首页 > 学术论文知识库 > 质数毕业论文

质数毕业论文

发布时间:

质数毕业论文

一般来说的话,中国研究生的毕业论文的字数应该是不少于2~3万字吧。只要看你是什么专业的政法大学的话,我觉得应该的质数和案例的话可能只多不少。

一、论文查重系统检测,是按论文的总字符计算的,而不是根据word中的字数进行,为啥是按字符数计算呢?因为查重系统是由字节代码编辑而成的系统,所以统计的就是字符数。当然不同的查重系统计算方式也不同,比如paperfree英文是2个字母算一个字数,而其他有的系统则是1个字母就算一个字数。 二、当论文检测系统检查论文重复时,表中的内容也会被计数,而简单的单词统计时,一般的表不能计数单词的数量。 三、每篇论文基本上都会有英文摘要和英文参考,因为英文占字号。字母是一个字符,单词一次只计算一个单词。

因为在论文统计里面去查阅质数的时候,他把空格和符号都包括在内,自己统计的一般主要是数论文的文字,所以他的字数会有。

了解格式,首先在网上搜索一篇论文进行阅读,了解一篇论文其中包含哪些方面,格式是怎么样的,包括标题,摘要,目录,正文,参考文献等。

寻找参考文献:选题确定之后,就开始搜索阅读与选题相关的参考文献。

写提纲:把搜索下载的论文仔细阅读几遍,看看别人是怎么写的。

写正文:按照之前写的提纲,依次把相关的文章写好就行,其中的论点一定要有理有据,要有相应的文献或数据做支撑。

检查整理:在写完之后检查质数格式等是否符合要求。并做好相应的封面标注相关信息即可。

收敛数列的性质毕业论文

一、极限的唯一性:数列的极限如果存在,则唯一。二、保号性:如果数列的极限不为 0,则从某项往后的所有项与极限同号。三、有界性:如果数列存在极限,则数列有界。四、存在性:单调有界数列必有极限。

定理(唯一性):若数列{ an }收敛,则它只有一个极限.

证:设a=lim( n→∞) an,对任何b≠a,取ε0=(|b-a|)/2,则在(a;ε0)之外有{ an }的有限个项,从而,在(b;ε0)之内至多只有{ an }的有限个项,所以b不是{ an }的极限。

所以收敛数列只有一个极限.

定理(有界性):若数列{an}收敛,则{an}为有界数列,即存在正数M,使得对一切正整数n有:| an |≤M.

证:设lim( n→∞) an=a,取ε=1,存在正数N,对一切n>N,有|an -a|≤1;

又|an|-|a|≤|an -a|≤1;∴|an|≤1+ |;

记M=max{|a1|,|a2|,…, |aN|,1+|},则|an|≤M,∴{an}为有界数列.

所以收敛数列有界.

定理(保号性):若lim( n→∞) an=a>0(或<0),则对任何a’∈(0,a)(或a’∈(a,0)),存在正数N,使得当n>N时,有an>a’(或an

证:当a>0时,取ε=a-a’>0,则存在正数N,使得n>N时,有an>a-ε=a’;

当a<0时,取ε=a’-a>0,则存在正数N,使得n>N时,有an<ε+a=a’.

所以原命题得证.

定理(保不等式性):设{an}与{bn}均为收敛数列. 若存在正数N0,使得当n> N0时,有an≤bn,则lim( n→∞) an≤lim( n→∞) bn.

证:设lim( n→∞) an=a,lim( n→∞) bn=b.

则ε>0,正数N1 ,N2,使当n>N1时,有an>a-ε; 当n>N2时,有bn<ε+b.

取N=max{N0,N1,N2},则当n>N时,有a-ε

由ε的任意性,得a≤b,即lim( n→∞) an≤lim( n→∞) bn. 所以原命题得证.

注:当an

定理(迫敛性):设收敛数列{an},{bn}都以a为极限,数列{cn}满足:

存在正数N0时有an≤cn≤bn,则数列{cn}收敛,且lim( n→∞) cn=a.

证:ε>0,正数N1,N2,

使当n>N1时,有an>a-ε; 当n>N2时,有bn<ε+a.

取N=max{ N0,N1,N2},则当n>N时,有a-ε

∴数列{cn}收敛,且lim( n→∞) cn=a. 原命题得证。

定理(四则运算):若{an}与{bn}为收敛数列,则{an+bn},{an-bn},{an·bn}也都是收敛数列,且有

lim( n→∞) (an±bn)=lim( n→∞) an±lim( n→∞) bn,lim( n→∞) (an·bn)=lim( n→∞) an·lim( n→∞) bn

当bn为常数c时,有lim( n→∞) (an+c)=lim( n→∞) an+c,

lim( n→∞) (can)=c lim( n→∞) an

若bn≠0及lim( n→∞) bn≠0,则{an/bn }也是收敛数列,且有

lim( n→∞) an/bn =(lim( n→∞) an)/(lim( n→∞) bn )

证:设lim( n→∞) an=a,lim( n→∞) bn=b,则对ε>0,正数N1,N2,

使当n>N1时,有|an-a|<ε; 当n>N2时,有|bn-b|<ε.

取N=max{N1,N2},则当n>N时,有|an-a|+|bn-b|<2ε.

又|(an-a)+(bn-b)|=|(an +bn)-(a+b)|≤|an-a|+|bn-b|<2ε.

∴lim( n→∞) (an+bn)=a+b= lim( n→∞) an+lim( n→∞) bn;

∵an-bn=an+(-1)bn,

∴lim( n→∞) (an-bn)=a-b= lim( n→∞) an-lim( n→∞) bn也成立.

