很低,也使气相氨的含量很低,这样就抑制了气溶胶的生成。美国Marsulex公司主张液气比在10以上,这是经过长期研究的结论,应该具有很高的参考价值。目前国内氨法脱硫液气比取5—10。 2、氨水浓度 避免脱硫过程中生成气溶胶的措施是将脱硫区域气态氨含量降低,由气液平衡得知,氨水的浓度降低可以有效的降低气态氨的浓度。一般工业上氨浓度控制在10%—20%。 3、设置氨回收段 在脱硫塔吸收段上方设置一个氨回收段,对于减少氨逃逸有一定效果。喷淋水会与上升的脱硫后烟气逆向接触,烟气中的氨被喷淋水吸收。脱硫塔吸收段与氨回收段之间由横断塔体的隔板隔开,隔板上装有升气帽。喷淋水清洗后下落到隔板上方,经管道流回喷淋罐。冲洗后的水可以作为脱硫塔补充水落入塔循环浆液,而喷淋水用新鲜水补充,以此降低氨浓度。 4、脱硫塔进口喷水 脱硫塔烟气进口区域或者进口烟道布置水喷淋设施,三氧化硫等强酸性氧化物都是极易溶于水的,喷水可以使这些氧化物迅速溶于水,从而避免气溶胶的产生。 5、脱硫塔出口高效除尘除雾装置 经过脱硫的烟气含有大量雾滴,雾滴由浆液液滴、凝结液滴和尘颗粒组成,当这部分烟气进入高效除尘除雾器,高效除尘除雾器筒内加设的气旋板使脱硫气旋转起来,在气旋器上方形成气液两相的剧烈旋转及扰动,从而使得烟气中的小液滴、粉尘颗粒、气溶胶等微小颗粒物相互碰撞团聚凝聚成大液滴,其与气旋筒壁碰撞,并被气旋筒壁捕获吸收,捕获的液滴进入多级气旋设置的一个桶内,脱硫后的烟气可以达到国家标准直排。

134 评论

大宝儿0619

去幸福校园网站看看,那的论文很多1引 言1.1热水供热的研究对象人们的日常生活中需要大量的热能,尤其在冬季。现在在北方大多家庭取暖用热水集中供暖,而在淮阴等江苏地区冬季室内一般用空调或不提供供暖设备,靠自然光照和多穿些衣服来驱寒。近年来随着人们的生活水平的提高,越来越多的家庭购买空调或电取暖器用来冬季室内供暖。然而空调和电取暖器的耗电量太大及它们采用热风供暖在取暖时,室内空气太干燥等缺点。所以一般家庭买了,但用的很少,造成资源的浪费。经调查热水供暖同样适用于江苏地区,一些家庭已经安置了热水锅炉加散热片取暖系统。随着经济技术的提高和人们的需求增加,热水供热工程已经悄然在江苏大地上发展起来。1.2本设计的供暖系统的型式和主要内容热能的供应是通过供热系统完成,本设计供暖系统包括三个组成部分:(1) 热源:热水锅炉。(2) 供热管网:输送热媒的供热管路系统。(3) 热用户:直接使用或消耗热能的室内供暖系统。根据三个主要组成部分的相互关系来分,供暖系统可分为局部供暖系统和集中供暖系统。本设计是热源、供热管网和热用户三个主要部分在构造上连在一起的局部供暖系统。主要内容为房间的设计和供暖系统设计热负荷以及燃气热水锅炉的设计。

