首页 > 学术论文知识库 > 耐酸和耐胆汁双歧杆菌的研究论文

耐酸和耐胆汁双歧杆菌的研究论文

发布时间:

耐酸和耐胆汁双歧杆菌的研究论文

粉哥导读:宝宝出生以后,妈妈们大多有两怕:一怕免疫差,二怕消化差。而消化系统被认为是身体最大的免疫器官,当消化比较差时,营养物质不能被很好地吸收利用,自然影响宝宝免疫系统的发育。因此,为婴幼儿提供营养又好消化的食物尤为重要作者:想想妈(高级营养师)投稿:当然,宝宝们最好的食物是母乳,母乳几乎能提供宝宝生长需求的所有营养物质,吃母乳的宝宝消化好,又能获得更丰富的免疫物质。那么,当母乳不足或不方便母乳喂养时,相信你很想给宝宝选择一款好消化的奶粉。怎么才能找到好消化的奶粉呢?首先你应该认识一些好消化或能提高消化吸收的营养物质。今天给大家介绍的这些营养成分不一定会同时出现在一款奶粉里,但是认识他们后,能让你在选择奶粉时有的放矢,方便你找到想要的配方,我们来看看有哪些。一、蛋白质类蛋白质是宝宝细胞组织、骨骼、各个脏器生长发育的重要物质,是生命的物质基础。在选择奶粉时首先应该注重蛋白质的消化利用率。1、 乳清蛋白乳清蛋白是营养价值最高的一类优质蛋白,主要成分为α-乳白蛋白、β-乳球蛋白、免疫球蛋白和乳铁蛋白,素有“蛋白之王”的美誉,其富含人体所需的8种必需氨基酸,配比合理,消化吸收率高,非常符合人体的需求。在母乳蛋白中有70%左右为乳清蛋白,吃母乳的宝宝大便软、量少、不易腹泻和便秘。(牛乳中的乳清蛋白约20%,羊乳的与母乳的较接近)为了让宝宝更好地消化利用配方奶粉中的蛋白质,降低消化负担,1段配方奶粉中的乳清蛋白也普遍调整为60%左右,也就是乳清蛋白:酪蛋白=60:40,一般在2、3段会增加酪蛋白的比例来增加宝宝的饱腹感,这也是为什么有的宝宝初次吃2段,要是转奶不当就易腹泻的原因之一。不过也有奶粉在2、3段中一直维持比较高的乳清蛋白比例。2、乳铁蛋白乳铁蛋白的主要作用是提高宝宝免疫力,是宝宝出生后获得的第一道健康屏障的免疫物质之一。提高消化吸收的作用主要表现在可抑制有害菌,助于肠道益生菌繁殖,及促进铁吸收等方面。3、酪蛋白磷酸肽(CPP)酪蛋白磷酸肽来源于牛乳酪蛋白,是一种肽链,严格说不属于蛋白质。能够与钙、铁、锌发生螯合反应,避免与磷酸、草酸、植酸等物质结合而沉淀,有效促进钙、铁、锌等二价矿物质的吸收。4、水解蛋白水解蛋白是指利用酶解法,将乳清蛋白和酪蛋白水解为小分子肽链片段或氨基酸。根据不同水解程度,分为适度水解蛋白、深度水解蛋白、氨基酸等。水解后降低了蛋白质的致敏性,蛋白分子变得更小,让宝宝更好消化吸收。除了特殊配方奶粉,很多普通奶粉中可能额外添加一定比例的水解蛋白来降低致敏/大分子蛋白的量。二、脂类脂肪是人体重要的能量物质之一,维持着宝宝大脑、心脑血管组织、视力等的发育与正常功能。脂肪消化吸收不好,不仅影响发育,也可能导致腹泻、便秘等消化异常现象。在配方奶粉中,添加以下脂肪比较好消化。5、植物油由于在牛奶中,宝宝需求的不饱和脂肪酸比较少,人们也对脂肪的结构进行调整,将动物奶中的部分不饱和脂肪酸脱去,选用含有较多不饱和脂肪酸的植物油来调整配方奶粉中脂肪比例,在满足宝宝需求的同时也提高了对脂肪的消化吸收率。常用的植物油有核桃油、花生油、菜籽油、大豆油、葵花籽油、椰子油、玉米油等,有的含有棕榈油,但是棕榈油容易与钙结合而造化,易引起便秘,越来越多的奶粉用OPO结构脂来替代。6、 OPO结构脂这是一种结构上非常接近母乳脂肪的不饱和脂肪酸,学名为1,3 -二油酸 2-棕榈酸甘油三酯。研究显示,母乳中的脂肪有98%是甘油三酯,甘油三酸酯中70%棕榈酸连在2位上,不饱和脂肪酸主要链接在1、3位上,即OPO结构脂。为了让配方奶粉也能含有较多的OPO结构脂,人们用酶法脂交换技术将植物棕榈油的上的不饱和脂肪位置进行置换,提高2位棕榈酸的比例高达40%以上。这种模拟母乳脂肪结构的脂肪酸,能够大大提高宝宝对脂肪的消化吸收能力,软化大便,减少钙离子在肠道中的皂化而引起的便秘,同时提高钙的利用率,支持宝宝骨骼的发育。此外,OPO结构脂,还能帮助肠道益生菌的增殖,助于平衡肠道微生态平衡,,维持肠道健康状态。三、益生元益生元是一类不被人体吸收利用而可供人体中尤其是肠道中的益生菌可选择性利用的碳水化合物,一般为可溶性膳食纤维,是益生菌赖以生存和增殖的营养来源。在奶粉中添加有利维持肠道正常菌群的平衡,可抑制有害物质或微生物的产生,利于预防或减少腹泻和便秘发生,还可促进钙吸收。目前,可用于配方奶粉的益生元有低聚半乳糖、低聚果糖、多聚果糖、棉子糖、聚葡萄糖等。7、低聚半乳糖(GOS)低聚半乳糖在人乳中含量较多,宝宝出生后肠道中的双歧杆菌菌群的建立很大程度上依赖母乳中的GOS 成分。具有较强的耐酸性、耐热性,不会在加工时因高温杀菌或胃酸分解而失去应有的特性,其稳定性优于低聚果糖。低聚半乳糖是唯一能被肠道中常见的8种益生菌利用的益生元,又是母乳中的重要成分,所以在配方奶粉中最为常用,有时也与低聚果糖联合使用。8、低聚果糖(FOS)低聚果糖多以菊芋粉为原料制得,具有双岐杆菌、乳酸杆菌等有选择性增殖作用。可减少和抑制肠内腐败物质的产生,抑制有害细菌的生长,调节肠道内平衡;能促进微量元素铁、钙的吸收与利用。在婴幼儿配方奶粉中常与低聚半乳糖联合使用。9、棉子糖棉子糖主要存在植物中,比如甜菜、土豆、卷心菜、大豆、葡萄、香蕉等。同样具有双歧杆菌、乳酸菌的增殖作用。2012年时,我国允许棉子糖运用于食品、保健品、化妆品中。目前有少部分婴幼儿配方奶粉添加了棉子糖。10、多聚果糖多聚果糖提取于菊苣根,是一种很好的“益生元”,具有调节肠道菌群、增殖双歧杆菌、促进钙吸收的作用。11、聚葡萄糖以葡萄糖、山梨醇和柠檬酸为原料,加工成的一种D-葡萄糖多聚体。在食品添加剂中可作为增稠剂,填充剂,配方剂。具有保持肠胃通畅,减少便秘的功能,有利于肠道双歧杆菌、乳杆菌的繁殖,并抑制有害菌如梭状芽孢杆菌和拟杆菌的繁繁殖。目前在奶粉中运用比较少,不过在益生菌产品和其他保健食品中常见。四、益生菌婴儿配方乳粉中可以添加动物双歧杆菌、乳双歧杆菌、鼠李糖乳杆菌、罗伊氏乳杆菌、发酵乳杆菌、短双歧杆菌等6种益生菌。这些益生菌都具有较强的耐酸和耐热性,能够更好得达到肠道并定植。配方奶粉中的最低活菌量应该为106CFU/100g。这里主要介绍国家卫计委下发的《可用于婴幼儿食品的菌种名单》(2016年第6号文件公告)的几种益生菌种。12、动物双歧杆菌Bb-12是人和动物肠道中最重要的生理菌,能够迅速在肠道中定殖,在婴幼儿肠道中含量很高。能够为人体合成维生素B1、B2、B6和K,丙氨酸、天冬氨酸和苏氨酸的必须氨基酸,供人体吸收利用。可以将食物进行降解,提高食物的消化吸收率。动物双歧杆菌可以将奶粉中的乳糖分解为葡萄糖和半乳糖,减缓宝宝乳糖不耐受症。Bb-12为动物双歧杆菌乳双歧亚种,在食品中具有很高的稳定性,其耐酸和耐胆汁功能出色,有很强的肠道附着能力,也是最早允许运用在婴幼儿配方奶粉中的益生菌。13、乳双歧杆菌HN019/Bi-o7是动物双歧杆菌的亚种,在改善宝宝消化方面基本与动物双歧杆菌相似。乳双歧杆菌能有效缩短肠道转运时间,在改善宝宝消化能力方面优于普通的益生菌。此外,这类益生菌可以通过增加中性粒细胞的吞噬能力来提高细胞免疫活性,在增强宝宝免疫力方面非常不错。14、鼠李糖乳杆菌LGG/HN001鼠李糖乳杆菌属于乳杆菌属,是从人健康的肠道分离而得的一种益生菌。具有较强的耐胃酸能力,肠道附着率高,定植能力强,在肠道中起到调节肠道菌群、预防和缓解腹泻及便秘、提高免疫力的作用。由于鼠李糖乳杆菌具有细胞分裂的作用,可促进双歧杆菌和嗜酸乳杆菌生长,还可缓解过敏体质。但是鼠李糖乳杆菌在不能利用乳糖,对缓解乳糖不耐受症效果一般。15、罗伊氏乳杆菌DSM17938是乳杆菌属,广泛存在于脊椎动物和哺乳动物的肠道中,具有改善过敏体质、预防反复过敏、促进婴儿胃排空减少吐奶、调节胃肠道功能的作用。16、发酵乳杆菌CECT5716为乳杆菌属,是从人乳汁中筛选的特异性菌株,可同时提高母体和宝宝的免疫力和肠道健康。添加在奶粉中能降低婴幼儿胃肠道及呼吸道感染。17、短双歧杆菌M-16V属于双歧杆菌属,分离于健康的婴儿肠道,是婴儿肠道中主要的有益菌之一,除了能提高宝宝消化吸收能力外,短双歧杆菌M-16V对预防早产儿坏死性小肠结肠炎有效,对过敏性哮喘、过敏性皮炎及湿疹有一定缓解作用。虽然糖类在奶粉中的占比大约在55%-60%之间,但是较好消化,文中的益生菌等也能帮助宝宝对糖类的吸收,所以不在本次讨论话题中。如果想找一款消化好的奶粉,可以对应以上营养成分选择。需要注意的是蛋白质和脂肪是奶粉占比较重的成分,一定要先关注这两部分,比如乳清蛋白的比例怎样、脂肪结构如何,然后再是其他成分。