另|anbn-ab|=|bn(an-a)+a(bn-b)| ≤|bn||an-a|+|a||bn-b|<(|bn|+|a|)ε.

由收敛数列的有界性定理,存在正数M,对一切n有|bn|

∴当n>N时,有|anbn-ab|<(M+|a|)ε.

∴lim( n→∞) (an·bn)=lim( n→∞) an·lim( n→∞) bn.

∵an/bn =an·1/bn ,

∴lim( n→∞) an/bn =(lim( n→∞) an)/(lim( n→∞) bn )也成立.

由于lim( n→∞) bn=b≠0,根据收敛数列的保号性,存在正数N3,使得当n>N3时有

|bn|>1/2|b|. 取N’=max{N2,N3},则当n>N’时有

|1/bn -1/b|=|bn-b|/|bn b| <2|bn-b|/b^2 <2ε/b^2 .

∴lim( n→∞) 1/bn =1/b.

第一,有界性,如果函数收敛,那么这个函数一定有界。第二,唯一性,如果函数收敛,那么函数有且只有一个极限值。

性质

1、唯一性

思维导图

如果数列Xn收敛,每个收敛的数列只有一个极限。

2、有界性

定义:设有数列Xn , 若存在M>0,使得一切自然数n,恒有|Xn|

定理1:如果数列{Xn}收敛,那么该数列必定有界。推论:无界数列必定发散;数列有界,不一定收敛;数列发散不一定无界。

数列有界是数列收敛的必要条件,但不是充分条件

3、保号性

若数列某项起Xn>0(或Xn<0)且{Xn}收敛于a,则a>0(或a<0),

扩展资料:

收敛数列,设数列{Xn},如果存在常数a(只有一个),对于任意给定的正数q(无论多小),总存在正整数N,使得n>N时,恒有|Xn-a|

数学思维品质的毕业论文

数学本科毕业论文--数学教学与学生创造思维能力的培养摘 要:现代高科技和人才的激烈竞争,归根结底就是创造性思维的竞争,而创造性思维的实质就是求新、求异、求变。在数学教学中培养学生的创造思维、激发创造力是时代对我们提出的基本要求。怎样培养学生的创造思维能力:1、指导观察2、引导想象3、鼓励求异4、诱发灵感关键词:创造 思维前 言:在竞争日益激烈的当今社会,如何让在学校里学习的学生提前适应社会的发展,使他们能够顺利地成长,是学校、家庭和社会所面临的一个重要问题,本文就在数学教学中如何培养学生的创造思维能力提出自己的一些看法 现代高科技和人才的激烈竞争,归根结底就是创造性思维的竞争,而创造性思维的实质就是求新、求异、求变。创新是教与学的灵魂,是实施素质教育的核心;数学教学蕴含着丰富的创新教育素材,数学教师要根据数学的规律和特点,认真研究,积极探索培养和训练学生创造性思维的原则、方法。在数学教学中培养学生的创造思维、激发创造力是时代对我们提出的基本要求。本文就创造思维及数学教学中如何培养学生创造思维能力谈谈自己的一些看法。一、 创造思维及其特征思维是具有意识的人脑对客观事物的本质属性和内部规律性的概括的间接反映。创造思维就是合理地、协调地运用逻辑思维、形象思维及直觉思维等多种思维方式,使有关信息有序化,以产生积极的效果或成果。数学教学中所研究的创造思维,一般是指对思维主体来说是新颖独到的一种思维活动。它包括发现新事物、提示新规律、建立新理论、创造新方法、获得新成果、解决新问题等思维过程,尽管这种思维结果通常并不是首次发现或超越常规的思考。创造思维是创造力的核心。它具有独特性、新颖性、求异性、批判性等思维特征,思考问题的突破常规、新颖独特和灵活变通是创造思维的具体表现,这种思维能力是正常人经过培养可以具备的。二、 创设适宜的教学环境教师必须用尊重、平等的情感去感染学生,使课堂充满民主、宽松、和谐的气氛,只有这样学生才会热情高涨,才能大胆想象、敢于质疑、有所创新,这是培养学生创造性思维能力的重要前提。1、教育创新是教师的职责。教师应该深入钻研教材,挖掘教材本身蕴藏的创造因素,对知识进行创造性的加工,使课堂教学有创造教育的内容。例如教学轴对称图形时,提出“在河边修一个水塔,使到陈村、李庄所用的水管长度最少,如何选定这个水塔的位置?”从而把课本内容引申到实际生活中来,使教学富有实践性、科学性、现代性。突出学生的“主体”地位。要发扬教学民主,尊重学生中的不同观点,保护学生中学习争辩的积极性,让学生敢于想象,敢于质疑,敢于标新立异,敢于挑战权威,给每个学生发表自己见解的机会,最大限度地消除学生的心理障碍,形成学生主动学习,积极参与的课堂教学氛围,处理学生学习行为时,尊重他们的想法,鼓励别出心裁等。三、 怎样培养学生的创造思维能力1、指导观察观察是信息输入的通道,是思维探索的大门。敏锐的观察力是创造思维的起步器。可以说,没有观察就没有发现,更不能有创造。儿童的观察能力是在学习过程中实现的,在课堂中,怎样培养学生的观察力呢?首先,在观察之前,要给学生提出明确而又具体的目的、任务和要求。其次,要在观察中及时指导。比如要指导学生根据观察的对象有顺序地进行观察,要指导学生选择适当的观察方法,要指导学生及时地对观察的结果进行分析总结等。第三,要科学地运用直观教具及现代教学技术,以支持学生对研究的问题做仔细、深入的观察。第四,要努力培养学生浓厚的观察兴趣。如学习《三角形的认识》,学生对“围成的”理解有困难。教师可让学生准备10厘米、16厘米、8厘米、6厘米的小棒各一根,选择其中三根摆成一个三角形。在拼摆中,学生发现用10、16、8厘米,10、8、6厘米和10、16、6厘米都能拼成三角形,当选16厘米、8厘米、6厘米长的三根小棒时,首尾不能相接,不能拼成三角形。借助图形,学生不但直观的感知了三角形“两边之和不能小于第三边”,而且明白了“三角形”不是由“三条线段组成”的图形,而应该是由“三条线段围成”的图形,使学生对三角形的定义有了清晰的认识。因此,在概念的形成中教师要努力创造条件,给学生提供自主探索的机会和充分的思考空间,让学生在观察、操作、实验、归纳和分析的过程中亲自经历概念的形成和发展过程,进行数学的再发现、再创造。2、引导想象想象是思维探索的翅膀。爱因斯坦说:"想象比知识更重要,因为知识是有限的,而想象可以包罗整个宇宙。"在教学中,引导学生进行数学想象,往往能缩短解决问题的时间,获得数学发现的机会,锻炼数学思维。想象不同于胡思乱想。数学想象一般有以下几个基本要素。第一,因为想象往往是一种知识飞跃性的联结,因此要有扎实的基础知识和丰富的经验的支持。第二,是要有能迅速摆脱表象干扰的敏锐的洞察力和丰富的想象力。第三,要有执着追求的情感。因此,培养学生的想象力,首先要使学生学好有关的基础知识。其次,新知识的产生除去推理外,常常包含前人的想象因素,因此在教学中应根据教材潜在的因素,创设想象情境,提供想象材料,诱发学生的创造性想象。如在学习《平行四边形的面积》时,教师利用多媒体呈现学生熟悉的情景:种植园里各种植物郁郁葱葱,分别种在划成不同形状的地块上。然后出示种有竹子和杜鹃的地块,分别呈正方形和长方形,要求算一算它们的种植面积,学生运用已学的知识很快解决了问题。接着出示一块形如平行四边形的青菜地,让学生猜一猜它的面积大概是多少?平行四边形的面积应怎么求?学生对未知领域的探索有天然的好奇,思维的积极性被激发,纷纷根据前面的知识作出如下猜测:①、面积是长边和短边长度的积。②、长边和它的高的积。③、短边和它的高的积。④、先拼成一个长方形,跟这个长方形的面积有关……教师一一板书出来,学生见自己的思维结果被肯定,心理上有一种小小的成就,从而更激起了主动探索的欲望。3、鼓励求异求异思维是创造思维发展的基础。它具有流畅性、变通性和创造性的特征。求异思维是指从不同角度,不同方向,去想别人没想不到,去找别人没有找到的方法和窍门。要求异必须富有联想,好于假设、怀疑、幻想,追求尽可能新,尽可能独特,即与众不同的思路。课堂教学要鼓励学生去大胆尝试,勇于求异,激发学生创新欲望。学起于思,思源于疑,疑则诱发创新。教师要创设求异的情境,鼓励学生多思、多问、多变,训练学生勇于质疑,在探索和求异中有所发现和创新。本人教授“§平行线的性质”一节时深有感触,一道例题最初是这样设计的:例:如图,已知a // b , c // d , ∠1 = 115, ⑴ 求∠2与∠3的度数 ,1abcd⑵ 从计算你能得到∠1与∠2是什么关系? 2学生很快得出答案,并得到∠1=∠2。我正要向下讲解,这时一位同学举手发言:“老师,不用知道∠1=115°也能得出∠1=∠2。”我当时非常高兴,因为他回答了我正要讲而未讲的问题,我让他讲述了推理的过程,同学们报以热烈的掌声。我又借题发挥,随之改为:已知:a//b , c//d 求证: ∠1=∠2让学生写出证明,并回答各自不同的证法。随后又变化如下:变式1:已知a//b , ∠1=∠2 , 求证:c//d。变式2:已知c//d ,∠1=∠2 , 求证:a//b。变式3:已知a//b, 问∠1=∠2吗?(展开讨论)这样,通过一题多证和一题多变,拓展了思维空间,培养学生的创造性思维。对初学几何者来说,有利于培养他们学习几何的浓厚兴趣和创新精神。数学教学中,发展创造性思维能力是能力培养的核心,而逆向思维、发散思维和求异思维是创新学习所必备的思维能力。数学教学要让学生逐步树立创新意识,独立思考,这应成为我们以后教与学的着力点。 4、诱发灵感灵感是一种直觉思维。它大体是指由于长期实践,不断积累经验和知识而突然产生的富有创造性的思路。它是认识上质的飞跃。灵感的发生往往伴随着突破和创新。在教学中,教师应及时捕捉和诱发学生学习中出现的灵感,对于学生别出心裁的想法,违反常规的解答,标新立异的构思,哪怕只有一点点的新意,都应及时给予肯定。同时,还应当运用数形结合、变换角度、类比形式等方法去诱导学生的数学直觉和灵感,促使学生能直接越过逻辑推理而寻找到解决问题的突破口。 例如,有这样的一道题:把3/7、6/13、4/9、12/25用">"号排列起来。对于这道题,学生通常都是采用先通分再比较的方法,但由于公分母太大,解答非常麻烦。为此,我在教学中,安排学生回头观察后桌同学抄的题目(7/3、13/6、9/4、25/12),然后再想一想可以怎样比较这些数的大小,倒过来的数字诱发了学生瞬间的灵感,使很多学生寻找到把这些分数化成同分子分数再比较大小的简捷方法。 总之,人贵在创造,创造思维是创造力的核心。培养有创新意识和创造才能的人才是中华民族振兴的需要,让我们共同从课堂做起。结束语:学生的创造思维能力如何培养如何提高是学校教学工件新的难题,以上仅代表本人的观点,不足之处请大家指正。该篇论文的完成得到了各方面的支持,在此谨表示最真诚的感谢,谢谢!