168 评论

夏小麦521

摘要: 高炉煤气的利用方式很多,目前我国最主要的利用方式是高炉煤气发电项目(包括燃烧高炉煤气和高炉煤气、煤粉混烧)。分析燃煤锅炉掺烧高炉煤气和全烧高炉煤气后的工况变化,并提出改造措施,对钢铁行业的燃煤锅炉改造具有借鉴意见。 更多高炉煤气论文请进:教育大论文下载中心关键词:高炉煤气;燃煤锅炉;掺烧 在钢铁企业的生产过程中,消耗大量的煤炭、燃油和电力能源的同时,还产生诸如高炉煤气、焦炉煤气和转炉煤气等二次能源,所产生的这类能源,除了满足钢铁生产自身的消耗外,剩余部分用于其他行业或民用。高炉煤气是炼铁的副产品,是高炉中焦炭部分燃烧和铁矿石部分还原作用产生的一种煤气,无色无味、可燃,其主要可燃成分为CO,还有少量的H2,不可燃成分是惰性气体、CO2及N2。CO的体积分数一般在21%-26%,发热量不高,一般低位发热值为2760-3720kJ/m3。高炉煤气着火温度为600℃左右,其理论燃烧温度约为1150℃,比煤的理论燃烧温度低很多。燃烧温度低,使得高炉煤气难以完全燃烧,且燃烧的稳定性差。由于高炉煤气内含有大量氮气和二氧化碳,燃烧温度低、速度慢,燃用困难,使得许多钢铁企业高炉煤气的放散率偏高。利用高炉煤气发电,由于燃料成本低,系统简单,减少了燃料运输成本及基建费用,可以缓解企业用电紧张局面,减少CO对环境的污染,取得节能、增电、改善环境的双重效果,既能为企业创造可观的经济效益,又能创造综合社会效益。根据现在钢铁行业中高炉煤气的主要利用方式,本文对燃煤锅炉掺烧高炉煤气和燃煤锅炉改造为全燃高炉煤气锅炉做了理论分析和相应的改造措施。1 掺烧高炉煤气对锅炉性能的影响1.1 对炉膛内燃烧特性的影响燃煤锅炉中掺烧高炉煤气时,由于高炉煤气的低位发热量很低(2760-3720kJ/m3),而一般的烟煤的低位发热量约为18000kJ/kg,因此,炉膛中的理论燃烧温度必定下降,导致煤粉燃烧的稳定性变差,煤粉颗粒的不完全燃烧量增多,从而增加飞灰含碳量,机械不完全燃烧损失增加,锅炉效率降低。另一方面,掺烧高炉煤气后,送入炉膛内的吸热性介质增多,烟气的热容量增大,火焰中心的温度水平下降,火焰中心位置上移,导致煤粉在炉膛内的停留时间缩短,也造成煤粉的不完全燃烧,飞灰含碳量增加。第三,掺烧高炉煤气后,炉膛内烟气量增加(表1),炉膛内的烟气流速增加,从而缩短了煤粉颗粒在炉膛内的停留时间,也造成了煤粉的不完全燃烧。第四,掺烧高炉煤气后,高炉煤气中存在的氮气等大量的惰性气体阻碍可燃成分与空气的充分混合,减少发生燃烧反应的分子间发生碰撞的几率,导致燃烧不稳定,煤粉颗粒燃烧不完全,增加了飞灰含碳量。可见,掺烧高炉煤气后,飞灰的含碳量增加,锅炉效率降低。试验证明[1],从飞灰含碳量的角度来看,如果不提高炉膛的温度水平,高炉煤气的最佳掺烧率应该在25%以内。表1燃料产生1MJ燃烧热的烟气量众所周知,固体的辐射能力远远大于气体,燃高炉煤气产生的烟气中所含有的具有辐射能力的三原子气体所占的份额远远低于燃煤,在燃气中占很大一部分的N2等双原子气体不具备辐射能力,而且,高炉煤气燃烧产生烟气中三原子气体主要是CO2和少量的H2O,CO2的辐射能力要低于H2O,因此,掺烧高炉煤气后,炉膛内火焰辐射能力减弱,更多的热量流往后面的过热器和尾部烟道。掺烧锅炉煤气后,炉膛内的热交换能力下降,对于以炉膛水冷壁为主要蒸发受热面的锅炉,如果锅炉结构不做调整,则锅炉的蒸发量下降。1.2 对炉膛后烟道的传热特性影响以对流换热为主的过热器系统,吸收烟气热量主要取决于传热温压和传热系数。对于燃煤和掺烧高炉煤气的锅炉来说,两者的炉膛出口烟温相差不大[2],因而其传热温压也相差不大。但是掺烧高炉煤气锅炉的烟气体积流量要比燃煤锅炉大,对流受热面的烟气流速增加,因此提高了传热系数,使得过热器吸热量增加,导致过热器出口温度过热。