Jeffrey Christensen博士,研发专家,发现,HHN-创新胃酸和胆汁在人体抵御摄入微生物的过程中发挥着重要作用,能够杀灭和控制胃肠道接触的许多病原体。然而,这种防卫机制同样也会破坏可能有益的微生物。益生菌的功效取决于肠道生存能力和生理活动,因此益生菌在上胃肠道的胃酸和胆汁中的存活非常关键。多项研究已经调查了BB-12对胃酸和胆汁的耐受性。一项体外研究评估了五种双歧杆菌菌株对酸和胆汁的耐受性,以及它们在各种碳水化合物上的生长情况。研究对pH2、pH3和pH4以及1%牛胆汁中的耐受性进行了检测。BB-12在所有的pH值下都表现出了非常好的存活率,而且存活能力在各种菌株中是最强的。BB-12在1%的胆汁中的生长情况不佳,但研究证明其存活率很高(Vernazza等,2006) 。在一项体外研究中,对17种菌株的耐酸性进行了比较,将其暴露在pH2-5的条件下。研究证明,BB-12的存活率很高。研究表明,这一特点部分是由于低pH值引导的H+-ATP酶活性,H+-ATP酶是一种复合酶,参与保持细菌细胞内的pH值动态平衡。(Matsumoto等,2004) 。有研究检测了乳酸发酵菌的24个菌株和益生菌的24个菌株对胃液和胆汁盐的耐受性。BB-12在暴露在pH3和pH2三个小时后表现出了较高的pH耐受性。BB-12的胆汁耐受性中等,与对照样本相比,在浓度1%的胆汁中生长率为24%。至于在胆汁盐中的早期解离和生长,表明BB-12在牛磺酸脱氧胆酸钠和甘氨脱氧胆酸钠的同时增长和解离,而在牛磺胆酸钠和甘氨胆酸钠的情况下,BB-12会有所生长,但不会出现任何解离(Vinderola 2003) 。一项60例人体肠道分离双歧杆菌的比较试验,评估在胃酸和胆汁中存活情况,证明BB-12在两种条件下的存活情况都相当于或优于其他所检测的菌株(科汉森的文件数据)。在用于模拟胃酸和上部肠道胆汁环境的人造消化道模型系统中,正常胶囊剂量下60-80%的BB-12保持存活(Chr. Hansen文件数据)。综上所述,与其他双歧杆菌相比BB-12表现出了较高的胃酸和胆汁耐受性。上述数据表明大部分BB-12菌体经人体食用后,可以存活在胃酸和胆汁中。这些特性增强了BB-12为宿主带来健康益处的可能性。 Birgitte Stuer-Lauridsen博士,资深研究科学家,鉴别,CED-创新活性益生菌经过胃肠道的通道会遭遇各种不同挑战。在严酷的酸性胃部环境后,小肠的胆汁盐将构成下一个挑战。BB-12含有针对胆汁盐水解酶的基因编码,胆汁盐水解酶是应对小肠中高浓度胆汁盐的一种重要的酶。这种酶存在于BB-12中,并随时保持活性。这一事实同时记录在了微阵列分析以及采用2D凝胶电泳的蛋白质研究(Garrigues等,2005) (图2)中。有这样的酶随时发挥作用是这类细菌细胞的优势,因为它能对高浓度胆汁盐形成快速响应,并从而促成细菌从小肠到大肠的安全通过。这些数据表明BB-12的配备足以耐受胃肠道中的这一关键通道。 Jeffrey Christensen博士,研发专家,发现,HHN-创新已经观察到的许多益生性健康功效,研究认为益生菌在肠粘膜的粘附性对于许多这些功效是非常重要。粘附性被认为是益生菌定植、抑制病菌、免疫作用以及增强屏障功能的前提条件。因此,粘附性是益生性微生物的主要筛选标准之一。在一项研究中,体外测定了益生菌、共生体以及潜在病菌的粘附性。所采用的粘附性模型是聚碳酸酯孔板,含有或不含黏液素,而且Caco-2以及/或者HT29-MTX细胞培养物的配置不同。益生菌株对于未处理孔以及黏液素处理孔的粘附性很高,BB-12在两种情况下都表现出了最高的粘附性水平。虽然含量较低,BB-12还粘附在Caco-2培养基、HT29-MTX细胞以及Caco-2:HT29-MTX的合成培养基上(Laparra和Sanz 2009) 。在另一项体外研究中,用BB-12与其他菌株对包括人类在内的不同物种分离出来的粪便黏液的粘附特性进行检测。BB-12很好地粘附在所有被检测的宿主上,其中30%在人体内(Rinkinen等,2003) 。有研究对双歧杆菌24种菌株对固定的人和牛肠道黏液糖蛋白的粘附力进行了检测。在所测试的菌株中,BB-12和另一种双歧杆菌菌株的粘附性最强。BB-12对人体黏液的粘附率为(He等,2001 )。有研究对五种益生菌及其结合物在轮状病毒腹泻期间以及病后在婴儿肠道黏液中的粘附性,以及健康儿童体内这些益生菌及其结合物的粘附性进行了体外测定。黏液的制备来自20名婴儿在轮状病毒腹泻期间与病后的粪便样本以及10名健康的、年龄相符的儿童的粪便样本。BB-12证明了其极好的粘附性,31%的健康儿童以及的受感染婴儿体内含有BB-12。益生菌与众不同的粘附方式不受轮状病毒腹泻的影响(Juntunen等,2001) 。BB-12的粘附性检测也在Chr. Hansen的实验室进行了评估。一项针对60种人体肠道分离双歧杆菌的比较性体外检测证明,BB-12对黏液的粘附性相当于或者优于其他受检测的菌株(Chr. Hansen的文件数据)。综上所述,已经证明BB-12在各种体外环境中具有很高的粘附性。这一证据验证了BB-12具备瞬时定植在肠道黏膜表面、固定在这些位置的能力,并从而增加了发挥其有益健康功效的可能性。 病原体是指可能引发其宿主疾病的微生物。抑制病原体的能力是益生菌的三大主要机能之一,而其他两大机能是增强屏障功能和免疫作用。有人提出抑菌作用是通过多种机理促成的,其中包括生成抑制物质(有机酸、H2O2、细菌素)、营养竞争、去除/降解毒素、竞争附着点(黏液、细胞受体)、共聚和毒力调节,以及引发宿主的免疫响应。一项体外研究对包括BB-12在内的四种不同微生物对抗物质的生成情况进行了比较。蜡状芽孢杆菌、艰难梭菌、产气荚膜杆菌A型、大肠杆菌ATCC 4328、粪肠球菌、单核细胞增生李斯特菌、绿脓假单胞菌、伤寒沙门菌、弗氏志贺菌和白色念珠菌被用于对抗试验。只有BB-12和另外一种细菌菌株生成了抵御病原体的抑菌圈。BB-12表现出了对12种所检测的病原体中八种的对抗性活动,而BB-12生成的抑菌圈总体上说较大,弗氏志贺菌是唯一的例外(Martins等,2009) 。用人类粪便进行接种的批量和连续培养物厌氧发酵系统,来研究与益生元结合的两种益生菌的抗菌作用。有研究对BB-12与果糖和木寡糖混合物的结合,抵御大肠杆菌和空肠弯曲杆菌的情况进行了检测。在分批发酵物中,BB-12与益生元结合同时抑制了大肠杆菌和空肠弯曲杆菌。在连续培养物中,BB-12和益生元抑制了空肠弯曲杆菌。结果表明BB-12直接产生的醋酸盐和乳酸盐起到了抑菌作用,而不是降低pH值的结果。一项体外研究调查了目前欧洲各国市场销售的商用益生菌株对于黏附在固定人体黏液上特定的潜在病原体,抑制、对抗与替代的性能。细菌性病原体包括: 普通拟杆菌、溶组织棱状芽胞杆菌、艰难梭菌、大肠杆菌K2、产气肠杆菌、单核增生李斯特菌、伤寒沙门菌和金黄色葡萄球菌。BB-12能够粘附在人体黏液上,并抑制除了大肠杆菌以外的所有病原体。BB-12经验证会很好地替代艰难梭菌、金黄色葡萄球菌、产气肠杆菌、单核增生李斯特菌,并少量替代溶组织棱状芽胞杆菌、伤寒沙门菌和金黄色葡萄球菌(Collado等,2007a) 。此外,针对黏液粘附性的一项竞争和排斥试验也证明BB-12能够减少病原体的粘附。一项体外研究旨在调查BB-12和鼠李糖乳杆菌LGG各自以及结合情况下在病原体菌株对猪肠道黏液的粘附性方面的保护效应。所采用的病原体是鼠伤寒沙门氏菌、产气荚膜梭菌、艰难梭菌和大肠杆菌K2。BB-12和LGG相结合会增强彼此的粘附性,主要是作用在大肠黏液中。用BB-12和LGG单独或结合处理肠道黏液会显著降低所检测病原体的粘附性(Collado等,2007b) 。综上所述,这些研究都表明BB-12能够通过产生抗菌物质以及黏膜粘附的竞争来抑制重要的胃肠道病原体。 增强胃肠道屏障功能是益生菌公认的主要机能之一。保持胃肠道中功能完好的粘膜层和上皮细胞衬层对于保持健康来说至关重要。一项体外研究旨在检测来自益生菌和益生元的发酵产品是否会影响Caco-2细胞系模型中的紧密连接完整性。这是通过测定Caco-2细胞的跨上皮电阻(TER,Ω/cm2)来实现的。源自于BB-12的发酵产品增加了紧密连接强度,使其显著高于未经治疗的对照组,而且在所有案例中,BB-12产生的发酵产品与其他检测菌株相比,会引发TER最大程度的增加。这些体外变化说明BB-12可能提高紧密连接 ,并保护上皮屏障功能免受破坏(Commane等,2005 )。 免疫作用作为益生菌的一项重要机能日益得到认可。益生菌能够通过位于肠道内的免疫细胞与免疫系统进行沟通并影响免疫系统。而70~80%的免疫细胞位于肠道中。多项研究已经证明了BB-12的免疫调节功能。为调查源于人体单核细胞的树突细胞在成熟过程受到的双歧杆菌影响,开展了一项针对12种双歧杆菌菌株的体外研究。并且,外周血单核细胞的增殖和细胞活素表达也进行了评估。脂多糖处理造成的成熟被用作参考。BB-12能够引发树突细胞成熟,与表面表达标记物测得的LPS相比,其成熟度类似或者甚至更高。无细胞上清培养液对树突细胞的成熟仅有微弱影响或没有影响。细胞活素表达的变化在很大程度上取决于菌株,然而研究证明BB-12会使IL-12和TNF-α升高,而使IL-10降低。在PBMC中,BB-12会引发高水平的IL-10、IFN-γ和TNF-α(Lopez等,2010) 。有人研究了9种不同的益生菌菌株在不同浓度下引发的人体树突细胞成熟和细胞活素/趋化因子表达的能力。BB-12能够诱发所有检测细胞的活素(IL-1β、IL-6、IL-10、IL-12和IFN-γ)。应答情况取决于剂量,而且会随着剂量的增高而增加。在趋化因子方面,BB-12会以剂量依赖方式诱发CCL20(Latvala等,2008) 。一项体外研究调查了服用BB-12过程中所获得的粪沉淀液,在鼠巨噬细胞的细胞系列中所诱发的消炎应答。与服用前后相比,粪便沉淀液容易在BB-12的服用过程中引发较高的TNF-α 响应。根据观察,IL-1α和Il-10的响应不变(Matsumoto 等,2007) 。综上所述,这些数据表明BB-12能够与免疫细胞相互作用,而且说明BB-12可能对免疫功能产生有益的影响。