去生活中多观察,多钻研奥数!

在大学数学教学中,数学文化是一个非常重要的组成部分,是学习数学的精髓。下面是我为大家整理的,供大家参考。

一、在数学教学中渗透语言的艺术美

斯托利亚曾说:“数学教学也就是数学语言的教学。”数学作为一门逻辑性非常强的学科,虽然和其他学科相比具有其特殊性,但其语言和其他学科语言一样,也是一门艺术,因此,数学教学语言的艺术技巧显得非常重要。为此,数学教师要不断锤炼自己的语言,用精准、简明、形象、生动的数学语言激发学生的兴趣、启迪学生思维,并积极鼓励学生不断探索,可以有效地优化数学教学效果。如:在学习高中数学必修一幂函式性质时,我很神秘地说:同学们,你们知道的365次方和的365次方分别约等于多少?当同学们不知所措时,我给出答案:的365次方约等于,的365次方约等于,并解释这道题蕴含的哲理是:的365次方也就是说你每天进步一点,即使只有,一年365天后,你将进步很大,远远超过1;的365次方也就是说你每天退步一点点,即使只有,一年365天后,你将远远小于1,几乎接近于0,远远被人抛在后面。通过这样的语言,学生很快认识了幂函式的值如何随底数变化而变化。同时鼓励同学们珍惜时间,不断努力,坚持下去,一定会有进步。富有艺术之美的语言在数学教学中具有强大的生命力,教师要创造机会,让学生体会艺术的语言给我们带来的数学之美,让学生在语言中逐渐理解、提升。

二、在数学教学中感受、欣赏艺术美

通过讲解共轭复数、对称多项式、对称矩阵等,让学生感受数学代数对称之美;通过讲解轴对称、中心对称、互补、互逆、相似等,让学生感受数学几何对称之美等。在学习选修内容《数系的扩充与复数》时,讲到历史上曾一度被看做是“幻想中的数”的虚数,由于它带有某种奇异色彩,更能使学生产生幻想和揭示其奥妙的欲望,这也正是数学的神秘之美。学生在教师充满艺术美的教学中感美、欣赏美,学生的学习劲头倍增,必定会达到意想不到的效果。

三、在数学教学中建立艺术化教学环境

在学习高中数学必修五数列知识时,我请一位同学用电子琴现场表演节目,同学们一下子就被这个新颖、独特的课前引入吸引,在观看表演后不禁问,老师葫芦里卖什么药。接着我简要介绍电子琴的键盘,让学生了解到琴的键中其中5个黑键恰好就是著名的斐波那契数列中的前几个数。在同学们追问什么是斐波那契数列时,我说:同学想知道什么是斐波那契数列,那么就要先学习好是数列,这样一步一步带领学生探索知识。教育家罗伯特•特拉弗斯说:“教学之所以被称为具有独特的表演艺术,它区别于其他任何表演艺术,就是由教师与那些观看表演的人的关系所决定的。”毫无疑问,掌握一定课堂教学艺术的教师,就能够取得较好的教学效果。

四、总结

综上所述,把艺术教育巧妙地渗透到数学教学中,使数学教学的课堂变得丰富多彩,充满活力,让学生在学习数学知识的同时促进艺术教育的发展。

一、限制职业学校数学教学发展的主要因素

一学生数学基础普遍较差

从职业学校的生源来看,学生以初中生为主。他们对数学基础知识的掌握普遍较差,缺少数学学习的积极性和自信心。大部分学生对数学思想的掌握不够全面,没有清晰的数学思维和逻辑,对数学中的很多概念性知识的理解不到位,缺少解决综合问题的能力。由于训练量的缺失,很多学生的运算能力不过关,很容易在数学运算中出现错误。

二数学课程安排不尽合理

近些年来,职业学校纷纷提高了对专业课程教学和实习的重视,为专业课程安排了更多的教学课时。这大大压缩了数学教学的时间,使得职业学校数学教师们面临着课时少、内容多的难题。很多数学教师只能将教学重心放到追赶教学进度上,对于很多重难点做不到细致的讲解,课堂练习的机会更是少之又少,从而大大影响了数学课堂的教学质量。

二、职业学校数学课堂教学的改革方向

一深化思想认识,端正学生学习态度

要想真正提高职业学校数学课堂教学质量,必须从思想认识上提高重视程度,从学校和学生两个层面配合数学教学工作。职业学校在保证专业课程教学时间的同时,还要尽量增加数学教学的课时,避免出现教学时间少、教学任务重、数学教师满负荷工作的现象。教师要加强与学生的交流,充分了解学生对数学课程的看法,教会学生数学学习的方法,帮助学生端正数学学习的态度,让学生能够自觉配合教师工作,更积极地参与到数学教学中。

二转变教学方式,激发学生学习兴趣

深化职业学校数学课堂教学改革必须加快教学方式的转变,数学教师要注重培养学生学习主动性和积极性,改变传统“一言堂”的灌输式教学,突出学生的主体地位,将课堂还给学生。为此,数学教师在课堂中要注重角色的转变,从课堂的主导者转变为引导者,通过构建情境、设定问题等方式让学生对教学内容进行自主探究,让学生在不断的学习成功中获得自信,从而达到激发学生学习兴趣,提高学生课堂参与度的目的。

