首页 > 学术论文知识库 > 伴随矩阵论文答辩

伴随矩阵论文答辩

发布时间:

伴随矩阵论文答辩

对于三阶矩阵

a11 a12 a13

a21 a22 a23

a31 a32 a33

首先求出 各代数余子式

A11 = (-1)^2 * (a22 * a33 - a23 * a32) = a22 * a33 - a23 * a32

A12 = (-1)^3 * (a21 * a33 - a23 * a31) = -a21 * a33 + a23 * a31

A13 = (-1)^4 * (a21 * a32 - a22 * a31) = a21 * a32 - a22 * a31

A21 = (-1)^3 * (a12 * a33 - a13 * a32) = -a12 * a33 + a13 * a32

……

A33 = (-1)^6 * (a11 * a22 - a12 * a21) = a11 * a22 - a12 * a21

所以A的伴随矩阵就是

-2 4 -2

2 -6 3

-1 2 -1

扩展资料:

当矩阵的阶数等于一阶时,伴随矩阵为一阶单位方阵。二阶矩阵的求法口诀:主对角线元素互换,副对角线元素变号。

如果二维矩阵可逆,那么它的逆矩阵和它的伴随矩阵之间只差一个系数,对多维矩阵也存在这个规律。然而,伴随矩阵对不可逆的矩阵也有定义,并且不需要用到除法。

矩阵分解将一个矩阵分解为比较简单的或具有某种特性的若干矩阵的和或乘积,矩阵的分解法一般有三角分解、谱分解、奇异值分解、满秩分解等。

在线性代数中,相似矩阵是指存在相似关系的矩阵。相似关系是两个矩阵之间的一种等价关系。两个n×n矩阵A与B为相似矩阵当且仅当存在一个n×n的可逆矩阵P。

参考资料来源:百度百科--伴随矩阵

参考资料来源:百度百科--矩阵

线性代数(Linear Algebra)是数学的一个分支,它的研究对象是向量,向量空间(或称线性空间),线性变换和有限维的线性方程组。向量空间是现代数学的一个重要课题;因而,线性代数被广泛地应用于抽象代数和泛函分析中;通过解析几何,线性代数得以被具体表示。线性代数的理论已被泛化为算子理论。由于科学研究中的非线性模型通常可以被近似为线性模型,使得线性代数被广泛地应用于自然科学和社会科学中。 线性代数的主要内容是研究代数学中线性关系的经典理论。由于线性关系是变量之间比较简单的一种关系,而线性问题广泛存在于科学技术的各个领域,并且一些非线性问题在一定条件下 , 可以转化或近似转化为线性问题,因此线性代数所介绍的思想方法已成为从事科学研究和工程应用工作的必不可少的工具。尤其在计算机高速发展和日益普及的今天,线性代数作为高等学校工科本科各专业的一门重要的基础理论课,其地位和作用更显得重要。 线性代数主要研究了三种对象:矩阵、方程组和向量.这三种对象的理论是密切相关的,大部分问题在这三种理论中都有等价说法.因此,熟练地从一种理论的叙述转移到另一种去,是学习线性代数时应养成的一种重要习惯和素质.如果说与实际计算结合最多的是矩阵的观点,那么向量的观点则着眼于从整体性和结构性考虑问题,因而可以更深刻、更透彻地揭示线性代数中各种问题的内在联系和本质属性.由此可见,只要掌握矩阵、方程组和向量的内在联系,遇到问题就能左右逢源,举一反三,化难为易. 一、注重对基本概念的理解与把握,正确熟练运用基本方法及基本运算。 线性代数的概念很多,重要的有: 代数余子式,伴随矩阵,逆矩阵,初等变换与初等矩阵,正交变换与正交矩阵,秩(矩阵、向量组、二次型),等价(矩阵、向量组),线性组合与线性表出,线性相关与线性无关,极大线性无关组,基础解系与通解,解的结构与解空间,特征值与特征向量,相似与相似对角化,二次型的标准形与规范形,正定,合同变换与合同矩阵。 我们不仅要准确把握住概念的内涵,也要注意相关概念之间的区别与联系。 线性代数中运算法则多,应整理清楚不要混淆,基本运算与基本方法要过关,重要的有: 行列式(数字型、字母型)的计算,求逆矩阵,求矩阵的秩,求方阵的幂,求向量组的秩与极大线性无关组,线性相关的判定或求参数,求基础解系,求非齐次线性方程组的通解,求特征值与特征向量(定义法,特征多项式基础解系法),判断与求相似对角矩阵,用正交变换化实对称矩阵为对角矩阵(亦即用正交变换化二次型为标准形)。 二、注重知识点的衔接与转换,知识要成网,努力提高综合分析能力。 线性代数从内容上看纵横交错,前后联系紧密,环环相扣,相互渗透,因此解题方法灵活多变,学习时应当常问自己做得对不对?再问做得好不好?只有不断地归纳总结,努力搞清内在联系,使所学知识融会贯通,接口与切入点多了,熟悉了,思路自然就开阔了。 例如:设A是m×n矩阵,B是n×s矩阵,且AB=0,那么用分块矩阵可知B的列向量都是齐次方程组Ax=0的解,再根据基础解系的理论以及矩阵的秩与向量组秩的关系,可以有 r(B)≤n-r(A)即r(A)+r(B)≤n 进而可求矩阵A或B中的一些参数 上述例题说明,线性代数各知识点之间有着千丝万缕的联系,代数题的综合性与灵活性就较大,同学们整理时要注重串联、衔接与转换。 三、注重逻辑性与叙述表述 线性代数对于抽象性与逻辑性有较高的要求,通过证明题可以了解考生对数学主要原理、定理的理解与掌握程度,考查考生的抽象思维能力、逻辑推理能力。大家复习整理时,应当搞清公式、定理成立的条件,不能张冠李戴,同时还应注意语言的叙述表达应准确、简明。