婴儿通常配方奶粉比较好消化,主要是有乳糖或者是半乳糖为主的,而且比较接近母乳,如果在宝宝吃奶粉期间有消化不良的情况,很有可能会导致大便次数增多,而且还有可能会导致大便中有奶瓣,在给宝宝进行奶粉喂养的时候,还需要掌握水和奶粉的比例。

如果人工喂养吃一些婴儿配方奶粉以及质量合格较优的奶粉好吸收。通常奶粉都分一段二段,如果是6个月之内的婴儿,需要选择一段奶粉,才比较容易消化。

双歧乳杆菌和嗜酸乳杆菌研究论文

鼠李糖乳杆菌是由美国教授从健康人体分离出来,是全球研究最多的益生菌,属于第3代益生菌。主要功能是调节胃肠道功能,增强人体的免疫力,预防和帮助治疗腹泻,还有预防呼吸道感染、预防龋齿、抗过敏、排除毒素的作用。

1、鼠李糖杆菌简称为LGG),1983年由美国北卡罗来纳州立大学两名美国教授(Gorbach and Goldin)自健康人体分离出来,并获得专利。2、 是全球研究最多的一种益生菌,属于第三代益生菌。20 年在益生菌方面的集中研究 300多篇研究文献,其中临床研究文献100多篇 20多篇博士论文而目前市场上的益生菌如:双歧杆菌和嗜酸乳杆菌的研究文献要少得多。双歧杆菌是一大类益生菌,包括很多不同的菌株,虽然有关双歧杆菌的研究报道也有不少,但具体到某一特定菌株的双歧杆菌来说,其研究报道就很少了 。二、LGG益生菌主要功能1、 平衡和改善胃肠道功能2、 增强人体自身免疫能力3、 促进双歧杆菌和嗜酸乳杆菌生长和作用4、 预防和帮助治疗腹泻5、 预防呼吸道感染6、 排出毒素7、 预防龋齿8、 预防过敏三、应用范围酸奶、酸奶饮料、牛奶、奶粉、奶酪,果汁饮料、胶囊等。四、知名度LGG是全球最著名的益生菌之一。目前全球已有四十多个国家和地区有LGG产品生产和销售,包括芬兰、美国、澳大利亚、日本、韩国、台湾、中国(伊利独占)等。五、优势1.功能性: 益生菌中研究最多、功能性最多的一种益生菌,且对其的研究一直未间断过。2.知名度: 全球最知名的益生菌之一,40多个国家和地区有LGG产品。3.唯一性: 全球独家拥有LGG的销售和授权,许多其它益生菌则多家公司有售。4.经验性: 全球独家既生产益生菌菌种,又自己生产各种益生菌产品(始于1990年),丰富的生产、销售、市场和全球客户服务经验。5.风味影响性: LGG产乳酸,不会对产品风味带来不利影响,而双歧杆菌以产醋酸为主,会给产品风味带来一些负面影响。6.活菌数稳定性: LGG在产品保质期内活菌数保持稳定,比如酸奶在一个月内LGG活菌数基本不变化。而大部分其它益生菌种则衰减相当迅速。如:嗜酸乳杆菌在两周后,活菌数量就降为原来的25%(不同菌株有所不同)甚至更低,四周后活菌数降为原来的10%以下。双歧杆菌在3-7天后,活菌数可降为原来的10%以下,两周后活菌数就更低,一般在1%以下。7.活体进入人体肠道能力: LGG在耐胃酸和胆汁方面的性能非常突出,可以活体进入人体肠道。而其他大部分益生菌种在进入肠道前就已经因胃酸和胆汁作用而死亡。如:普通酸奶菌种保加利亚乳酸杆菌在条件下,半小时后活菌数降为原来的5%左右,1小时后活菌数降为原来的左右。对双歧杆菌而言,30℃,对双歧杆菌的存活有较大影响,2小时后活菌数可降低70%-90%以上,时则衰减更快。嗜酸乳杆菌的情况接近双歧杆菌。8.人体内定殖(存活)能力: LGG可以定殖在人体内长达两周之久,能有效改善调整人体胃肠道菌群群落,对人体健康非常有益。所以能否定殖于人体对于一个益生菌的生理功能将有很大的影响。其他大部分益生菌种均不能定殖于人体。9、三代益生菌比较:第一代 第二代 第三代产品 酸奶等 AB益菌奶、酸奶等 LGG产品菌种 普通菌种,如嗜热链球菌、保加利亚乳杆菌等 嗜酸乳杆菌双歧杆菌等 LGG划分依据  技术特性:产乳酸、香味物质等 无临床方面的研究  可能对胃肠道功能有所改善 在已有的研究中或已发表的文章中,并没有针对某一种特定的菌株进行 目前在乳制品中的应用较广泛  临床实验证实具有改善胃肠道功能的作用。所有的研究都是针对LGG这一特定的菌株

