你是哪个专业的?
您好!硕士毕业论文是一个非常重要的学术作品,所以写出一个高质量的论文需要掌握一系列技能和策略。我可以给您提供一些关键点作为参考:
1. 选择一个合适的主题:选择一个既感兴趣又具有研究价值的主题,以确保您在撰写论文期间能够保持热情并且容易找到相关资源。
2. 建立清晰的研究问题或目标:确定您的研究目标,理解您想从研究中得到什么,并根据这些目标设计研究计划和方法。
3. 扎实的文献综述:通过对各种可靠来源的文献进行全面分析和综述,找到研究领域中的空白和你的研究需要填补的知识漏洞。
4. 合适的研究方法和数据收集:根据研究目标和问题选择合适的研究方法和数据收集技能,并确保收集到的数据完整、准确和可靠。
5. 严谨的数据分析:支持您论文的结论以及评估研究方法和数据的有效性,选择合适的数据分析软件,对数据进行适当的分析和解释。
6. 清晰的结论和推荐:清楚地表述您发现的问题、已知和未知的解决方案,并推荐以后的研究方向或扩展领域的研究。
7. 正确的引用和参考文献格式:确保采用正确的引用格式,并在引用时使用双重核查策略以避免抄袭,尊重原作权人。
希望这些提示能够帮助您写出一篇高质量的硕士毕业论文。如果您还有任何问题或需要更多帮助,请随时告诉我!
(以上由“知否AI问答”回复,可以免费直接访问体验)
写论文的话是要多多去实践,多去看,多思考的,因为都是大脑空空是写不出来东西的,而且在平时的话应该多写,这样才会提升你的语言表达能力,也可以咨询你的导师,因为它们对这样的事情会比较的专业
珍贵的四年大学生活已接近尾声,感觉非常有必要总结一下大学四年的得失,从中继承做得好的方面改进不足的地方,使自己回顾走过的路,也更是为了看清将来要走的路。学习成绩不是非常好,但我却在学习的过程中收获了很多。首先是我端正了学习态度。在我考进大学时,脑子里想的是好好放松从重压下解放出来的自己,然而很快我就明白了,大学仍需努力认真的学习。看到周围的同学们拼命的学习,我也打消了初衷,开始大学的学习旅程。其次是极大程度的提高了自己的自学能力。由于大学的授课已不再像高中时填鸭式那样,而是一节课讲述很多知识,只靠课堂上听讲是完全不够的。这就要求在课下练习巩固课堂上所学的知识,须自己钻研并时常去图书馆查一些相关资料。日积月累,自学能力得到了提高。再有就是懂得了运用学习方法同时注重独立思考。要想学好只埋头苦学是不行的,要学会“方法”,做事情的方法。古话说的好,授人以鱼不如授人以渔,我来这里的目的就是要学会“渔”,但说起来容易做起来难,我换了好多种方法,做什么都勤于思考,遇有不懂的地方能勤于请教。在学习时,以“独立思考”作为自己的座右铭,时刻不忘警戒。随着学习的进步,我不止是学到了公共基础学科知识和很多专业知识,我的心智也有了一个质的飞跃,能较快速的掌握一种新的技术知识,我认为这对于将来很重要。在学习知识这段时间里,我更与老师建立了浓厚的师生情谊。老师们的谆谆教导,使我体会了学习的乐趣。我与身边许多同学,也建立了良好的学习关系,互帮互助,克服难关。现在我已经大四,正在做毕业设计,更锻炼了自我的动手和分析问题能力,受益匪浅。一直在追求人格的升华,注重自己的品行。我崇拜有巨大人格魅力的人,并一直希望自己也能做到。
极限分为 一般极限 , 还有个数列极限, (区别在于数列极限时发散的, 是一般极限的一种)2解决极限的方法如下:(我能列出来的全部列出来了!!!!!你还能有补充么???)1 等价无穷小的转化, (只能在乘除时候使用,但是不是说一定在加减时候不能用 但是前提是必须证明拆分后极限依然存在) e的X次方-1 或者 (1+x)的a次方-1等价于Ax 等等 。 全部熟记(x趋近无穷的时候还原成无穷小)2落笔他 法则 (大题目有时候会有暗示 要你使用这个方法)首先他的使用有严格的使用前提!!!!!!