密果儿小雨
小论文:《容易忽略的答案》 大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了2.5小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。所以正确答案应该是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米)和45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。 在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。
四合院追糖葫芦
人类是认识0早还是认识1早 在自然数中,存在着0和1这两个特别的数字,说它们特别,是因为它们具有特殊的“通行证”,如0加任何数仍得这个数,1乘任何数也仍得这个数!那么,这些数字到底是怎么由来的呢? 人类最初生活在一个没有数字的生活里,工作、生活起来十分不方便!大约在公元500年,随着经济、文化以及佛教的兴起和发展,印度次大陆西北部的旁遮普地区的数学一直处于领先地位。天文学家阿叶波海特在简化数字方面有了新的突破:他把数字记在一个个格子里,如果第一格里有一个符号,比如是一个代表1的圆点,那么第二格里的同样圆点就表示十,而第三格里的圆点就代表一百。后来,由于印度人在此基础上发明了阿拉伯数字,也就是现在我们所看到的“1”、“2”、“3”……人类才用上了数字。在我们的印象中,似乎是数越小,就来的越早,而通常报数时,往往总是先报“1”,而不是先报“0”,那么,人类到底是先发现1的还是发现0的? 起初,是没有0这个数字的,早期,人们是用结绳记数,0是后来由于数字需要才发明的定义的。 0这个概念也是由古印度人发明的,在古罗马和中国的数字字典是没有0这个数字的,而古巴比伦人用空格来代表0,后来古罗马和中国才根据古巴比伦人用空格的。在数字发明之后,印度的学者又引出了作为零的符号。可以这么说,这些符号和表示方法是今天阿拉伯数字的老祖先了。印度人首先发明了现用的阿拉伯数字中的1~9,用空格表示没有,但容易搞错,所以后来就用“.”表示没有。印度人的计数法传到阿拉伯后,阿拉伯人用“0”代替了印度人的“.”,并把它带到了欧洲,就有了现用的阿拉伯数字0~9。数字的写法经过不断的进化也和早期有所不同。应该说是印度人发明了现有的计数法,阿拉伯人改进完善了它。阿拉伯人对数字的形状进行了改造并把它传播到整个欧洲,最后风行全球。该数字系统得到全球普及,阿拉伯人功不可没,因此称为阿拉伯数字。 由 此看来,说明人类先认识1再认识0。 人类的知识源源不断,我们一定要好好发挖。
结婚201314
公路隧道截面形状的研究(此论文在温州市首届“摇篮杯” ——“生活中的数学” 初中学生征文比赛中获一等奖)十一期间的1个晚上,我从温州回永强的路上,路过一个隧道(白楼下的茅竹隧道),当车在隧道中飞驰而过时,我发现公路隧道截面的形状是拱圈下面一个矩形,而且我见到的公路隧道截面的形状几乎都是这种形状。为什么公路隧道截面的形状不是别的形状呢?于是我决定用数学知识去计算研究公路隧道截面的形状与有效通车面积、截面的周长(与制造材料的成本直接相关)的关系,尝试着能否发现一种更合理、更节省的隧道截面的形状。一、不同的公路隧道截面形状的设计为了方便计算,我设定有效通车面积统一为4米×4米,隧道截面最高处为6米。图形①半圆加正方形 图形②三角形加正方形 图形③梯形加正方形图形④正方形加矩形 图形⑤正方形二、计算不同形状的隧道截面总面积、截面的周长、隧道的实用面积率隧道的实用面积率=有效通车面积/ 隧道截面总面积=16 m2/ 隧道截面总面积第一个图形:(半圆加正方形)隧道截面总面积=有效通车面积+半圆的面积=16m2 +6.28 m2 =22.28m2这个图形的隧道的实用面积率=16 m2/ 22.28m2 ≈71.8%这个图形的隧道截面的周长=3×4m+пR=12m+6.28m=18.28m第二个图形:(三角形加正方形)隧道截面总面积=有效通车面积+三角形的面积=16m2 +4m2 =20m2这个图形的隧道的实用面积率=16m2/20m2=80%这个图形的隧道截面的周长≈3×4m+2×2.83m=12m+5.66m=17.66m第三个图形:(梯形加正方形)隧道截面总面积=有效通车面积+梯形的面积=16m2 +6m2=22m2这个图形的隧道的实用面积率=16m2/22m2≈72.7%这个图形的隧道截面的周长≈3×4m+2×2.24m+2m=12m+6.48m=18.48m第四个图形:(正方形加矩形)隧道截面总面积=矩形1的面积=4m×6m=24m2这个图形的隧道的实用面积率=16m2/24m2≈66.7%这个图形的隧道截面的周长=(4m+6m)×2=20m第五个图形:(正方形)隧道截面总面积=矩形2的面积=4m×4m=16m2这个图形的隧道的实用面积率=16m2/16m2=100%这个图形的隧道截面的周长=4m×4m=16m不同形状的隧道截面总面积、截面的周长、隧道的实用面积率的比较图形编号 图形1 图形2 图形3 图形4 图形5截面总面积 22.28m2 20m2 22m2 24m2 16m2实用面积率 71.8% 80% 72.7% 66.7% 100%截面的周长 18.28m 17.66m 18.48m 20m 16m三、计算结果的分析与研究从计算结果得出:1、不同形状的隧道截面的实用面积率与截面的周长具一定的相关性,即实用面积率越高的,周长越小(最节省材料)。2、隧道截面形状为图形5和图形2的隧道实用面积率高、制造用的材料最省。为什么常见的隧道截面不采用图形5和图形2的形状呢?而是采用隧道截面如图形1的形状呢?于是我试着上网查找原因。在网页资料:26日晚,位于渝中区解放东路文化街路口主路地下的一条在建电缆隧道,在施工中突然塌方,所幸无人伤亡。事发隧道隶属渝中区顺城街变电站110千伏送出隧道工程,由重庆广信电力建设公司承建。知情者介绍,该隧道结构近似正方形,高宽约为2.7米,顶部距路面约1米。 本资料表明:正方形形状的隧道出的事故原因比较多,可能是不采用图形5的原因。在网页资料了解到有关隧道结构的一些知识。隧道洞身——隧道结构的主体部分,是汔车通行的信道。 衬砌——承受地层压力,维持岩体稳定,阻止坑道周围地层变形的永久性支撑物。它由拱圈、边墙、托梁和仰拱组成。拱圈位于坑道顶部,呈半圆形,为承受地层压力的主要部分。边墙位于坑道两侧,承受来自拱圈和坑道侧面的土体压力,边墙可分为垂直形和曲线形两种。托梁位于拱墙和边墙之间,为防止拱圈底部挖空时发生松动开裂,用来支承拱圈。仰拱位于坑底,形状与一般拱圈相似,但弯曲方向与拱圈相反,用来抵抗土体滑动和防止底部土体隆起。本资料表明:隧道截面通常采用图形1主要是考虑承受地层压力,使隧道结构更牢固度,才能安全性。为什么不采用图形2的原因,我一直找不到相关的有效资料。我想可能与结构的牢固度或者视觉效果有关,也可能隧道工程的难度有关或其它原因,有待进一步研究。如果在这些方面图形1、2 没有太多的区别,我建议采用图形2,因为这种形状的隧道实用面积率高、制造用的材料最省。数学中角的计算出现的跨科学趋势(此论文在温州市第二届"摇篮杯"初中学生数学小论文评比中获二等奖)数学中角的计算可以有多种手段,距目前为止,我们所学的有证明三角形全等,等边三角形和等腰三角形,还有八年级上册第一章的内容,平行线.可在做第一章目标与评定的第11题时,我闷了!1,原题:在台球比赛中,母球运动时,如果母球P击中桌边点A,经桌边反弹后击中相邻的另一条桌边的点B,再次反弹,那么母球P经过的路线BC与PA平行吗 如图1,运用常规的数学解题思路几乎难以解决,我傻傻地思索了很久,也和几个同学一同讨论过,但是始终没有一重好的方法去解决.甚至于我们在猜想这道题目是不是出错了,于是我们满怀信心地找到了老师,问了这道题的解法.而老师告诉我们的方法却是:解:根据物理中的平面镜反射原理(反射角等于入射角),已知∠2=∠1,∠4=∠3,∵∠2与∠3互余 ∴∠1+∠2+∠3+∠4=180°∵∠1+∠2+∠3+∠4+∠5+∠6=360°∴∠5+∠6=180°∴PA‖CB(同旁内角互补,两直线平行)我惊呆了,这简直不可思议,数学的解题中竟然出现要根据科学中的平面镜反射原理 我问老师数学解题中可以出现跨科学的知识吗 老师说可以,我疑惑不解.2,中考中数学角的运算出现的跨科学题目:为什么在数学角的计算中会出现物理知识呢 我开始了调查与搜索,结果仍然大吃一惊,原来,中考命题中已经存在了跨学科综合题的趋势.