1. 益生菌知识小科普 益生菌知识小科普 1.小科普一下:益生菌和益生元的区别 简单的说,益生元就是益生菌的“食物”,只有保障有足够的益生元,才能够使得益生菌有足够的能量生长繁殖,发挥作用。 这样,我们就不难发现两者的区别所在: 1,成分不同,益生菌是具有生物活性的细菌,而益生元则是低聚糖类。2,作用方式不同,益生菌是外部细菌,作用更加直接,我们可以根据身体不同的体质及病因,添加不同的菌种,如双歧杆菌对胃肠道疾病有显著功效等。而益生元是以未经消化的形式进入胃肠道,通过投喂双歧杆菌等益生菌的生长,间接地促进胃肠道健康和营养素的吸收。 3,免疫系统应答,我们的人体具有免疫功能,能够识别外部摄入的细菌,不同的体质可能会因此产生不同的生理反应。 2.何谓益生菌 国际营养学界普遍认可的定义是:益生菌是一种对人体有益的细菌,它们可直接服用,以维持肠道菌丛的平衡。 饮乐多是一种真正的活性乳酸菌发酵乳,是经过韩国科研人员40余年累代培养而成,经过胃和十二指肠时不被胃液和胆汁杀死,能直达肠道发挥作用。在国外又被称为“健康长寿菌”,在韩国和日本已有40多年的历史,每天的饮用量占总人口的1/2以上。 饮乐多中不含任何激素、色素、抗生素、稳定剂、防腐剂,能有效的提高免疫力,预防便秘腹泻,促进消化,改善挑食厌食,健脑益智,美容养颜,利于减肥。 通过每天补充100亿活力菌,能调理肠微生态平衡,激发人体内在力量,从而达到持久保持健康的目的。 建议,一定要适时饮用饮乐多,使体内有益菌占优势,从而保持肠道年轻状态。“肠年轻,则生命常青”。 3.生活中有哪些对人类有益的益生菌,又有哪些对人体健康的有害菌 益生菌是指有益于人类的生命和健康的一类肠道生理细菌,如双歧杆菌、嗜酸乳杆菌、干酪乳杆菌等乳酸菌。 目前市面上各种酸奶制品品种繁多,有凝固型、搅拌型,还有加入不同的果汁、酸甜可口、适应各人不同口味的果汁型酸奶。不管是何种酸奶,其共同的特点都是含有乳酸菌。 这些乳酸菌在人体的肠道内繁殖时会分泌对人体健康有益的物质,因此酸奶对人体有较多的好处。追问能把它对人体的好处阐述得详细些吗? 回答①防治腹泻;②缓解不耐乳糖症状;③预防 *** 感染;5增强人体免疫力;⑤缓解过敏作用;⑥降低血清胆固醇;⑦预防癌症和抑制肿瘤生长。 病人经常服用含益生菌的保健食品,可预防与治疗腹泻症。正常人体肠道内栖息着500多种、数十万亿个不同的细菌,它们在绝大多数情况下是互相制约、共存共荣的。 一旦肠道菌丛平衡被打破,就会引起腹泻。其次,滥用抗生素也会引起腹泻。 欧洲一些医疗中心试用以乳杆菌、双歧杆菌与菊糖为主要成分的口服液治疗旅行者腹泻,也取得良好效果。 益生菌的另一作用是,可预防 *** 感染症。 欧洲所做的双盲对照试验(46名有 *** 霉菌感染史的妇女参加了试验)证实了这一点。女病人每人每日口服150毫升含大量益生菌的酸牛奶,结果 *** 感染发生率大大低于安慰剂组妇女。 这是因为酸牛奶中的嗜酸乳杆菌可抑制 *** 内白色念珠菌的繁殖。 科学家认为:益生菌在肠道内的大量繁衍可促进并提高人体的全身免疫能力。 在欧洲一些著名长寿之乡(如高加索山区、地中海沿岸国家),当地人常饮自制的酸牛奶,极少患糖尿病、心血管病、肥胖症,研究认为这与酸牛奶中含大量益生菌有关从70年代到90年代,国外所做的大量试验证实:喝益生菌饮料确实可降低血清胆固醇。 最近国外又有学者发表论文指出:每天喝200毫升加入嗜酸乳杆菌以及菊糖后发酵的酸牛奶,可使高脂血症患者的血脂平均下降4。 4%左右。因为嗜酸乳杆菌与菊糖两者均有降脂作用。 此外,研究性报道说,长期饮用含大量益生菌的饮料,有预防癌症和肿瘤疾病以及防止骨质丢失与骨质疏松症的作用。 有害:大肠杆菌,可致病。 大肠杆菌的致病物质为定居因子,即大肠杆菌的菌毛和肠毒素,此外胞壁脂多糖的类脂A具有毒性,O特异多糖有抵抗宿主防御屏障的作用。大肠杆菌的K抗原有吞噬作用。 由大肠杆菌导致的疾病: 1、肠道外感染。 多为内源性感染,以泌尿系感染为主,如尿道炎、膀胱炎、肾盂肾炎。 也可引起腹膜炎、胆囊炎、阑尾炎等。婴儿、年老体弱、慢性消耗性疾病、大面积烧伤患者,大肠杆菌可侵入血流,引起败血症。 早产儿,尤其是生后30天内的新生儿,易患大肠杆菌性脑膜炎; 2、急性腹泻。某些血清型大肠杆菌能引起人类腹泻。 其中肠产毒性大肠杆菌会引起婴幼儿和旅游者腹泻,出现轻度水泻,也可呈严重的霍乱样症状。 腹泻常为自限性,一般2~3天即愈,营养不良者可达数周,也可反复发作。 肠致病性大肠杆菌是婴儿腹泻的主要病原菌,有高度传染性,严重者可致死。细菌侵入肠道后,主要在十二指肠、空肠和回肠上段大量繁殖。 此外,肠出血性大肠杆菌会引起散发性或暴发性出血性结肠炎,可产生志贺氏毒素样细胞毒素。 有益:乳酸菌,可促消化。 乳酸菌是一种存在于人类体内的益生菌。乳酸菌能够将碳水化合物发酵成乳酸,因而得名。 益生菌能够帮助消化,有助人体肠脏的健康,因此常被视为健康食品,添加在酸奶之内。在人体肠道内栖息着数百种的细菌,其数量超过百万亿个。 其中对人体健康有益的叫益生菌,以乳酸菌、双歧杆菌等为代表,;对人体健康有害的叫有害菌,以大肝杆菌、产气荚膜梭状芽胞杆菌等为代表。 益生菌是一个庞大的菌群,有害菌也是一个不小的菌群,当益生菌占优势时(占总数的80%以上),人体则保持健康状态,否则处于亚健康或非健康状态。 长期科学研究结果表明,以乳酸菌为代表的益生菌是人体必不可少的且具有重要生理功能的有益菌,它们数量的多和少,直接影响到人的健康与否,直接影响到人的寿命长短,科学家长期研究的结果证明,乳酸菌对人的健康与长寿非常重要。 而人体肠道内乳酸菌拥有的数量,随着人的年龄增长会逐渐减少,当人到老年或生病时,乳酸菌数量可能下降100至1000倍,直到老年人临终完全消失。 在平时,健康人比病人多50倍,长寿老人比普通老人多60倍。因此,人体内乳酸菌数量的实际状况,已经成为检验人们是否健康长寿的重要指标。 现在,由于广谱和强力的抗菌素的广泛应用,使人体肠道内以乳酸菌为主的益生菌遭受到严重破坏,抵抗力逐步下降,导致疾病越治越多,健康受到极大的危胁。所以,有意增加人体肠道内乳酸菌的数量就显得非常重要。 目前国际上公认的乳酸菌,被认为是最安全的菌种,也是最具代表性的肠内益生菌,人体肠道内以乳酸菌为代表的益生菌数量越多越好。 也完全符合诺贝尔得奖者生物学家梅契尼柯夫“长寿学说”里所得出的结论,乳酸菌=益生菌=长寿菌。 人类面对抗生素的日渐无能为力的现状,正在不断寻求新的更加有效的生物抗菌产品,世界发达国家首先认识并开创了以使用乳酸菌为代表的免疫疗法革。 4.益生菌的作用 际营养界普遍认定义:益菌系种物益细菌直接作食品添加剂服用维持肠道菌丛平衡外已发数百计益菌保健产品其包括:含益菌酸牛奶、酸乳酪、酸豆奶及含种益菌口服液、片剂、胶囊、粉末剂等等 ①防治腹泻; ②缓解耐乳糖症状; ③预防 *** 染; ④增强体免疫力; ⑤缓解敏作用; ⑥降低血清胆固醇; ⑦预防癌症抑制肿瘤 体肠道内栖息着500种、数十万亿同细菌绝数情况互相制约、共存共荣 第二效性科原理目前临床研究说益菌概念行几乎没负面研究结商家纷纷堂皇卖益菌基于目前家于益菌认识水平商业产能力益菌产品能否实现所宣称功能难保证事情 比歧杆菌糖解乳酸醋酸使肠道呈酸性其结能控制由害菌引起异发酵并且 *** 肠蠕起解除便秘作用双歧杆菌乳制品发酵程产乳糖酶帮助患者消化乳糖占80%乳糖耐受亚洲体制改善作用并且体肠内发酵产乳酸醋酸能提高钙、磷、铁利用率促进铁维素D吸收 嗜乳酸杆菌工作协助蛋白质消化缺乏产胀气、肠及整系统毒性、便秘及吸收良量缺乏导致念珠菌盛 嗜乳酸杆菌助于解毒导致素包括反复使用抗素、口服避孕药、阿司匹灵、皮质类固醇、饮食欠佳、吃甜食、酵母菌、紧张些都造良性菌平衡良性菌容易与些废物结合排体外;嗜乳酸杆菌抗菌作用 比非德氏菌新肠胃早进驻菌种婴6产寡糖益菌始腹泻孩应该重点补比非德氏菌 益菌产品进入商业化产厂家基本贴益菌标签各种益菌功能往罗列目前市场买益菌没实现与际惯例接轨 益菌功能必须特定菌株特定剂量连续食用细菌才能实现许商业宣传说研究表明益菌具功能列堆文献提功能些功能跟细菌能毫关系许广告推销都宣称细菌含量高达少少各种细菌能够产效剂量却相差非每吃亿起作用却要万亿才行由于现于益菌产品没质量标准定检测所厂家宣称能依靠信誉保证律规范权威监测都真空带 需要家注意点:益菌作用治安联防队性质特种部队精英性质 许孩拉肚医给些基于益菌**牌效非难说于益菌治疗拉稀项研究结:吃益菌孩平均拉稀间72负误差36;吃益菌孩平均拉稀间58负误差28疗效于花钱益菌宝贝家说能点难接受差异医所认效其许所说效能点点改善统计析认种改善自于食用益菌总结具该项功能 益菌概念没问题目前科研究于益菌认识限食品药品监管机构没靠依据制定产品标准规范临床研究实验结事各路商家吹花乱坠产品能够实现少所宣称作用却另事。 5.益生菌的作用有哪些 1、维持肠道正常功能 肠道是人体最大的免疫器官和最大的微生态体系,人体通过胃肠道粘膜与外界缓慢进行相互作用,通过其生长及各种代谢作用促进肠内细菌群的正常化,抑制肠内腐败物质产生,保持肠道机能的正常运行。 2、缓解乳糖不耐受症状,促进消化吸收 乳糖不耐受是指人体缺乏代谢乳糖的酶,在摄入奶制品后,出现腹胀,腹痛等不良反应。 全球有75%的成年人体内乳糖酶的活性有减弱的迹象,在一些亚洲国家则超过90%。 研究发现,乳杆菌等具有半乳糖苷酶活性,能够明显降低乳糖的浓度,产生乳酸,有利于人体消化吸收。 3、增强人体免疫力 益生菌进入肠道内,一方面可以在肠道内定殖,维持肠道微生物菌群的平衡;另一方面是益生菌可以直接作用于宿主的免疫系统,诱发肠道免疫,并 *** 胸腺,脾脏等免疫器官,促进巨噬细胞活性,通过增强B、T淋巴细胞对抗原 *** 的反应性,发挥特异性免疫活性,从而增强机体的免疫功能。 4、预防癌症和抑制肿瘤的生长 益生菌可以产生一些抑制肿瘤生长的代谢产物,如多糖、细菌素及乳酸等,通过抑制转化致癌物质的酶的产生,激活机体免疫系统,特别是巨噬细胞、NK细胞、B淋巴细胞的活性以及抑制细胞突变等方式,以及降低肠道内的PH值, *** 肠道蠕动,使肠道内的致病菌毒素和致癌物质排除体外,降低致癌的可能性。 5、缓解过敏反应 研究发现,正常人肠道中益生菌越多,罹患过敏性疾病的机会也就越小。 益生菌可以诱导T细胞产生大量的IL-12,能够抑制Ig E的产生,有效地预防过敏发生。 6、降低血清胆固醇 益生菌主要通过同化作用来降胆固醇的含量、抑制胆固醇合成酶(3-羟基-3-甲基戊二酸CoA还原酶)的活性,通过益生菌的胆盐水解酶的作用,将小肠内水解后的胆盐能与食品中胆固醇发生共沉淀作用,减少机体对胆固醇的吸收,促进由粪便排出体外。 7、益生菌对肥胖的作用 肠道菌群紊乱在肥胖的发生发展过程中发挥着非常重要的作用。有大量实验证实,通过摄入益生菌,可以有效的防治肥胖。 ①抑制食欲,增加饱腹感:益生菌可以通过 *** CCK,GLP-1等饱腹因子的释放,以及减少胃促生长激素的分泌,从而减少食物摄入,降低体重和脂肪的蓄积。 ②降低胆固醇:益生菌可以通过同化作用以及共沉淀作用减少胆固醇的吸收。 ③调节肠道菌相:益生菌进入肠道内后,使失衡的肠道菌相正常化(厚壁菌门减少,拟杆菌门增加),降低肠上皮细胞的通透性,减少循环中LPS的含量,减少炎症因子,进而提高胰岛素敏感性。 8、益生菌对糖尿病的作用研究发现糖尿病患者体内也存在肠道菌群紊乱现象。 益生菌可以通过调节肠道菌相,有益菌等附着在肠道上皮细胞上。益生菌通过吸收葡萄糖进入菌体内,减少宿主的吸收,从而降低血糖水平。 另外,如上所述,益生菌可以降低循环中LPS的浓度,减少炎症反应,提高胰岛素敏感性,改善胰岛素抵抗,进而达到防止糖尿病的目的。