同样,烟气量增加,如果炉膛后的受热面不改变,则布置在炉膛后烟道中的过热器,省煤器,空气预热器吸热量增多,但是不足以使得排烟温度降低到以前的温度水平,因而排烟温度升高,排烟热损失增加。2 全烧高炉煤气对锅炉性能的影响2.1 对炉膛内燃烧特性的影响高炉煤气中大量的惰性气体N2、CO2等在燃烧时不参与燃烧反应,相反,还吸收大量可燃气体燃烧过程中释放的热量,使得高炉煤气的燃烧温度偏低。虽然高炉煤气是气体燃料,理论燃烧温度(-1150℃)要远低于煤粉颗粒(1800℃-2000℃),但是高炉煤气中含有的大量惰性气体会阻碍火焰传播,使火焰的传播速度变慢(例如层流火焰传播速度仅为0.3-1.2m/s),因此,要保证燃烧的稳定性,必须提高燃烧温度。高炉煤气中几乎不含灰分,燃烧时,火焰基本上不产生辐射能量,只有燃烧产生的烟气中的三原子气体具有辐射能力,高炉煤气中大量的氮气不具备辐射能力,所以燃高炉煤气的锅炉,炉膛中的烟气辐射传热能力要低于燃煤锅炉。因此,炉膛内水冷壁的吸热量降低,导致锅炉蒸发量减少。2.2 对炉膛后烟道的传热特性的影响由于高炉煤气中几乎不含有灰尘,所以,燃烧高炉煤气产生的烟气中的飞灰可以忽略不计,因此,对流受热面的污染系数ξ很低,只有0.0043,而对于燃煤锅炉,当烟气流速为10m/s时,污染系数ξ为0.019[3],可见,燃烧高炉煤气后,对流受热面的热有效系数增大,使得对流受热面的吸热量增多。高炉煤气中含有大量的惰性气体,产生相同燃烧能量的高炉煤气生成的烟气量要大于纯燃煤时产生的烟气量,因此流经对流受热面的烟气量增大,烟气流速增加,导致对流传热的传热系数变大,对流吸热量增大,因此,吸收对流受热面热量的过热蒸汽温度升高。同样,烟气量增加,如果炉膛后的受热面不改变,则布置在炉膛后烟道中的过热器,省煤器,空气预热器吸热量增多,但是还不足以使得排烟温度降低到以前的温度水平,排烟温度升高,排烟热损失增加。3 掺烧高炉煤气后的改造措施由以上的分析,为了解决掺烧高炉煤气后出现的一系列问题:炉膛温度下降;过热蒸汽温度升高;飞灰含碳量增加;排烟温度变大等,提出下面的解决方案。3.1 改造燃烧器高炉煤气燃烧器一般布置在煤粉燃烧器的下部,当高炉煤气燃烧器具有充当锅炉启动燃烧器的功能时,这种布置可以获得燃烧和气温调节两方面的好处。如果以高炉煤气借助煤的燃烧来稳燃的话,则只对气温调节有利。由于混烧高炉煤气后,炉膛中火焰的中心位置上移,造成煤粉燃烧不完全,排烟温度升高等问题,因此,可以采取让燃烧器位置尽量下移,燃烧器喷嘴向下倾斜等方法,降低火焰中心位置,增加燃料在炉膛内的停留时间。选用能强化煤粉燃烧的燃烧器,如稳燃腔煤粉燃烧器[4],加强煤粉颗粒的燃烧,减少飞灰含碳量,提高锅炉效率。3.2 改造过热器掺烧高炉煤气后,炉膛内辐射吸热量减少,对流吸热量增加,因此在实际允许的情况下,增加较多的屏式过热器,相应的减少对流过热器受热面,这样,可以照顾到全烧煤和掺烧高炉煤气工况下过热器的调温性能,避免过大的增加减温水量。3.3 改造省煤器掺烧高炉煤气后,炉膛内的辐射吸热量减少,直接影响了锅炉蒸发量下降,导致锅炉出力降低,另外,掺烧高炉煤气后,烟气量变大,排烟温度升高,因此,在炉后烟道内增加省煤器换热面积,采用沸腾式省煤器,要保证其沸腾度不超过20%,否则因省煤器内工质容积和流速增大,使省煤器的流动阻力大幅增大,影响锅炉经济性。增加省煤器换热面积,提高了省煤器的吸热量,降低了过高的排烟温度,减小了排烟损失,提高了锅炉效率。4 全烧高炉煤气后的改造措施4.1 炉膛改造燃煤锅炉的炉膛内辐射传热能量很大,炉膛内配置了相应的大量的水冷壁吸收辐射热,改燃高炉煤气后,炉膛内辐射能量减少,过多的水冷壁吸收大量的辐射热能会使得炉内的温度进一步下降,加剧了高炉煤气燃烧的不稳定,因此,敷设卫燃带,降低燃烧区下部炉膛的吸热量,进一步提高燃烧区炉膛温度,改善高炉煤气燃烧的稳定性。