三注重能力培养,灵活安排内容

职业学校数学课程不仅是为了提高学生数学运算能力,还要为学生日后的专业实习和工作打好基础。数学教师在安排课堂教学内容时,虽然做到了面面俱到,各类数学知识点都有涉及,但这种重理论轻应用的教学安排,使得数学的实用性和灵活性受到限制。所以,在职业学校数学课堂教学改革中,数学教师要灵活安排教学课堂内容,将数学教学与教育实际相结合,提高专业的针对性,针对不同专业的学生安排不同的教学内容和教学方式,提高学生在专业范畴内解决问题的能力,让数学真正为学生的专业学习、工作提供帮助。

四改善师生关系,实现课下教学拓展

良好的师生关系对激发学生学习积极性、提高课堂学习质量有重要帮助。数学教师在课堂教学中,要努力利用生动、幽默的课堂语言拉近与学生的距离,消除学生对数学学习的恐惧感和牴触情绪,对于学生面临的数学难题,教师要耐心解答。除了在课堂学习中的帮助,教师在平时的生活中也要加强与学生的沟通,加深与学生之间的感情,并及时了解学生对教师教学方法的想法,以便及时对教学方法和教学内容进行调整,提高数学课堂的教学效果。数学课程是职业学校不可或缺的基础课程。深化职业学校数学课堂教学改革必须从深化思想认识、转变教学方式、注重能力培养、改善师生关系等方面入手,达到激发学生学习积极性、提高数学课堂的教学质量的目的,让职业学校为社会提供更多的创造性人才和实用型人才。、

到万方这类论文数据库找,那里论文多,且质量高。自己懒得去找的话,可以去淘宝的《翰林书店》店铺看看,店主应该能帮你下载到这论文的

凸函数的性质研究毕业论文

毕业论文研究方法怎么写,为什么很难下笔

论文的研究方法主要有以下几种:

1、调查法

它是有目的、有计划、有系统地搜集有关研究对象现实状况或历史状况的材料的方法。调查方法是科学研究中常用的基本研究方法,它综合运用历史法、观察法等方法以及谈话、问卷、个案研究、测验等科学方式,对教育现象进行有计划的、周密的和系统的了解。

2、观察法

观察法是指研究者根据一定的研究目的、研究提纲或观察表,用自己的感官和辅助工具去直接观察被研究对象,从而获得资料的一种方法。

3、实验法

实验法是通过主支变革、控制研究对象来发现与确认事物间的因果联系的一种科研方法。其主要特点是:第一、主动变革性和控制性。

4、文献研究法

文献研究法是根据一定的研究目的或课题,通过调查文献来获得资料,从而全面地、正确地了解掌握所要研究问题的一种方法。

5、实证研究法

在科学研究中,通过定量分析法可以使人们对研究对象的认识进一步精确化,以便更加科学地揭示规律,把握本质,理清关系,预测事物的发展趋势。

凸函数的性质及其应用如下:

性质:定义在某个开区间C内的凸函数f在C内连续,且在除可数个点之外的所有点可微。如果C是闭区间,那么f有可能在C的端点不连续。

凸函数是指一类定义在实线性空间上的函数。

注意:中国大陆数学界某些机构关于函数凹凸性定义和国外的定义是相反的。Convex Function在某些中国大陆的数学书中指凹函数。Concave Function指凸函数。但在中国大陆涉及经济学的很多书中,凹凸性的提法和其他国家的提法是一致的,也就是和数学教材是反的。

举个例子,同济大学高等数学教材对函数的凹凸性定义与本条目相反,本条目的凹凸性是指其上方图是凹集或凸集,而同济大学高等数学教材则是指其下方图是凹集或凸集,两者定义正好相反。

另外,也有些教材会把凸定义为上凸,凹定义为下凸。碰到的时候应该以教材中的那些定义为准。

判定方法可利用定义法、已知结论法以及函数的二阶导数,对于实数集上的凸函数,一般的判别方法是求它的二阶导数,如果其二阶导数在区间上大于等于零,就称为凸函数。如果其二阶导数在区间上恒大于0,就称为严格凸函数。

题报告是指开题者对科研课题的一种文字说明材料。这是一种新的应用文体,这种文字体裁是随着现代科学研究活动计划性的增强和科研选题程序化管理的需要应运而生的。开题报告一般为表格式,它把要报告的每一项内容转换成相应的栏目,这样做,既便于开题报告按目填写,避免遗漏;又便于评审者一目了然,把握要点。开题报告包括综述、关键技术、可行性分析和时间安排等四个方面 。开题报告作为毕业论文答辩委员会对学生答辩资格审查的依据材料之一。由于开题报告是用文字体现的论文总构想,因而篇幅不必过大,但要把计划研究的课题、如何研究、理论适用等主要问题。 开题报告的总述部分应首先提出选题,并简明扼要地说明该选题的目的、目前相关课题研究情况、理论适用、研究方法。开题报告是由选题者把自己所选的课题的概况(即"开题报告内容"),向有关专家、学者、科技人员进行陈述。然后由他们对科研课题进行评议。亦可采用"德尔菲法"评分;再由科研管理部门综合评议的意见,确定是否批准这一选题。开题报告的内容大致如下:课题名称、承担单位、课题负责人、起止年限、报名提纲。报名提纲包括:(1)课题的目的、意义、国内外研究概况和有关文献资料的主要观点与结论;(2)研究对象、研究内容、各项有关指标、主要研究方法(包括是否已进行试验性研究);(3)大致的进度安排;(4)准备工作的情况和目前已具备的条件(包括人员、仪器、设备等);(5)尚需增添的主要设备和仪器(用途、名称、规格、型号、数量、价格等);(6)经费概算;(7)预期研究结果;(8)承担单位和主要协作单位、及人员分工等。同行评议,着重是从选题的依据、意义和技术可行性上做出判断。即从科学技术本身为决策提供必要的依据。 开题报告的格式(通用) 由于开题报告是用文字体现的论文总构想,因而篇幅不必过大,但要把计划研究的课题、如何研究、理论适用等主要问题说清楚,应包含两个部分:总述、提纲。 1 总述 开题报告的总述部分应首先提出选题,并简明扼要地说明该选题的目的、目前相关课题研究情况、理论适用、研究方法、必要的数据等等。 2 提纲 开题报告包含的论文提纲可以是粗线条的,是一个研究构想的基本框架。可采用整句式或整段式提纲形式。在开题阶段,提纲的目的是让人清楚论文的基本框架,没有必要像论文目录那样详细。 3 参考文献 开题报告中应包括相关参考文献的目录 4 要求 开题报告应有封面页,总页数应不少于4页。版面格式应符合以下规定。开 题 报 告 学 生: 一、 选题意义 1、 理论意义 2、 现实意义 二、 论文综述 1、 理论的渊源及演进过程 2、 国外有关研究的综述 3、 国内研究的综述 4、 本人对以上综述的评价 三、 论文提纲 前言、 一、1、2、3、··· ···二、1、2、3、··· ···三、1、2、3、结论 四、论文写作进度安排 毕业论文开题报告提纲一、开题报告封面:论文题目、系别、专业、年级、姓名、导师二、目的意义和国内外研究概况三、论文的理论依据、研究方法、研究内容四、研究条件和可能存在的问题五、预期的结果六、进度安排