根据A的秩,A*的秩有三种情况:0,1和n。证明如图。

相关如下:

伴随矩阵是矩阵理论及线性代数中的一个基本概念,是许多数学分支研究的重要工具,伴随矩阵的一些新的性质被不断发现与研究。

特殊求法:

1、当矩阵是大于等于二阶时:

主对角元素是将原矩阵该元素所在行列去掉再求行列式,非主对角元素是原矩阵该元素的共轭位置的元素去掉所在行列求行列式为该元素的共轭位置的元素的行和列的序号,序号从1开始。

主对角元素实际上是非主对角元素的特殊情况,因为  =  ,所以  ,一直是正数,没必要考虑主对角元素的符号问题。

2、当矩阵的阶数等于一阶时,伴随矩阵为一阶单位方阵。

3、二阶矩阵的求法口诀:主对角线元素互换,副对角线元素加负号。

根据A的秩,A*的秩有三种情况:0,1和n。证明如图。请采纳,谢谢!

伴随矩阵的毕业论文

线性代数(Linear Algebra)是数学的一个分支,它的研究对象是向量,向量空间(或称线性空间),线性变换和有限维的线性方程组。向量空间是现代数学的一个重要课题;因而,线性代数被广泛地应用于抽象代数和泛函分析中;通过解析几何,线性代数得以被具体表示。线性代数的理论已被泛化为算子理论。由于科学研究中的非线性模型通常可以被近似为线性模型,使得线性代数被广泛地应用于自然科学和社会科学中。 线性代数的主要内容是研究代数学中线性关系的经典理论。由于线性关系是变量之间比较简单的一种关系,而线性问题广泛存在于科学技术的各个领域,并且一些非线性问题在一定条件下 , 可以转化或近似转化为线性问题,因此线性代数所介绍的思想方法已成为从事科学研究和工程应用工作的必不可少的工具。尤其在计算机高速发展和日益普及的今天,线性代数作为高等学校工科本科各专业的一门重要的基础理论课,其地位和作用更显得重要。 线性代数主要研究了三种对象:矩阵、方程组和向量.这三种对象的理论是密切相关的,大部分问题在这三种理论中都有等价说法.因此,熟练地从一种理论的叙述转移到另一种去,是学习线性代数时应养成的一种重要习惯和素质.如果说与实际计算结合最多的是矩阵的观点,那么向量的观点则着眼于从整体性和结构性考虑问题,因而可以更深刻、更透彻地揭示线性代数中各种问题的内在联系和本质属性.由此可见,只要掌握矩阵、方程组和向量的内在联系,遇到问题就能左右逢源,举一反三,化难为易. 一、注重对基本概念的理解与把握,正确熟练运用基本方法及基本运算。 线性代数的概念很多,重要的有: 代数余子式,伴随矩阵,逆矩阵,初等变换与初等矩阵,正交变换与正交矩阵,秩(矩阵、向量组、二次型),等价(矩阵、向量组),线性组合与线性表出,线性相关与线性无关,极大线性无关组,基础解系与通解,解的结构与解空间,特征值与特征向量,相似与相似对角化,二次型的标准形与规范形,正定,合同变换与合同矩阵。 