必须是 X趋近 而不是N趋近!!!!!!!(所以面对数列极限时候先要转化成求x趋近情况下的极限, 当然n趋近是x趋近的一种情况而已,是必要条件 (还有一点 数列极限的n当然是趋近于正无穷的 不可能是负无穷!)必须是 函数的导数要存在!!!!!!!!(假如告诉你g(x), 没告诉你是否可导, 直接用无疑于找死!!)必须是 0比0 无穷大比无穷大!!!!!!!!!当然还要注意分母不能为0 落笔他 法则分为3中情况1 0比0 无穷比无穷 时候 直接用 2 0乘以无穷 无穷减去无穷 ( 应为无穷大于无穷小成倒数的关系)所以 无穷大都写成了无穷小的倒数形式了。通项之后 这样就能变成1中的形式了3 0的0次方 1的无穷次方 无穷的0次方 对于(指数幂数)方程 方法主要是取指数还取对数的方法, 这样就能把幂上的函数移下来了, 就是写成0与无穷的形式了 , ( 这就是为什么只有3种形式的原因, LNx两端都趋近于无穷时候他的幂移下来趋近于0 当他的幂移下来趋近于无穷的时候 LNX趋近于0)3泰勒公式 (含有e的x次方的时候 ,尤其是含有正余旋 的加减的时候要 特变注意 !!!!)E的x展开 sina 展开 cos 展开 ln1+x展开 对题目简化有很好帮助4面对无穷大比上无穷大形式的解决办法取大头原则 最大项除分子分母!!!!!!!!!!!看上去复杂处理很简单 !!!!!!!!!!5无穷小于有界函数的处理办法面对复杂函数时候, 尤其是正余旋的复杂函数与其他函数相乘的时候,一定要注意这个方法。面对非常复杂的函数 可能只需要知道它的范围结果就出来了!!!6夹逼定理(主要对付的是数列极限!)这个主要是看见极限中的函数是方程相除的形式 ,放缩和扩大。7等比等差数列公式应用(对付数列极限) (q绝对值符号要小于1)8各项的拆分相加 (来消掉中间的大多数) (对付的还是数列极限)可以使用待定系数法来拆分化简函数9求左右求极限的方式(对付数列极限) 例如知道Xn与Xn+1的关系, 已知Xn的极限存在的情况下, xn的极限与xn+1的极限时一样的 ,应为极限去掉有限项目极限值不变化10 2 个重要极限的应用。 这两个很重要 !!!!!对第一个而言是X趋近0时候的sinx与x比值 。 地2个就如果x趋近无穷大 无穷小都有对有对应的形式(地2个实际上是 用于 函数是1的无穷的形式 )(当底数是1 的时候要特别注意可能是用地2 个重要极限)11 还有个方法 ,非常方便的方法就是当趋近于无穷大时候不同函数趋近于无穷的速度是不一样的!!!!!!!!!!!!!!!x的x次方 快于 x! 快于 指数函数 快于 幂数函数 快于 对数函数 (画图也能看出速率的快慢) !!!!!!当x趋近无穷的时候 他们的比值的极限一眼就能看出来了12 换元法 是一种技巧,不会对模一道题目而言就只需要换元, 但是换元会夹杂其中 13假如要算的话 四则运算法则也算一种方法 ,当然也是夹杂其中的14还有对付数列极限的一种方法, 就是当你面对题目实在是没有办法 走投无路的时候可以考虑 转化为定积分。 一般是从0到1的形式 。 15单调有界的性质对付递推数列时候使用 证明单调性!!!!!!16直接使用求导数的定义来求极限 ,(一般都是x趋近于0时候,在分子上f(x加减麽个值)加减f(x)的形式, 看见了有特别注意)(当题目中告诉你F(0)=0时候 f(0)导数=0的时候 就是暗示你一定要用导数定义!!!!),咱英语不好,lim为极限号,下面看清趋向于0还是无穷,根据以上方法即可。嘻嘻,努力哦,加油 资料来源:
先根据单调有界性、或数列的压缩映像的性质等证明极限存在 再将递推式中的n趋近于正无穷,使得an+k(k=0,1,...)的值均为所要求的极限值, 递推式也就由此变成了一个方程.解这个方程,再根据实际情况讨论根的去留,得出最终结论.