毕业论文纸质问卷数据分析

论文的前言也叫引言,是正文前面一段短文。前言是论文的开场白,目的是向读者说明本研究的来龙去脉,吸引读者对本篇论文产生兴趣,对正文起到提纲掣领和引导阅读兴趣的作用。在写前言之前首先应明确几个基本问题:你想通过本文说明什么问题?有哪些新的发现,是否有学术价值?一般读者读了前言以后,可清楚地知道作者为什么选择该题目进行研究。为此,在写前言以前,要尽可能多地了解相关的内容,收集前人和别人已有工作的主要资料,说明本研究设想的合理性。1、 引言应含概的内容引言作为论文的开头,以简短的篇幅介绍论文的写作背景和目的,缘起和提出研究要求的现实情况,以及相关领域内前人所做的工作和研究的概况,说明本研究与前工作的关系,目前的研究热点、存在的问题及作者的工作意义,引出本文的主题给读者以引导。引言也可点明本文的理论依据、实验基础和研究方法,简单阐述其研究内容;三言两语预示本研究的结果、意义和前景,但不必展开讨论。前言在内容上应包括:为什么要进行这项研究?立题的理论或实践依据是什么?拟创新点?理论与(或)实践意义是什么?首先要适当介绍历史背景和理论根据,前人或他人对本题的研究进展和取得的成果及在学术上是否存在不同的学术观点。明确地告诉读者你为什么要进行这项研究,语句要简洁、开门见山。如果研究的项目是别人从未开展过的,这时创新性是显而易见的,要说明研究的创新点。但大部分情况下,研究的项目是前人开展过的,这时一定要说明此研究与被研究的不同之处和本质上的区别,而不是单纯的重复前人的工作。2、 前言的写作方法(1)、开门见山,不绕圈子。避免大篇幅地讲述历史渊源和立题研究过程。(2)、言简意赅,突出重点。不应过多叙述同行熟知的及教科书中的常识性内容,确有必要提及他人的研究成果和基本原理时,只需以参考引文的形式标出即可。在引言中提示本文的工作和观点时,意思应明确,语言应简练。(3)、回顾历史要有重点,内容要紧扣文章标题,围绕标题介绍背景,用几句话概括即可;在提示所用的方法时,不要求写出方法、结果,不要展开讨论;虽可适当引用过去的文献内容,但不要长篇罗列,不能把前言写成该研究的历史发展;不要把前言写成文献小综述,更不要去重复说明那些教科书上已有,或本领域研究人员所共知的常识性内容。(4)、尊重科学,实事求是。在前言中,评价论文的价值要恰如其分、实事求是,用词要科学,对本文的创新性最好不要使用本研究国内首创、首次报道、填补了国内空白、有很高的学术价值、本研究内容国内未见报道或本研究处于国内外领先水平等不适当的自我评语。(5)、前言的内容不应与摘要雷同,注意不用客套话,如才疏学浅、水平有限、恳请指正、抛砖引玉之类的语言;前言最好不分段论述,不要插图、列表,不进行公式的推导与证明。(6)、前言的篇幅一般不要太长,太长可致读者乏味,太短则不易交待清楚,一篇3 000一5 000字的论文,引言字数一般掌握在200一250字为宜。1. 引言书写内容和格式(1)说明论文的主题、范围和目的。(3)预期结果或本研究意义。(4)引言一般不分段,长短视论文内容而定,涉及基础研究的论文引言较长,临床病例分析宜短。国外大多论文引言较长,一般在千字左右,这可能与国外内数期刊严格限制论文字数有关所谓的引言就是为论文的写作立题,目的是引出下文。一篇论文只有命题成立,才有必要继续写下去,否则论文的写作就失去了意义。一般的引言包括这样两层意思:一是立题的背景,说明论文选题在本学科领域的地位、作用以及目前研究的现状,特别是研究中存在的或没有解决的问题。二是针对现有研究的状况,确立本文拟要解决的问题,从而引出下文。一般作者在引言写作中存在这样两方面的问题。