我们不仅要准确把握住概念的内涵,也要注意相关概念之间的区别与联系。 线性代数中运算法则多,应整理清楚不要混淆,基本运算与基本方法要过关,重要的有: 行列式(数字型、字母型)的计算,求逆矩阵,求矩阵的秩,求方阵的幂,求向量组的秩与极大线性无关组,线性相关的判定或求参数,求基础解系,求非齐次线性方程组的通解,求特征值与特征向量(定义法,特征多项式基础解系法),判断与求相似对角矩阵,用正交变换化实对称矩阵为对角矩阵(亦即用正交变换化二次型为标准形)。 二、注重知识点的衔接与转换,知识要成网,努力提高综合分析能力。 线性代数从内容上看纵横交错,前后联系紧密,环环相扣,相互渗透,因此解题方法灵活多变,学习时应当常问自己做得对不对?再问做得好不好?只有不断地归纳总结,努力搞清内在联系,使所学知识融会贯通,接口与切入点多了,熟悉了,思路自然就开阔了。 例如:设A是m×n矩阵,B是n×s矩阵,且AB=0,那么用分块矩阵可知B的列向量都是齐次方程组Ax=0的解,再根据基础解系的理论以及矩阵的秩与向量组秩的关系,可以有 r(B)≤n-r(A)即r(A)+r(B)≤n 进而可求矩阵A或B中的一些参数 上述例题说明,线性代数各知识点之间有着千丝万缕的联系,代数题的综合性与灵活性就较大,同学们整理时要注重串联、衔接与转换。 三、注重逻辑性与叙述表述 线性代数对于抽象性与逻辑性有较高的要求,通过证明题可以了解考生对数学主要原理、定理的理解与掌握程度,考查考生的抽象思维能力、逻辑推理能力。大家复习整理时,应当搞清公式、定理成立的条件,不能张冠李戴,同时还应注意语言的叙述表达应准确、简明。

根据A的秩,A*的秩有三种情况:0,1和n。证明如图。

相关如下:

伴随矩阵是矩阵理论及线性代数中的一个基本概念,是许多数学分支研究的重要工具,伴随矩阵的一些新的性质被不断发现与研究。

特殊求法:

1、当矩阵是大于等于二阶时:

主对角元素是将原矩阵该元素所在行列去掉再求行列式,非主对角元素是原矩阵该元素的共轭位置的元素去掉所在行列求行列式为该元素的共轭位置的元素的行和列的序号,序号从1开始。

主对角元素实际上是非主对角元素的特殊情况,因为  =  ,所以  ,一直是正数,没必要考虑主对角元素的符号问题。

2、当矩阵的阶数等于一阶时,伴随矩阵为一阶单位方阵。

3、二阶矩阵的求法口诀:主对角线元素互换,副对角线元素加负号。

我只能给你提供一些基本知识:如果0是矩阵A的一个特征值,则0也是伴随矩阵A*的一个特征值;如果k是矩阵A的一个非零特征值,则存在非零向量a: Aa=ka则 A*Aa=kA*a |A|a=kA*a A*a=(|A|/k)a可见 |A|/k 是A*的一个特征值。

