• 回答数

    5

  • 浏览数

    247

aibeibei130611
首页 > 学术论文 > 逆矩阵论文答辩

5个回答 默认排序
  • 默认排序
  • 按时间排序

蓝梦蝶朵丽卡

已采纳

设A是数域上的一个n阶矩阵,若在相同数域上存在另一个n阶矩阵B,使得: AB=BA=E ,则我们称B是A的逆矩阵,而A则被称为可逆矩阵。注:E为单位矩阵。逆矩阵,或可逆是线性代数中最重要的内容。

1、下列命题等价:

1)A为n阶可逆矩阵

2)A是非奇异的。

3)A是满秩的。

4)A是行满秩的。

5)A是列满秩的。

6)方程组AX=0仅有零解

7)方程组AX=B仅有唯一解。

8)A的行向量组线性无关。

9)A的列向量组线性无关。

10)A的任何特征值均非零。

2、可逆的重要性体现在:

AB=C 表示B线性变换到 C, B与C是等价矩阵。同秩,同可逆或不可逆。是以B的列向量与C的列向量为基构成的向量空间为相同的空间。

扩展资料

逆矩阵性质定理

可逆矩阵一定是方阵。

如果矩阵A是可逆的,其逆矩阵是唯一的。

A的逆矩阵的逆矩阵还是A。记作(A-1)-1=A。

可逆矩阵A的转置矩阵AT也可逆,并且(AT)-1=(A-1)T (转置的逆等于逆的转置)

若矩阵A可逆,则矩阵A满足消去律。即AB=O(或BA=O),则B=O,AB=AC(或BA=CA),则B=C。

两个可逆矩阵的乘积依然可逆。

矩阵可逆当且仅当它是满秩矩阵。

301 评论

独酌邀明月

Decision method of matrix invertibility and method to find the inverse of matrixDigest: In advanced algebra, matrix theory is one of the main aspects of linear algebra, as well as an important tool to help solving practical problems. In most of the matrix theorems and applications, the inverse of matrix plays a significant part. This paper shows different ways to decide whether a matrix is invertible, methods of finding the inverse of both general matrix and one particular set of matrices, and also how to find the inverse of matrix by Excel or : inverse of matrix, adjoint matrix, elementary transformation

95 评论

那谁家小二

如果A+B可逆,那么设它的逆为C矩阵,E为单位矩阵,求解

(A+B)C=E

C(A+B)=E

即可

详细介绍:

(A+B)B^(-1)[A^(-1)+B^(-1)]^(-1)A^(-1)

=[AB^(-1)+E]{A[A^(-1)+B^(-1)]}^(-1)

=[E+AB^(-1)][E+AB^(-1)]]^(-1)

=E

B^(-1)[A^(-1)+B^(-1)]^(-1)A^(-1)(A+B)

={[A^(-1)+B^(-1)]B}^(-1)[E+A^(-1)B]

=[A^(-1)B+E]^(-1)[A^(-1)B+E]

=E

所以(A+B)^(-1)=B^(-1)[A^(-1)+B^(-1)]^(-1)A^(-1)

扩展资料:

矩阵的加法满足下列运算律(A,B,C都是同型矩阵):

应该注意的是只有同型矩阵之间才可以进行加法

矩阵的数乘满足以下运算律:

矩阵的加减法和矩阵的数乘合称矩阵的线性运算。

n×n的方块矩阵A的一个特征值和对应特征向量是满足  的标量以及非零向量  。其中v为特征向量,  为特征值。

A的所有特征值的全体,叫做A的谱 ,记为  。矩阵的特征值和特征向量可以揭示线性变换的深层特性。

在线性代数中,三角矩阵是方形矩阵的一种,因其非零系数的排列呈三角形状而得名。三角矩阵分上三角矩阵和下三角矩阵两种。若  ,则  的矩阵称为上三角矩阵,若  ,则  的矩阵称为下三角矩阵 。三角矩阵可以看做是一般方阵的一种简化情形。

143 评论

独一木头

逆矩阵在线性代数中可是重点问题,Ax=B 通过求逆,得到X矩阵

340 评论

钮咕噜嘟嘟

1 矩阵A可逆的充要条件是A的行列式不等于 可逆矩阵一定是方阵.3 如果矩阵A是可逆的,A的逆矩阵是唯一的.4 可逆矩阵也被称为非奇异矩阵、满秩矩阵.5 两个可逆矩阵的乘积依然可逆.6 可逆矩阵的转置矩阵也可逆.7 矩阵可逆当且仅当它是满秩矩阵.

115 评论

相关问答

  • 逆矩阵论文答辩

    设A是数域上的一个n阶矩阵,若在相同数域上存在另一个n阶矩阵B,使得: AB=BA=E ,则我们称B是A的逆矩阵,而A则被称为可逆矩阵。注:E为单位矩阵。逆矩阵

    aibeibei130611 5人参与回答 2023-12-10
  • 广义逆矩阵论文参考文献

    第1章 矩阵与线性方程组1.1 矩阵的基本运算1.2 向量空间、内积空间与线性映射1.3 随机向量1.4 内积与范数1.5 基与Gram-Shmidt 正交化1

    疯荷日狸 1人参与回答 2023-12-07
  • 数学矩阵求逆矩阵的毕业论文

    一般使用初等行变换或者伴随矩阵方法,来求逆矩阵。

    蝎子豆丁 2人参与回答 2023-12-12
  • 矩阵的逆论文答辩

    逆矩阵在线性代数中可是重点问题,Ax=B 通过求逆,得到X矩阵

    可爱小伶伶 5人参与回答 2023-12-07
  • 伴随矩阵论文答辩

    对于三阶矩阵 a11 a12 a13 a21 a22 a23 a31 a32 a33 首先求出 各代数余子式 A11 = (-1)^2 * (a22 * a33

    yyh心随我动 4人参与回答 2023-12-11