今天的我总结几个毕业论文问卷分析的几点建议,希望能帮到各位看官 PS:此处的问卷分析,仅代表具有量表的问卷分析。 因为成熟量表往往经历了现实的考验,其信度和效度达标的概率比较大。 而自己设计的量表,很容易出现信度和效度检验结果惨不忍睹的情况。 这样我们在处理信度分析,探索性因子分析,甚至验证性因子分析的时候,都能游刃有余。 另外如果题目是2个,因子分析KMO值是一定等于的,而一般我们最低也得吧 为了信度和效度能出一个比较好的结果,在文字描述部分,同维度的各个题目,尽量能给一些心理暗示,或者描述上尽量相近,这样能使得维度内的题目的相关性较好,从而信度和效度也不至于太差 一般达到就可以了,以上更好。最好是把每个维度的信度都求一下,然后总体再求一个。这个一般没什么难度,也很容易通过。如果你的数据信度不行,那就进行下项目分析,将高低分样本中不具有区分度的样本删掉。 只求量表的KMO值和巴特利球形检验值。这可能是效度检验的最低要求了。除非导师认同,最好不要仅用这两个值 大部分的同学都会用到的,也是比较不容易通过的一个分析。 遇到最多的问题莫过于,假设题目的维度归属,跟实际出的结果不一致。 碰到这种情况,一般进行如下处理: ①只有少数题目不匹配 要么直接删掉,要么暂时保留 ②绝大多数题目不匹配 从新设计量表,重新收集数据,重新来过吧 若非特殊情况,不建议使用。因为实际收集的问卷数据要想探索性因子分析+验证性因子分析,各个指标均达到理想值,那几乎是不可能的。 如果你看到某某人的论文中用了这样的检验方法,指标非常漂亮,我可以负责任的告诉你,其大概率是改过数据了。 特殊情况1:模型验证阶段,使用AMOS结构方程,导师要求效度检验阶段使用验证性因子分析。 特殊情况2:模型验证阶段,未使用AMOS结构方程,导师也要求效度检验使用验证性因子分析。(导师傻x) 这里特别提一点,显著性的p值代表的是两者是否相关,皮尔逊或者斯皮尔曼系数代表的是相关性程度。 显著性检验通过了,皮尔逊或者斯皮尔曼系数大小才有意义,绝对值越大相关性越大,正负代表正相关与负相关。 显著性通过了,但是系数偏小,那相关性也是显著的,只是两者是存在显著的弱相关性,而不是系数小就代表不相关。 可能是最简单的模型了,将自变量和因变量放进,直接跑就行了。 ①要不要放控制变量 这个随意。 如果放控制变量,尽量放一些层级类的变量,不要放多分类变量。 层级变量比如学历(初中,高中,大学,硕士) 多分类变量比如职业 层级变量的赋值尽量与其题项对应。 如果放了多分类的变量,尽量删掉,如果想保留最好做成虚拟变量 ②用标准系数还是标准化系数 标准化系数。 ③要不要做VIF共线性检验 若非导师要求,那就不做。 ④r方多大算好 这个指标没有非常严格的标准,而且跟导师的价值观有非常深刻的影响。 对于现实收集的数据而言,个人认为,一般大于就好了。 不过我遇到过大于,导师也认为可以接受的情况。 这是一个仁者见仁的问题 从科学的角度来看,应该与你研究的场景有密切的关系。 但是,中介效应模型要比调节效应模型容易出通过,而且解释起来也不那么绕口。 所以,如果不是想给自己挖坑,那就用中介效应模型吧。 快捷验证中介效应模型的方式(快速确定是否存在中介,非正式使用) 条件1,中介变量,自变量和因变量,相关性都显著 条件2,自变量和中介变量关于因变量的回归模型,中介变量的系数显著 如果满足上述两个条件,中介效应一定显著,如果条件2中的自变量也显著,那么就是部分中介效应,如果不显著就是完全中介效应。 另外极少数情况是用sobel来检验中介效应的 如果不是导师要求amos验证中介效应,尽量用spss回归的方式检验中介效应。 快捷验证条件效应模型的方式(快速确定是否有调节效应,非正式使用) 先将调节因子计算处理(标准化后的自变量和中介变量相乘即可) 自变量,调节变量和调节因子关于因变量的回归模型,调节因子的系数显著。 公众号:alone5400

问卷题目设计会直接影响数据质量,前期做好问卷设计很重要的。

如果希望研究差异关系,可使用卡方检验、方差分析等。如研究影响关系可能用到相关分析、回归分析等。如果想对样本分类,可能会用到聚类分析等方法。spssau的分析结果里支持智能文字分析,再结合你的专业知识扩展讨论部分。