随机环境中经济增长模型研究广义生产函数假设下的经济增长模型分析考虑市场预期的供求关系模型基于Matlab的离散事件模拟用风险预算进行资产配置有向图上的PAR贯序模拟系统单圈图的一般Randic指标的极值问题模糊数学在公平评奖问题中的应用模糊矩阵在环境评估中的初步应用模糊评判在电脑中的初步应用数学家的数学思想Riemann积分定义的网收敛表述微积分思想在不等式证明中的应用用有限的尺度标量无限的过程-略论极限ε语言在微积分及现代数学中的位置及意义微积分思想在几何问题中的应用齐次平衡法求KdV-Burgers方程的Backlund变换Painleve分析法判定MKdV-Burgers方程的可积性直接法求KdV-Burgers方程的对称及精确解行波求解KdV-Burgers方程因子有向图的矩阵刻划简单图上的lit-only sigma-game半正则图及其线图的特征多项式与谱分数有向图的代数表示WWW网络的拓扑分析作者合作网络等的拓扑分析古诺模型价格歧视用数学软件做计算微分方程的计算器用数学软件做矩阵计算的计算器弹簧-质点系统的反问题用线性代数理论做隐含语义搜索对矩阵若当标准型理论中变换阵求法的探讨对矩阵分解理论的探讨对矩阵不等式理论的探讨(1)对矩阵不等式理论的探讨(2)函数连续性概念及其在现代数学理论中的延伸从有限维空间到无限维空间Banach空间中脉冲泛函微分方程解的存在性高阶脉冲微分方程的振动性具有积分边界条件的分数阶微分方程解的存在唯一性分数阶微分方程的正则摄动一个形态形成模型的摄动解一个免疫系统常微分方程模型的渐近解前列腺肿瘤连续性激素抑制治疗的数学模型前列腺肿瘤间歇性激素抑制治疗的数学模型病毒动力学数学模型肿瘤浸润数学模型耗散热方程初边值问题解的正则性耗散波方程初边值问题解的正则性耗散Schrodinger方程初边值问题解的正则性非线性发展方程解得稳定性消费需求的鲁棒调节生产函数的计量分析企业的成本形态分析的研究分数阶Logistic方程的数值计算分数阶捕食与被捕食模型的数值计算AIDS传播模型的全局性分析HIV感染模型的全局性分析风险度量方法的比较及其应用具有区间值损益的未定权益定价分析模糊规划及其在金融分析中的应用长依赖型金融市场股票价格与长相依性分数布朗运动下的外汇期权定价不确定性与资产定价加油站点的分布与出租车行业的关系

矩阵论文答辩

时下最时髦的就是:创新点与别人不一样的地方

最有可能问的是:1. 分块矩阵的初等变换 与 矩阵初等变换 的异同.2. 分块矩阵初等变换需注意什么. 3. 利用分块矩阵初等变换, 你得到了什么新的结论, 或对已有结论的证明有什么大的改进满意请采纳^_^

一、答辩陈述:

在答辩的陈述中,我从四个方面介绍了我的论文:

1、文章中需要用到的有关二次型、正定二次型等概念;

2、正定二次型的性质及判定方法;

3、半正定二次型的性质及判定方法;

二、答辩分析:

第一部分主要介绍了论文中需要用到的有关二次型、正定二次型等概念。

第二部分介绍了正定二次型的4中判定方法。

第三部分是文章的重点部分,我通过查找资料以及与正定二次型性质判定方法作对比,从而总结了4中主要的判定方法。

最后一部分根据正定二次型的性质判定方法归纳了其9方面的应用。

三、答辩中提出的问题及回答要点:

1、正定二次型的矩阵的行列式值有什么特点?

答:正定二次型的矩阵为正定矩阵,它的行列式值大于零。

四、判断方法:

主要介绍了4种判定方法,分别为:

1、二次型半正定的充分必要条件是它的标准型的所有系数都是非负的;

2、二次型半正定的充分必要条件是它的正惯性指数与秩相等;

3、二次型半正定的充分必要条件是它的矩阵的特征值均为非负数;

4、二次型半正定的充分必要条件是它的矩阵的各阶主子式均为非负数。其次,还可以用半正定二次型的定义进行判定。

五、论文虽未论及,较密切相关的问题:

1、本文主要介绍了正定、半正定二次型的性质及判定方法,然而在实际应用中,更多的会用到正定矩阵相关概念。

2、如(正定二次型在线性最小二乘法问题的解中的应用),对于此部分知识文中没有论及。因此,需要进一步归纳总结正定矩阵的性质,并将其与本文内容相结合,使本部分内容系统化。