增加了卫燃带后,减少了水冷壁的面积,锅炉蒸发量减少,为了保证锅炉的蒸发量,就必然要提高高炉煤气量,提高炉膛的热负荷,但是,高的炉膛热负荷也提高了烟气量和炉膛出口温度,导致过热蒸汽超温和排烟温度升高,锅炉效率下降,因此不可能通过无限制的提高炉膛热负荷来提高锅炉的蒸发量。锅炉改烧高炉煤气后,炉膛内的热交换能力显著下降,对于以炉膛水冷壁作为其全部蒸发受热面的锅炉,如果锅炉的结构不允许做较大的改动,蒸发量必定下降。4.2 燃烧器改造对于高炉煤气来讲,动力燃烧即无焰燃烧其火焰长度短、燃烧速度快、强度大、温度高,是一种比较合适的燃烧方式,但因其体积大、以回火、噪音高、负荷调节不灵活,且流道复杂,成本高,实际中采用很少。而采用扩散燃烧不但火焰太长,而且混合不好,燃烧不完全,不适合高炉煤气。实际中大多数采用预混部分空气的燃烧方式,这种形式的燃烧器结构简单、不易回火、负荷调节灵敏,在煤气的热值和空气的预热温度波动的情况下能保持稳定的工作,调节范围宽广,在锅炉最低负荷至最高负荷时,燃烧器都能稳定工作。燃烧器的布置主要考虑以下几点:火焰应处于炉膛几何中心区域,使火焰尽可能充满炉膛,使炉膛内热量得以均匀分配,受热面的负荷均匀,不会形成局部受热引起内应力增大,防止受热不均匀。对于布置高度,在不影响火焰扩散角的情况下,燃烧器低位布置,有利于增加煤气燃烧时间,保持炉温均匀。4.3 过热器的改造改燃高炉煤气后,烟气量增大引起过热蒸汽超温,可以通过适当减少过热器的面积来控制过热蒸汽的温度在规定范围之内。也可以通过增加减温器的调温能力,来控制过热蒸汽的温度。4.4 增加煤气预热装置加装煤气预热器一方面可以进一步降低排烟温度,提高锅炉效率,另外一方面,可以增加入炉能量,提高燃烧温度,增强火焰的辐射能力,改善高炉煤气的着火和燃尽条件。研究证明[5],高炉煤气温度每提高10℃,理论燃烧温度可以高4℃。但是由于高炉煤气的易燃性和有毒性,要求与烟气之间的换热过程严密而不泄露,理论上只能采用分离式热管换热器。4.5 省煤器的改造改烧高炉煤气后,排烟温度升高,锅炉蒸发量下降,因此,增加省煤器面积,采用沸腾式省煤器可以提高省煤器的吸热量,降低过高的排烟温度,减小排烟损失,提高锅炉效率。另一方面,高炉煤气锅炉炉内火焰黑度和炉内温度低,故不宜单纯以增加敷设受热面的面积来提高锅炉蒸发量,而采用沸腾式省煤器来弥补锅炉蒸发量的减少,这是提高锅炉出力的有效措施。4.6 尾部烟道的改造由于高炉煤气发热量低,惰性气体含量高,因此燃用高炉煤气时,锅炉的烟气量及阻力都讲增加,为此,一般须考虑扩大尾部烟道流通面积降低流动阻力及增加引风机的引风能力。4.7 燃气安全防爆措施从安全方面考虑,有必要建立燃气锅炉燃烧系统,包括自动点火、熄火保护、燃烧自动调节、必要的连锁保护方面的自动化控制。同时为了减轻炉膛和烟道在发生爆炸时的破坏程度,燃气锅炉的炉膛和烟道上应设置防爆装置。此外燃气系统应装设放散管,在锅炉房燃气引入口总切断阀入口侧、母管末端、管道和设备的最高点、燃烧器前等处应布置放散点。采取了以上安全措施后,可以确保锅炉处在安全运行之中。参考文献:[1]湛志钢,煤粉、高炉煤气混烧对煤粉燃尽性影响的研究[D].[硕士学位论文].武汉:华中科技大学,2004.[2]姜湘山,燃油燃气锅炉及锅炉房设计[M].北京:机械工业出版社,2003.[3]范从振,锅炉原理[M].北京:中国电力出版社,1986.[4]陈刚、张志国等,稳燃腔煤粉燃烧器试验研究及应用[J].动力工程,1994(12).[5]刘景生、王子兵,全燃高炉煤气锅炉的优化设计[J].河北理工学院学报.