大肠杆菌耐药基因的研究论文

学术堂整理了十个关于大肠杆菌的论文题目,供大家参考:1、大肠杆菌表达系统的研究进展2、重组大肠杆菌高密度发酵研究进展3、山东省鸡大肠杆菌的分离鉴定4、大肠杆菌mtID基因和gutD基因的克隆,全序列测定和高效表达5、我国部分地区禽病原性大肠杆菌的分离与鉴定6、中国不同地区家禽大肠杆菌血清型分布和耐药性比较研究7、大肠杆菌毒力因子研究概况8、致病性大肠杆菌的耐药性监测9、动物大肠杆菌耐药性的变化趋势10、纳米银对大肠杆菌的抗菌作用及其机制

1.(1)它不是一种细菌而是一类细菌。(2)它的耐药性超强。(3)它的发展势头很猛。(4)它的致病性一般。2.(意思相近即可)(1)人类滥用抗生素导致病菌有了耐药性。(2)滥用不同种类抗生素,使一些病菌具有多重耐药性。(3)其最终结果就是有一种病菌对所有抗生素都具有了耐药性,超级病菌就这样产生了。3.“几乎”一词不能去掉。因为它表示“差不多”之意,用以说明这-类细菌对绝大部分抗生素有强劲的耐药性,但不排除对个别抗生素没有耐药性,如果去掉,则变成这一类细菌对所有抗生素都有耐药性,这与实际不符。(意思相近即可)4.举例子。作用是:具体、有力地说明了超级病菌的致病性一般这一意思。(意思相近即可)