逆矩阵论文答辩

设A是数域上的一个n阶矩阵,若在相同数域上存在另一个n阶矩阵B,使得: AB=BA=E ,则我们称B是A的逆矩阵,而A则被称为可逆矩阵。注:E为单位矩阵。逆矩阵,或可逆是线性代数中最重要的内容。

1、下列命题等价:

1)A为n阶可逆矩阵

2)A是非奇异的。

3)A是满秩的。

4)A是行满秩的。

5)A是列满秩的。

6)方程组AX=0仅有零解

7)方程组AX=B仅有唯一解。

8)A的行向量组线性无关。

9)A的列向量组线性无关。

10)A的任何特征值均非零。

2、可逆的重要性体现在:

AB=C 表示B线性变换到 C, B与C是等价矩阵。同秩,同可逆或不可逆。是以B的列向量与C的列向量为基构成的向量空间为相同的空间。

扩展资料

逆矩阵性质定理

可逆矩阵一定是方阵。

如果矩阵A是可逆的,其逆矩阵是唯一的。

A的逆矩阵的逆矩阵还是A。记作(A-1)-1=A。

可逆矩阵A的转置矩阵AT也可逆,并且(AT)-1=(A-1)T (转置的逆等于逆的转置)

若矩阵A可逆,则矩阵A满足消去律。即AB=O(或BA=O),则B=O,AB=AC(或BA=CA),则B=C。

两个可逆矩阵的乘积依然可逆。

矩阵可逆当且仅当它是满秩矩阵。

Decision method of matrix invertibility and method to find the inverse of matrixDigest: In advanced algebra, matrix theory is one of the main aspects of linear algebra, as well as an important tool to help solving practical problems. In most of the matrix theorems and applications, the inverse of matrix plays a significant part. This paper shows different ways to decide whether a matrix is invertible, methods of finding the inverse of both general matrix and one particular set of matrices, and also how to find the inverse of matrix by Excel or : inverse of matrix, adjoint matrix, elementary transformation

如果A+B可逆,那么设它的逆为C矩阵,E为单位矩阵,求解

(A+B)C=E

C(A+B)=E

即可

详细介绍:

(A+B)B^(-1)[A^(-1)+B^(-1)]^(-1)A^(-1)

=[AB^(-1)+E]{A[A^(-1)+B^(-1)]}^(-1)

=[E+AB^(-1)][E+AB^(-1)]]^(-1)

=E

B^(-1)[A^(-1)+B^(-1)]^(-1)A^(-1)(A+B)

={[A^(-1)+B^(-1)]B}^(-1)[E+A^(-1)B]

=[A^(-1)B+E]^(-1)[A^(-1)B+E]

=E

所以(A+B)^(-1)=B^(-1)[A^(-1)+B^(-1)]^(-1)A^(-1)

扩展资料:

矩阵的加法满足下列运算律(A,B,C都是同型矩阵):

应该注意的是只有同型矩阵之间才可以进行加法

矩阵的数乘满足以下运算律:

矩阵的加减法和矩阵的数乘合称矩阵的线性运算。

n×n的方块矩阵A的一个特征值和对应特征向量是满足  的标量以及非零向量  。其中v为特征向量,  为特征值。

A的所有特征值的全体,叫做A的谱 ,记为  。矩阵的特征值和特征向量可以揭示线性变换的深层特性。

在线性代数中,三角矩阵是方形矩阵的一种,因其非零系数的排列呈三角形状而得名。三角矩阵分上三角矩阵和下三角矩阵两种。若  ,则  的矩阵称为上三角矩阵,若  ,则  的矩阵称为下三角矩阵 。三角矩阵可以看做是一般方阵的一种简化情形。