124 评论

北极豆豆鱼

项目概况:为了加强企业竞争实力,树立良好企业形象和保证企业的可持续发展,XX有限公司(以下简称甲方)现有二台35T/h抛煤机链条炉,根据甲方单位对烟气排放浓度的要求,决定对厂区原有二台35T/h除尘设备进行脱硫除尘改造,使二氧化硫和烟尘排放浓度达到辽宁省有关环保排放及总量控制的要求,尽可能的减少对环境的影响。 设计参数: 序号 项 目 单 位 参 数 备 注 1 脱硫系统设备 台套 2 2 35t/h锅炉烟气量 m3/h·台 61000 提供值 3 锅炉实际燃煤量 T/24H 200 提供值 4 燃煤含硫量 % 0.5-0.3 提供值 5 引风机风量 m3/s 21.22 提供值 6 净化前烟气SO2含量 mg/m3 2235.27 提供值 7 净化前烟气NOx含量 mg/m3 370.03 提供值 8 现有水膜除尘器阻力 Pa 1100 提供值 9 设计脱硫效率 % 60-80 设计值 10 设计除尘效率 % 90 设计值 11 设计使用寿命 年 ≥25

90 评论

相关问答

  • 燃煤蒸汽锅炉房毕业设计毕业论文

    下面是我找的,不知道对你有没有帮助 ,如果有的话请您给个红旗吧一、前言 众所周知,能源消费是造成当今环境恶化的一个主要原因,尤其是煤炭在直接作为能源燃烧过程中,

    一叶扁舟85 3人参与回答 2023-12-11
  • 煤粉锅炉论文开题报告

    煤粉锅炉烟气黑度主要原因是烟气里含有燃烧不完全的炭。主要原因有1、煤粉粒度过粉,煤粉在炉膛内来不及燃烧就被烟气带出了炉膛的高温区。2、燃烧的煤种变化工艺没有及时

    哼哼家的猫猫 2人参与回答 2023-12-09
  • 锅炉煤气氨法脱硫毕业论文

    氨法脱硫是利用气氨或氨水做为吸收剂,气液在脱硫塔内逆流接触,脱除烟气中的SO2。 氨是一种良好的碱性吸收剂,从吸收化学机理上分析,二氧化硫的吸收是酸碱中和反

    草莓牛奶L 4人参与回答 2023-12-12
  • 锅炉电气控制毕业论文

    我行可以的 我行可以的 我行可以的

    美利达达道路 4人参与回答 2023-12-07
  • 焦炉煤气净化毕业论文

    以下三篇焦化厂实习报告范文,由整理提供,欢迎阅读。 一)实习地点:邯钢焦化厂 (二)实习时间:2009年2月23日至2009年3月6日 (三)实习班级:07精细

    鱼米芝香 2人参与回答 2023-12-09