Y. Q. Liu, Y. Z. Zhang and P. J. Gao. Novel Concentration-Killing Curve Method for Estimation of Bactericidal Potency of Antibiotics in an In Vitro Dynamic Model. Antimicrobial Agents and Chemotherapy, 2004. 48(10): Yu-qing, Yu-zhong Zhang, Cai-yun Sun and Pei-ji Gao. A Novel Approach for Accurate Estimation of Antibacterial Potency of Chinese Traditional Medicine Using a Concentration-killing Curve Method. The American Journal of Chinese Medicine, 2005. 33(4): Huaiqiang,LIU Yuqing, GAO Peiji. A novel approach for estimating growth phases and parameters of bacterial population in batch culture. Science in China,Series C: Life Sciences,2006, 49(2):130-140.张怀强,刘玉庆,高培基. 分批培养条件下细菌群体生长阶段的区分及生长参数的确定. 中国科学C辑: 生命科学, 2005. 35 (6): YuQing,ZHANG HuaiQiang, SHEN JianZhong, GAO PeiJi. Effect of Physiological Heterogeneity of Population on Antibiotic Susceptivity Test. Science in China,Series C: Life Sciences,2007, 50(6): 808-813.刘玉庆, 张怀强, 沈建忠, 高培基. 大肠杆菌群体的生理异质性对药敏试验的影响. 中国科学C 辑: 生命科学, 2007, 37(6): Huaiqiang, LU Yili, Yan Xuelan, GAO Peiji. Effect of Bacterial Population Heterogeneity on Growth Dynamic Progress and Its Estimation. Science in China Series C-Life Sciences, 2007, 50(4):535-547张怀强, 卢丽丽, 阎雪岚, 高培基. 细菌群体异质性对生长动态过程的影响及其表征. 中国科C辑:生命科学, 2007, 37(2): Xia, Lin Li, Cong-Ming Wu, Yu-Qing Liu, Xiao-Qi Tao, Lei Dai, Yong-Hua Qi, Li-Ming Lu, Jian-Zhong Shen. A Survey of Plasmid-Mediated Fluoroquinolone Resistance Genes from Escherichia coli Isolates and Their Dissemination in Shandong, Pathogens and Disease. 2010, 7(2): Bai, Wen-zheng Su, Xiao-ling Zhu, Ming Huand Yu-qing Liu. Effect of enrofloxacin on gene expression profiles of Escherichia coli. Annals of Microbiology,2010,60:653–660Hua Bai, Xiao-ling Zhu, Ming Huand Yu-qing Liu. Analysis of mechanisms of resistance and tolerance of Escherichia coli to enrofloxacin,Ann. Microbiol. 2012,62:293-298Liu Y Q, Li J R, Du J F, et al. Accurate assessment of antibiotic susceptibility and screening resistant strains of a bacterial population by linear gradient plate. Sci China Life Sci, 2011, 54: 953–960刘玉庆, 李靖冉, 杜加法, 胡明, 白华, 齐静, 高超, 魏甜甜, 苏红,金健玲, 高培基.用线性梯度平板准确测定药物敏感性和分离抗药性菌株. 中国科学C辑: 生命科学,2011,41(9): 748-755.刘玉庆,张怀强,胡明,赵越,白华,金建玲,高培基. 药敏试验方法的局限性及改进的建议. 山东大学学报(医学版)2011,49(2):129-132.高超,胡明, 白华, 齐静, 朱小玲, 刘昌彬, 单虎, 刘玉庆,高培基. 铜绿假单胞菌对环丙沙星的抗药性和耐药性机制研究. 山东大学学报(医学版)2011,49(6):38-45.白华,蔡亚娜,胡明,杜加法,刘玉庆. 芽孢杆菌发酵五味子提取液对肉鸡肝损伤的影响. 中兽医医药杂志,录用蔡亚娜, 胡明, 魏甜甜, 白华, 高超, 刘玉庆. 鸡咽部混合菌群16S rDNA序列分析方法的建立. 中国畜牧兽医,录用白华,胡明,朱小玲,杜加法,蔡亚娜,刘玉庆. 3种中药复方提取液对肉鸡生理、免疫指标的影响. 中国农学通报,2010,26(9):1-7白华,齐静,朱小玲,王庆艳,杜加法,刘玉庆. 恩诺沙星对大肠杆菌全基因组表达谱的影响. 畜牧兽医学报,2009,40(10):1537-1544.刘玉庆. 兽用抗生素及其抗药性,中国抗生素杂志,2009,34(增刊):134-140.朱小玲, 沈建忠, 刘玉庆. 多重抗药大肠杆菌中Ⅰ型整合子的分布与抗药关系. 中国人兽共患病学报, 2009, 25(2):135-138.朱小玲, 齐静,白华,胡明,孙作为,沈建忠, 吴聪明,刘玉庆.山东省动物源大肠杆菌多重抗药性及其遗传稳定性研究,中国卫生检疫杂志,2009,19(7):1473-1476.杜加法, 孙作为,白华,朱小玲,刘玉庆,李文平.大通量药敏检测盒测定中药对多抗菌株的抑制效果,中国卫生检验杂志,2009,19(10):2243-2245.白华, 杜加法, 朱小玲, 孙作为, 胡明, 刘玉庆. 中药对病原体杀灭及对肉鸡生产性能影响研究,中兽医医药杂志2009,28(6) 10-15.王庆艳, 朱小玲, 白华, 张庆宁, 杜加法,刘玉庆,王述柏. 大通量的抗生素药敏检测盒的设计及应用. 中国畜牧兽医, 2009, 36(7):6-71张庆宁,胡明,朱荣生,武英,刘玉庆. 生态养猪模式中发酵床优势细菌的微生物学性质及其应用研究. 山东农业科学,2009, 4: 99-105.李云, 蔡亚娜, 张士栋, 王庆艳, 杜加法, 刘玉庆, 赵淑梅. 不同宿主大肠杆菌对15种抗生素抗药性差异研究. 山东农业科学,2009, 4: 95-98.胡明,刘玉庆,武英,张秀美,卢雪梅,高培基. 噬纤维菌和生孢噬纤维菌作为饲用蛋白质的综合评价. 中国农业大学学报,2009 ,14 (3) :89-93齐静, 杜以军, 朱小玲, 胡北侠, 孙守礼, 张秀美, 刘玉庆. 鸡γ-干扰素的克隆、原核表达与抗病毒作用研究. 微生物学报, 2009, 1:85-91.白华,张金强,于美芳,刘玉庆,吴家强. 斑点杂交法检测猪繁殖与呼吸综合征病毒. 中国动物检疫, 2009, 26(3):51-53.马俊孝, 张景燕, 刘玉庆. 体外法评价饲用木聚糖酶的研究. 饲料工业, 2009, 30(4): 21-23.马俊孝,张景燕,孙作为,刘玉庆. 木聚糖酶、甘露聚糖酶体外酶解数据库的研究. 饲料工业,2009, 30(18):9-11.马俊孝, 刘玉庆, 马向东, 张景燕. 饲用酶的体外评定技术. 饲料工业,2009,30(24):17-19.刘玉庆, 张秀美, 武英, 孙彩云, 尹建忠, 毕伟民. 大豆乳清粉的营养价值及在肉鸡饲料中的饲养试验. 饲料工业, 2007, 28(5):41-42.黄艳艳, 胡北侠, 张秀美, 沈志勇, 刘玉庆, 黄庆华. 检测新城疫抗体的Dot-EL ISA方法的建立及其与H I方法的比较研究. 西南农业学报, 2007, 20(5):1117-1120.黄艳艳, 胡北侠, 张秀美, 刘玉庆, 卢新存, 李俊. 应用RT-PCR 和病毒学方法诊断山东省鸡新城疫感染的比较研究. 家畜生态学报, 2007, 28(2):82-85.刘玉庆, 王海, 孟庆贺. 液态植酸酶后喷涂工艺及其均匀度测定. 饲料工业,2007,15:12-14.崔江,刘玉庆, 侯渌恰, 孙彩云. 单复方中草药定量测定及其对大肠杆菌敏感性试验. 山东农业科学, 2006,3: 73-74.孟甄, 金建玲, 高培基, 刘玉庆. 细菌耐药性的诱导与消除. 中国药理学通报, 2003, 19 (9) :1047-51.刘玉庆, 郭林.从简约性看中医“阴阳五行”的生物学意义. 自然杂志, 2003, 25(5):296-298.刘玉庆, 张玉忠, 刘胜贵, 金建玲, 高培基. 中药三黄汤、小檗碱对E. coli生长抑制作用与庆大霉素的比较. 应用与环境生物学报, 2003, 9(3): 302-306.刘玉庆, 颜世敢, 毛泽春, 张玉忠, 高培基. 组合天然药物对急性人工感染大肠杆菌病的防治作用及其Cox 回归分析. 中国预防兽医学报, 2003, 25(4): 284-288.刘玉庆, 张玉忠, 颜世敢, 车程川, 李晔, 高培基. 大肠杆菌和益生菌对抗生素和化学药物的敏感性试验. 山东农业大学学报, 2003, 34(2): 181-184.刘玉庆, 李晔, 车程川, 张玉忠, 高培基, 颜世敢. 大肠杆菌对中草药敏感性试验及其方法研究. 中兽医医药杂志, 2003, 22(1): 3-5.刘玉庆, 张玉忠, 高培基, 孙振钧. 从有机食品生产看我国畜牧业发展对策. 饲料工业, 2003, 24(1):2-4.刘玉庆, 张玉忠, 钟鲁, 高培基. 生态营养(Eco-nutrition)理论与无公害养殖. 饲料工业,2002, 23(12): 1-4.刘玉庆, 夏东, 李如治, 徐魁梧, 张宁芳. 荷斯坦牛红细胞钾含量分布的研究. 南京农业大学学报, 1997, 20(1):55-59.刘玉庆. 红细胞钾的研究进展. 家畜生态, 1997, 18(3):46-47孙振军, 刘玉庆, 李文立. 温度、湿度和酸碱度对蚯蚓生长与繁殖的影响. 莱阳农学院学报,1993, 10(4):297-300.