逆矩阵在线性代数中可是重点问题,Ax=B 通过求逆,得到X矩阵

分块矩阵论文答辩

还有三个月就是毕业生们答辩的时间了,但是很多毕业生们目前连选题都还没有选好。时间紧迫,我立马为大家精心整理了一些大学数学系本科毕业论文题目,供毕业生们参考! 1、导数在不等式证明中的应用 2、导数在不等式证明中的应用 3、导数在不等式证明中的应用 4、等价无穷小在求函数极限中的应用及推广 5、迪克斯特拉(Dijkstra)算法及其改进 6、第二积分中值定理“中间点”的性态 7、对均值不等式的探讨 8、对数学教学中开放题的探讨 9、对数学教学中开放题使用的几点思考 10、对现行较普遍的彩票发行方案的讨论 11、对一定理证明过程的感想 12、对一类递推数列收敛性的讨论 13、多扇图和多轮图的生成树计数 14、多维背包问题的扰动修复 15、多项式不可约的判别方法及应用 16、多元函数的极值 17、多元函数的极值及其应用 18、多元函数的极值及其应用 19、多元函数的极值问题 20、多元函数极值问题 21、二次曲线方程的化简 22、二元函数的单调性及其应用 23、二元函数的极值存在的判别方法 24、二元函数极限不存在性之研究 25、反对称矩阵与正交矩阵、对角形矩阵的关系 26、反循环矩阵和分块对称反循环矩阵 27、范德蒙行列式的一些应用 28、方阵A的伴随矩阵 29、放缩法及其应用 30、分块矩阵的应用 31、分块矩阵行列式计算的若干方法 32、辅助函数在数学分析中的应用 33、复合函数的可测性 34、概率方法在其他数学问题中的应用 35、概率论的发展简介及其在生活中的若干应用 36、概率论在彩票中的应用 37、概率统计在彩票中的应用 38、概率统计在实际生活中的应用 39、概率在点名机制中的应用 40、高阶等差数列的通项,前n项和公式的探讨及应用 41、给定点集最小覆盖快速近似算法的进一步研究及其应用 42、关联矩阵的一些性质及其应用 43、关于Gauss整数环及其推广 44、关于g-循环矩阵的逆矩阵 45、关于二重极限的若干计算方法 46、关于反函数问题的讨论 47、关于非线性方程问题的求解 48、关于函数一致连续性的几点注记 49、关于矩阵的秩的讨论 _ 50、关于两个特殊不等式的推广及应用 51、关于幂指函数的极限求法 52、关于扫雪问题的数学模型 53、关于实数完备性及其应用 54、关于数列通项公式问题探讨 55、关于椭圆性质及其应用地探究、推广 56、关于线性方程组的迭代法求解 57、关于一类非开非闭的商映射的构造 58、关于一类生态数学模型的几点思考 59、关于圆锥曲线中若干定值问题的求解初探 60、关于置信区间与假设检验的研究 61、关于周期函数的探讨 62、函数的一致连续性及其应用 63、函数定义的发展 64、函数级数在复分析中与在实分析中的关系 65、函数极值的求法 66、函数幂级数的展开和应用 67、函数项级数的收敛判别法的推广和应用 68、函数项级数一致收敛的判别 69、函数最值问题解法的探讨 70、蝴蝶定理的推广及应用 71、化归中的矛盾分析法研究 72、环上矩阵广义逆的若干性质 73、积分中值定理的再讨论 74、积分中值定理正反问题‘中间点’的渐近性 75、基于高中新教材的概率学习 76、基于最优生成树的'海底油气集输管网策略分析 77、级数求和的常用方法与几个特殊级数和 78、级数求和问题的几个转化 79、级数在求极限中的应用 80、极限的求法与技巧 81、极值的分析和运用 82、极值思想在图论中的应用 83、几个广义正定矩阵的内在联系及其区别 84、几个特殊不等式的巧妙证法及其推广应用 85、几个重要不等式的证明及应用 86、几个重要不等式在数学竞赛中的应用 87、几种特殊矩阵的逆矩阵求法

时下最时髦的就是:创新点与别人不一样的地方

最有可能问的是:1. 分块矩阵的初等变换 与 矩阵初等变换 的异同.2. 分块矩阵初等变换需注意什么. 3. 利用分块矩阵初等变换, 你得到了什么新的结论, 或对已有结论的证明有什么大的改进满意请采纳^_^

  • 索引序列
  • 伴随矩阵论文答辩
  • 伴随矩阵的毕业论文
  • 矩阵论文答辩
  • 逆矩阵论文答辩
  • 分块矩阵论文答辩
  • 返回顶部