①(2002年江苏盐城市中考题)如图2所示,光线l照射到平面镜I上,然后在平面镜I,II之间来回反射,已知∠α=55°,∠γ=75°则∠β多少 解:根据物理中的平面镜反射原理(反射角等于入射角),得:∠BAC=∠α=55°,∠CBA=∠γ=75°∴∠BCA=180°-∠BAC-∠CBA=180°-130°=50°由物理中"法线"的知识得∠ACN=∠BCN=∠CAN=25°又∵∠BCN+∠β=90°∴∠β=90°-∠BCN=65°②(2003年青海省中考题)如图3所示,平面镜α,β是交角为θ,入射光线AO平行于β入射到α上,经两次反射后的反射光线O′B又平行于α,则∠θ等于多少 解:∵BO′‖α ∴∠1=∠2(两直线平行,同位角相等),且∠3=∠4(两直线平行,内错角相等)∵AO‖β∴∠1=∠5(两直线平行,同位角相等),根据物理中的平面镜反射原理(反射角等于入射角)得:∠2=∠3,∠5=∠6,∴得到:∠1=∠2=∠3=∠4=∠5=∠6∵∠4+∠5+∠6=180°∴∠4=∠5=∠6=60°∴∠1=∠2=∠3=∠4=∠5=∠6=60°∵∠3+∠6+∠θ=180°∴∠θ=180°-∠3-∠6=60°从上面几道题目的解题过程中我们不难发现,无论是普通生活中角的计算还是中考的数学角计算的试题中都已部分渗入了科学的内容,特别是光学知识,从而使原本用纯数学的知识很难解决的问题,在科学的辅助下顺利成功地解决了.是的,这说明了跨学科的综合题目现在已经成为了中考命题的一个新趋势.3,分析原因和他对现代学生的影响:为什么会出现这样的综合题呢 仔细想想,其实很简单,因为用数学知识解决实际问题这是学习数学的出发点,而当实际问题难以真正用纯数学的方式解决时,学科的贯通性自然也就成了解题的必然路径,不难想象,在今后更复杂的世界中,跨学科来解决更多实际问题而会变得多么普遍和重要.但这种趋势对于我们学生来说,无疑是一种新的巨大的挑战,学科的贯通性,思维的连锁性,这都是现代学生比以往学生更需具备的.这将是一种挑战,思维的定势将是一种灭亡,例如上述的3道典型的例题,如果一个学生只想用纯粹的数学思维去解决,而不去用更多的眼光去思考的话,那将会相当的困难,时间上的消耗也是致命的.反之,如果能将学科的知识掌握得当,且运用得很好,那么这样的题型将会变得异常地简单.4,总结,提出我的看法与建议:从课本上的那题角的运算,一直到如今的中考部分角计算的试题中,竟然会遇到数学解题用到科学知识的怪事 开始我是一头雾水,通过搜索和分析,现在终于是恍然大悟:这原来已经是一种中考命题的一种趋势.这同样也是数学在生活中运用范围的提升而产生的一种新的解题思路和方法.我为我的发现而感到吃惊也十分的欣喜,幸好我发现了这样的一个问题,我相信我在今后的数学解题中将会更加的小心谨慎,可万一不是这样的综合题而我又糊里糊涂地用了不同学科的知识导致不必要的失分怎么办 这是非常可惜的,但对于现在的我们来讲,却的确是一个实实在在的问题,所以我提出了以下的建议和我的看法:① 学科的全面发展,遇到了跨学科的综合题,偏科绝对是不允许的,只有在学科上是全面发展的学生胜率才会更大,毕竟运用的是两门甚至更多门学科的知识却是一门的分数,因为另一门学科的不足丢了这一门学科的分数,十分可惜.② 做的题要多,累积经验,题做多了,对这些类型的题目也会变得敏感起来,思路也会畅通无阻,所以经验很重要,做多了,看到综合题,就自然会想到用哪几个学科的知识.③ 虽然要注意这样的题型,但不能滥用,一些同学会因为神经过度紧张,过度敏感,看到什么不眼熟的题型就着手使用不同学科的知识,结果导致失分惨重,这是不对的,面对考试,应尽量放松,先要想思路,有阻碍时怎么解决,发现用他科知识可解决时方可使用,以保证不失分.④ 现在数学中角的运算出现了跨科学趋势,这是知识发展的结果,相信会有更多更新的综合题在这种趋势中产生,只希望我们能够迎着趋势,一同进步!2007年10月8日
数学小报四年级数学手抄报二四下数学书人教版运算定律手抄报五下数学手抄报四年级数学手抄报内容四年级数学手抄报内容摘抄大全人教版数学书四年级第一单元手抄报数学四年级
中小学生的德育教育是每位家长和教师教育的重点,影响学生德育的主要因素是道德因素,家长和教师应该围绕着影响学生的道德因素展开相应的道德策略。下面是我给大家推荐的,
放暑假了,有两件事情要注意哦,一是注意假期安全,而是要完成好暑假作业。下面是我给大家带来的2022 四年级数学 暑假作业答案,希望对您有所帮助! 四年级数学
等数学类杂志 分析理论与应用(英) 高校应用数学学报(中) 高校应用数学学报(英) 应用数学学报(英) 工程数学学报(5期) 生物数学学报 应用泛函分析学报 高
小论文:《容易忽略的答案》 大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开