细菌耐药机制的研究论文

耐药机制主要有:1. 产生钝化酶,2. 药物作用靶位的改变;3.主动外排机制;4.药物渗透障碍—生物膜。预防原则:1.合理使用抗生素;2.严格执行消毒隔离制度;3.加强药政管理;4.研制新的抗菌药物;5.破坏耐药基因

细菌耐药性的机制:

1、产生灭活酶:细菌产生灭活的抗菌药物酶使抗菌药物失活,是耐药性产生的最重要机制之一,使抗菌药物作用于细菌之前——即被酶破坏而失去抗菌作用。

2、抗菌药物作用靶位改变:由于改变了细胞内膜上与抗生素结合部位的靶蛋白,降低与抗生素的亲和力,使抗生素不能与其结合,导致抗菌的失败。

预防原则:

1、完善相关规章制度:

卫生主管部门通过建立检测、制定规章制度、完善抗菌药物的技术规范、开展专项整治活动、建立部际合作机制等举措,使得医务人员整体合理使用抗菌药物的能力有所提高,细菌耐药情况有所缓解,抗菌药物临床应用管理的长效机制初步建立。

2、实地措施预防:

对于携带多重耐药菌的患者,住院期间首选单间隔离,对于没有条件单间隔离的,要实行区域性隔离,并在患者床头卡和腕带上,贴上蓝色的接触隔离标识。

扩展资料:

在卫生主管部门和医务工作者的共同努力下,我国在合理使用抗菌药物及遏制细菌耐药方面取得了一些进展。

从使用量看,与2010年相比,2015年住院病人的抗菌药物使用率降低了28个百分点,门诊处方抗菌药物使用降低了10个百分点,住院平均抗菌药物使用强度降低了44%。

从生产和使用看,抗感染类原料药产量占治疗类原料药的比重,从2011年的25%下降到2015年的15%。目前,在中国检出率比较高的主要是13种耐药菌,其中,有7种检出率下降,4种相对稳定,只有两种略有上升。

参考资料来源:百度百科——细菌耐药性

参考资料来源:人民健康网——遏制细菌耐药任重道远

A.增加代谢拮抗物B.产生灭活酶C.改变细菌胞浆膜通透性D.改变药物作用的靶部位E.加强主动流出系统

不好意思啊。 分子生物学就是在分子水平上研究生命现象的科学。通过研究生物大分子(核酸、蛋白质)的结构、功能和生物合成等方面来阐明各种生命现象的本质。研究内容包括各种生命过程。 应该就是生物产生的物质的角度吧,我也不太清楚了细菌耐药性 1.细菌耐药性的产生 细菌耐药性是细菌产生对抗生素不敏感的现象,产生原因是细菌在自身生存过程中的一种特殊表现形式。天然抗生素是细菌产生的次级代谢产物,用于抵御其他微生物,保护自身安全的化学物质。人类将细菌产生的这种物质制成抗菌药物用于杀灭感染的微生物,微生物接触到抗菌药,也会通过改变代谢途径或制造出相应的灭活物质抵抗抗菌药物。 2.耐药性的种类 耐药性可分为固有耐药(intrinsic resistance)和获得性耐药(acguired resistance)。固有耐药性又称天然耐药性,是由细菌染色体基因决定、代代相传,不会改变的,如链球菌对氨基糖苷类抗生素天然耐药;肠道G-杆菌对青霉素天然耐药;铜绿假单胞菌对多数抗生素均不敏感。获得性耐药性是由于细菌与抗生素接触后,由质粒介导,通过改变自身的代谢途径,使其不被抗生素杀灭。如金黄色葡萄球菌产生β-内酰胺酶类抗生素耐药。细菌的获得性耐药可因不再接触抗生素而消失,也可由质粒将耐药基因转移个染色体而代代相传,成为固有耐药。 3.耐药的机制 产生灭活酶:细菌产生灭活的抗菌药物酶使抗菌药物失活是耐药性产生的最重要机制之一,使抗菌药物作用于细菌之前即被酶破坏而失去抗菌作用。这些灭活酶可由质粒和染色体基因表达。β-内酰胺酶:由染色体或质粒介导。对β-内酰胺类抗生素耐药,使β-内酰胺环裂解而使该抗生素丧失抗菌作用。β-内酰胺酶的类型随着新抗生素在临床的应用迅速增长,详细机制见β-内酰胺类抗生素章。氨基苷类抗生素钝化酶:细菌在接触到氨基苷类抗生素后产生钝化酶使后者失去抗菌作用,常见的氨基苷类钝化酶有乙酰化酶、腺苷化酶和磷酸化酶,这些酶的基因经质粒介导合成,可以将乙酰基、腺苷酰基和磷酰基连接到氨基苷类的氨基或羟基上,是氨基甘类的结构改变而失去抗菌活性;其他酶类:细菌可产生氯霉素乙酰转移酶灭活氯霉素;产生酯酶灭活大环内酯类抗生素;金黄色葡糖球菌产生核苷转移酶灭活林可霉素。 抗菌药物作用靶位改变:由于改变了细胞内膜上与抗生素结合部位的靶蛋白,降低与抗生素的亲和力,使抗生素不能与其结合,导致抗菌的失败。如肺炎链球菌对青霉素的高度耐药就是通过此机制产生的;细菌与抗生素接触之后产生一种新的原来敏感菌没有的靶蛋白,使抗生素不能与新的靶蛋白结合,产生高度耐药。如耐甲氧西林金黄色葡萄球菌(MRSA)比敏感的金黄色葡萄球菌的青霉素结合蛋白组成多个青霉素结合蛋白2a(PBP2a);靶蛋白数量的增加,即使药物存在时仍有足够量的靶蛋白可以维持细菌的正常功能和形态,导致细菌继续生长、繁殖,从而对抗抗菌药物产生耐药。如肠球菌对β-内酰胺类的耐药性是既产生β-内酰胺酶又增加青霉素结合蛋白的量,同时降低青霉素结合与抗生素的亲和力,形成多重耐药机制。 改变细菌外膜通透性:很多光谱抗菌药都对铜绿假单胞菌无效或作用很弱,主要是抗菌药物不能进入铜绿假单胞菌菌体内,故产生天然耐药。细菌接触抗生素后,可以通过改变通道蛋白(porin)性质和数量来降低细菌的膜通透性而产生获得性耐药性。正常情况下细菌外膜的通道蛋白以OmpF和OmpC组成非特异性跨膜通道,允许抗生素等药物分子进入菌体,当细菌多次接触抗生素后,菌株发生突变,产生OmpF蛋白的结构基因失活而发生障碍,引起OmpF通道蛋白丢失,导致β-内酰胺类、喹诺酮类等药物进入菌体内减少。在铜绿假单胞菌还存在特异的OprD蛋白通道,该通道晕粗亚胺培南通过进入菌体,而当该蛋白通道丢失时,同样产生特异性耐药。 影响主动流出系统:某些细菌能将金土菌体的药物泵出体外,这种泵因需能量,故称主动流出系统(active efflux system)。由于这种主动流出系统的存在及它对抗菌药物选择性的特点,使大肠埃希菌、金黄色葡萄球菌、表皮葡萄球菌、铜绿假单胞菌、空肠弯曲杆菌对四环素、氟喹诺酮类、大环内酯类、氯霉素、β-内酰胺类产生多重耐药。细菌的流出系统由蛋白质组成,主要为膜蛋白。这些蛋白质来源于4个家族:①ABC家族(ATP-binding cassettes transporters);②MF家族(major facilitator superfamily);③RND家族(resistance-nodulation-division family);④SMR家族(staphylococcal mulitdrug resistance family)。流出系统有三个蛋白组成,即转运子(efflux transporter)、附加蛋白(accessory protein)和外膜蛋白(outer membrane channel ),三者缺一不可,又称三联外排系统。外膜蛋白类似于通道蛋白,位于外膜(G-菌)或细胞壁(G+菌),是药物被泵出细胞的外膜通道。附加蛋白位于转运子与外膜蛋白之间,起桥梁作用,转运子位于胞浆膜,它起着泵的作用。