如果没有问卷设计或分析思路,可以参考SPSSAU里的问卷设计思路模板。

问题一:如何用数据分析方法对调查问卷进行分析 看图演示。 其中开始新建了一个叫“汇总”的表,作为模板,然后复制这个表,改名叫1,输入第一张问卷结果,再复制一张表,输入第二张问卷结果。。。直至输入完毕。 然后在汇总表输入求和公式。 B2公式如下: =SUM('汇总 (2):汇总 (4)'!B3) 其中汇总 (2)是第一张问卷结果表名,汇总 (4)是最后一张问卷表名,我这图为了简便就做了3个结果表,然后复制公式到所有单元格。 问题二:如何用Excel来进行调查问卷的整理、统计和分析? 2007版 数据――数据分析 97-2003版 好像是工具里忘了 你用帮助搜索一下, 问题三:如何处理问卷调查数据进行统计分析 你提到了统计分析表格,这个提法是错误的 没有这个说法 你可以先设计研究目的,做出研究假设,然后根据假设做分析,然后制作成表格 我经常帮别人做这类的数据统计分析 问题四:问卷调查,“数据分析”具体指什么 就是对进行问卷调查后,回收回来的问卷数据进行分析。 首先你要明确数据分析的目的,也可以说是这个问卷调查的问题。 然后根据目的 并结合问卷,来构思分析思路,通过怎么样的分析能够实现目的 之后就是用软件对数据进行分析 以实现目的 问题五:录入好的调查问卷,该如何进行数据分析? 在设计时就需要考虑到统计方便,才能便于汇总。用excel就可以。 问题六:如何用Excel分析调查问卷数据 看图演示。 其中开始新建了一个叫“汇总”的表,作为模板,然后复制这个表,改名叫1,输入第一张问卷结果,再复制一张表,输入第二张问卷结果。。。直至输入完毕。 然后在汇总表输入求和公式。 B2公式如下: =SU哗('汇总 (2):汇总 (4)'!B3) 其中汇总 (2)是第一张问卷结果表名,汇总 (4)是最后一张问卷表名,我这图为了简便就做了3个结果表,然后复制公式到所有单元格。 问题七:如何写调查问卷的数据分析 这个你要根据设计的问卷、然后结合你的分析思路,也就是你要通过问卷得出什么结论 这个就是数据分析 问题八:发布了百度问卷调查,怎么看数据 首先登陆我要调查网账号,然后进入会员中心点击会员中心的问卷列表,点击问卷右下角的统计分析按键,即可实时查看数据结果可以在页面上查看各个状态的数据,同时可以直接以Excel和Csv形式导出数据进行分析可以通过筛选功能,筛选出符合设置条件的数据 问题九:问卷调查如何分析和整理 从你的提问,是要了解如何分析和整理调查得来的数据。 通常使用表格“整理数据”,用“条形图”、折线图或“扇形图”等来“描述数据”。 用表格整理数据时,要注意列表,第一列是你要了解的情况“分类”,第二列就是“划记”,第三列是“人数”,第四列是“百分比”。 用划记法记录数据时,通常用“正”字,一笔代表一个数据。 分类的人数统计表做好后,就可以利用“条形图”或折线图或“扇形图”来“描述数据”,也可以用“频率分布直方图”来分析数据。 问题十:问卷调查所能用的统计方法 50分 1. 调查的样本量太小,计算出的结论可靠性不高。 例如看到一些研究生的论文,只发了几十份问卷调查表,就根据统计到的百分比写下十分肯定的结论。其实,是有问题的。 例如:调查“你对××活动喜欢的程度”,调查了45人。调查结果:非常喜欢2人,喜欢5人,一般10人,不太喜欢13人,不喜欢15人。作者统计出:喜欢和非常喜欢的共7人占调查人数45人的,不太喜欢和不喜欢的共28人,占。并根据和来进一步写结论。 但是,他忽略了调查的样本计算出率以后,还应该计算率的标准误和置信区间。如本例喜欢率为。还应该计算率的标准误Sp。 _________ _________________ 本例,喜欢率的标准误 Sp =√P(1-P)/n = √()/45 = % 按样本量n,查t值表上, n-1的和 的值,查得= , =, 根据喜欢率 %、标准误 % 和的值,可计算出: 95% 置信区间:±×=~。(置信区间上下限的差值高达)。 95% 置信区间的含义是,如果用样本的喜欢率来估计总体的喜欢率时,有95%的可能是在~的区间之间。这样高达的区间意味着是不太可信的。 但是,如果扩大样本量到450人,4500人,而统计出的喜欢率也是。由于调查的样本量扩大了,标准误 Sp会缩小,计算出的95% 置信区间也就缩小为~和~。这时用样本率估计总体率时,上下限的差值很接近,才是可信的。 2. 调查数据的统计分析过于简单。 目前看到的调查数据统计分析大都比较简单。只是计算各个问卷指标的百分比,如上面举例的喜欢率等等。 要避免统计分析过于简单,首先,在做调查表设计时,就事先要考虑好调查数据的统计分析方法。例如同样是调查“你对××活动喜欢的程度”,除了要扩大调查样本量外,在调查表中增加调查性别和年龄。这样就可以采用一种较为复杂的方法――交叉分析。交叉分析是分析“年龄”、 “性别”和“对××活动喜欢程度”三个变量之间的关系。假设不分类统计时,喜欢率是。交叉分析后就会发现由于性别的不同,年龄段的不同喜欢率是不同的。 例如:2005年国民体质监测问卷调查中,对“睡眠时间”的统计分析,如果只是简单地计算某市成年男子2473人的问卷,只能统计出:睡眠6小时以下的人为,睡眠6~9小时的,睡眠9小时以上的13%。但是,如果增加年龄因素,分年龄段进行统计就可以看到,各年龄段的百分比是不同的(统计表略)。利用分年龄段的百分比还可以画出折线图(图略)。从图上更可以清楚的显示出:随着年龄增加,睡眠时间逐渐减少的趋势。 上述统计分析方法比较简单。但是,仅靠简单的统计方法来处理问卷调查数据是十分可惜的,因为大量的数据信息还没有充分利用。所以,设计问卷时,就应该注意到,让收集到的调查数据能做多因素统计分析(如:回归分析,因子分析等)。下面是我帮助或指导有关单位做过的统计分析实例: 例1:2005年国民体质监测的调查问卷内容中,包括了各人的文化程度,职业,工作、生活和体育锻炼等方面的许多问题。为了分析这些调查内容和各人的体质有什么关系,找出哪些因素对体质的好......>>

  • 索引序列
  • 质数毕业论文
  • 收敛数列的性质毕业论文
  • 数学思维品质的毕业论文
  • 凸函数的性质研究毕业论文
  • 毕业论文纸质问卷数据分析
  • 返回顶部