细菌的耐药性检测论文

滥用抗生素的危险最主要是促进细菌耐药性的增强。数据表明,有越来越多的细菌耐药,且耐药力在不断提高。20世纪五六十年代青霉素一次剂量只是2万~3万单位,现在需用几十万、几百万单位。葡萄球菌、肠道革兰氏阳性杆菌、结核杆菌、痢疾杆菌之所以长久的肆虐人类,就是其耐药性不断增强的结果。由于细菌的进化永远不会停止,因而对任何抗生素都会有产生耐药性的可能。河南省食品药品监督管理局局长李松武在一次新闻发布会上,以环丙沙星为例,介绍这种上世纪90年代刚刚上市的药品,在投入使用短短十几年的时间里,我国患者的耐药性已经高达60%,而在西方发达国家则只有1%。抗菌药物的滥用正让我们付出巨大的代价,药品不良反应、药源性疾病大量增加,越来越多的细菌对抗药品的能量不断增大,例如幽门螺旋杆菌,对喹诺酮类药品的耐药性,已经升至82%。“细菌越来越耐药,抗生素越来越失效”成了经济较发达地区的普遍问题。据陈重华委员介绍,上海已经成为我国细菌耐药性最为严重的地区之一,一些药品的有效率在上海地区已经跌到了20%,问题还在于耐药菌是可以在不同地区、国家间的人群之间传播的。随着医疗条件的不断改善,新的抗菌药物不断涌现。抗生素的大剂量普遍使用,以及禽畜饲料添加剂中大量使用抗生素,使食品、奶制品、饮料等也富含抗生素,从而逐步形成了一个越来越大的对抗生素产生耐药性的群体。这导致临床上出现应用高级抗生素———耐药性更强———再用更高级的抗生素的恶性循环。 陈重华委员分析指出,滥用抗生素的主要原因:一是有不少医生对患者使用抗生素时,很少依靠细菌耐药性检查,针对不同的细菌感染选择不同的抗生素,而往往是凭个人经验,采取一种抗生素无效再更换其他抗生素的方法进行治疗。二是由于抗生素药品市场竞争十分激烈,一些厂家往往采取不正当的手段,通过促销费等形式不断提高抗生素的使用面和使用量。三是不少患者的就医心态有问题。希望用好药,而且往往是越贵的药、越新的药越好,总希望能药到病除。这几个方面的因素集合在一起,使抗生素的生产销售环节、使用消费环节都希望用得越多越好,他们共同推进了抗生素的滥用程度。

因为细菌的传代时间很短,几小时甚至更短就可进行一次传代,也就是复制一次。(这就像PCR一样,复制的新生链不能保证完全和模板序列一样,这涉及保真性的问题。)这就为它突变制造了非常有利的条件。当加入某种药物后,由于细菌在很短的时间就可传代一次,这样就有很多突变,如果某种突变正好能够耐受这种药物,它就活了下来并大量繁殖。而其他不耐药的就死掉,这样最后就只剩耐药的了。(达尔文进化论)扩展阅读:细菌在生物界几乎是传代时间最短的生物了。人传代时间最短的细胞是胃(每2个星期便会更新一次),而神经细胞可活几十年,所以神经细胞破坏了也不易修复,因为它的细胞周期太长了。

不好意思啊。 分子生物学就是在分子水平上研究生命现象的科学。通过研究生物大分子(核酸、蛋白质)的结构、功能和生物合成等方面来阐明各种生命现象的本质。研究内容包括各种生命过程。 应该就是生物产生的物质的角度吧,我也不太清楚了细菌耐药性 1.细菌耐药性的产生 细菌耐药性是细菌产生对抗生素不敏感的现象,产生原因是细菌在自身生存过程中的一种特殊表现形式。天然抗生素是细菌产生的次级代谢产物,用于抵御其他微生物,保护自身安全的化学物质。人类将细菌产生的这种物质制成抗菌药物用于杀灭感染的微生物,微生物接触到抗菌药,也会通过改变代谢途径或制造出相应的灭活物质抵抗抗菌药物。 2.耐药性的种类 耐药性可分为固有耐药(intrinsic resistance)和获得性耐药(acguired resistance)。固有耐药性又称天然耐药性,是由细菌染色体基因决定、代代相传,不会改变的,如链球菌对氨基糖苷类抗生素天然耐药;肠道G-杆菌对青霉素天然耐药;铜绿假单胞菌对多数抗生素均不敏感。获得性耐药性是由于细菌与抗生素接触后,由质粒介导,通过改变自身的代谢途径,使其不被抗生素杀灭。如金黄色葡萄球菌产生β-内酰胺酶类抗生素耐药。细菌的获得性耐药可因不再接触抗生素而消失,也可由质粒将耐药基因转移个染色体而代代相传,成为固有耐药。 3.耐药的机制 产生灭活酶:细菌产生灭活的抗菌药物酶使抗菌药物失活是耐药性产生的最重要机制之一,使抗菌药物作用于细菌之前即被酶破坏而失去抗菌作用。这些灭活酶可由质粒和染色体基因表达。β-内酰胺酶:由染色体或质粒介导。对β-内酰胺类抗生素耐药,使β-内酰胺环裂解而使该抗生素丧失抗菌作用。β-内酰胺酶的类型随着新抗生素在临床的应用迅速增长,详细机制见β-内酰胺类抗生素章。氨基苷类抗生素钝化酶:细菌在接触到氨基苷类抗生素后产生钝化酶使后者失去抗菌作用,常见的氨基苷类钝化酶有乙酰化酶、腺苷化酶和磷酸化酶,这些酶的基因经质粒介导合成,可以将乙酰基、腺苷酰基和磷酰基连接到氨基苷类的氨基或羟基上,是氨基甘类的结构改变而失去抗菌活性;其他酶类:细菌可产生氯霉素乙酰转移酶灭活氯霉素;产生酯酶灭活大环内酯类抗生素;金黄色葡糖球菌产生核苷转移酶灭活林可霉素。 抗菌药物作用靶位改变:由于改变了细胞内膜上与抗生素结合部位的靶蛋白,降低与抗生素的亲和力,使抗生素不能与其结合,导致抗菌的失败。如肺炎链球菌对青霉素的高度耐药就是通过此机制产生的;细菌与抗生素接触之后产生一种新的原来敏感菌没有的靶蛋白,使抗生素不能与新的靶蛋白结合,产生高度耐药。如耐甲氧西林金黄色葡萄球菌(MRSA)比敏感的金黄色葡萄球菌的青霉素结合蛋白组成多个青霉素结合蛋白2a(PBP2a);靶蛋白数量的增加,即使药物存在时仍有足够量的靶蛋白可以维持细菌的正常功能和形态,导致细菌继续生长、繁殖,从而对抗抗菌药物产生耐药。如肠球菌对β-内酰胺类的耐药性是既产生β-内酰胺酶又增加青霉素结合蛋白的量,同时降低青霉素结合与抗生素的亲和力,形成多重耐药机制。 改变细菌外膜通透性:很多光谱抗菌药都对铜绿假单胞菌无效或作用很弱,主要是抗菌药物不能进入铜绿假单胞菌菌体内,故产生天然耐药。细菌接触抗生素后,可以通过改变通道蛋白(porin)性质和数量来降低细菌的膜通透性而产生获得性耐药性。正常情况下细菌外膜的通道蛋白以OmpF和OmpC组成非特异性跨膜通道,允许抗生素等药物分子进入菌体,当细菌多次接触抗生素后,菌株发生突变,产生OmpF蛋白的结构基因失活而发生障碍,引起OmpF通道蛋白丢失,导致β-内酰胺类、喹诺酮类等药物进入菌体内减少。在铜绿假单胞菌还存在特异的OprD蛋白通道,该通道晕粗亚胺培南通过进入菌体,而当该蛋白通道丢失时,同样产生特异性耐药。 影响主动流出系统:某些细菌能将金土菌体的药物泵出体外,这种泵因需能量,故称主动流出系统(active efflux system)。由于这种主动流出系统的存在及它对抗菌药物选择性的特点,使大肠埃希菌、金黄色葡萄球菌、表皮葡萄球菌、铜绿假单胞菌、空肠弯曲杆菌对四环素、氟喹诺酮类、大环内酯类、氯霉素、β-内酰胺类产生多重耐药。细菌的流出系统由蛋白质组成,主要为膜蛋白。这些蛋白质来源于4个家族:①ABC家族(ATP-binding cassettes transporters);②MF家族(major facilitator superfamily);③RND家族(resistance-nodulation-division family);④SMR家族(staphylococcal mulitdrug resistance family)。流出系统有三个蛋白组成,即转运子(efflux transporter)、附加蛋白(accessory protein)和外膜蛋白(outer membrane channel ),三者缺一不可,又称三联外排系统。外膜蛋白类似于通道蛋白,位于外膜(G-菌)或细胞壁(G+菌),是药物被泵出细胞的外膜通道。附加蛋白位于转运子与外膜蛋白之间,起桥梁作用,转运子位于胞浆膜,它起着泵的作用。

  • 索引序列
  • 耐酸和耐胆汁双歧杆菌的研究论文
  • 双歧乳杆菌和嗜酸乳杆菌研究论文
  • 大肠杆菌耐药基因的研究论文
  • 细菌耐药机制的研究论文
  • 细菌的耐药性检测论文
  • 返回顶部