极限理论是数学分析课程的理论依据,就因为引入极限思想,微积分才有了理论根基,从而可以解决很多初等数学不能解决的实际问题.极限理论贯穿于数学分析课程的始终.因此,教学中让学生深刻理解极限理论对学好整门课程起到至关重要的作用.作者就自己多年教授数学分析课程的经验,谈谈数列极限与函数极限的联系与本质区别.1.关于数列极限数列初等数学中对数列这样定义:按照一定顺序排列的一列数称为数列.数学分教材[1]关于数列的定义:若函数f的定义域是全体正整数集N,则称f:N→R或f(n),n∈N为数列.正因为正整数集的元素可按从小到大的顺序排列,所以数列f(n)也可写作a,a,…a…,或简单地记作{a},其中a是该数列的通项.看得出来,数列就是一正整数集为定义域的函数,即所有数列的定义域都是正整数集.数列的极限的定义定义1设{a}为数列,a为定数.若对任给的正数?藓,总存在正整数N,使得当n>N时,有|a-a|<?藓,则称数列{a}收敛于a,定数a为数列{a}的极限,并记作a=.关于函数极限→∞时函数极限定义2设f为定义[a,+∞)在上的函数,A为定数,若对任给的正数?藓,存在正数M(≥a),使得当x>M时有|f(x)-A|<?藓,则称函数当x→+∞时以A为极限,记作f(x)=A.现设f为定义在U(-∞)或U(∞)上的函数,当x→-∞或x→∞时,若函数值无限地接近某定数A,则称f当x→-∞或x→∞时以A为极限,f(x)=A或f(x)=→x时函数极限定义3(函数极限的?藓-δ定义)设函数f在点x的某个空心邻域U(x;δ′)内有定义,A为定数,若对任给的正数ε,存在正数δ(<δ′),使得当0<|x-x|<δ时有|f(x)-A|<0ε,则称函数f当x→x时以A为极限,记作f(x)=A.类似可定义f(x)=A及f(x)=.数列极限与函数极限的异同及根本原因从以上定义可以看出,数列极限与函数极限有相同点也有不同点,研究二者的方法大同小异,相同点是数列极限与函数极限中当x→+∞时的类型完全相似,因此可以用相同的方法研究.二者的不同点在于,数列极限只有一种类型,就是n→∞时的极限;而函数极限细分有六种类型x→+∞;x→-∞;x→∞;x→x;x→x;x→x的极限,分类的标准是根据的趋向的不同来分类.二者的相同点源自二者都是函数,数列可以认为是特殊情况的函数,任何一个不同的数列都以正整数集为定义域;而通常意义下的函数在数学分析课程中是定义在实数范围的,其定义域可以是实数集也可以是实数集的某个子集.正因为将二者同看成函数的情况下,由于二者的定义域范围不同,导致二者极限类型的不同.数列的定义域是正整数集,那自变量的取值为1、2、3……,自变量的最小取1,因此不可能趋向于-∞,又因为数列各项必须取整数,所以它不可能趋近于某个定数,自变量n只可能有一种趋向于+∞;而通常意义下的函数是在实数范围内的讨论,因此,自变量x既可以趋近于+∞,又可以趋近于-∞;如果自变量x同时趋近于+∞和-∞时函数极限存在,则称x→∞时函数极限存在.同理,因为实数集的稠密性,自变量x会趋近于某个定数x,根据自变量x趋近于x的方向不同又可以分为x点处的左极限和右极限,于是某定点处有三种类型x→x;x→x;x→x函数极限.综上,数列是特殊的函数,正因为数列作为函数的特殊性,使数列极限相对简单并且具有相对理想的性质,收敛数列的所有性质都具有整体性;而收敛函数的所有性质都只能满足局部性质.导致二者性质差别的真正原因也在于二者作为函数定义域的范围不同.笔者认为,还要真正学透极限,一定要从本质上研究导致他们不同的原因,相同的理论完全可以通过类比的方式学习,而学习的重点应该放在二者的不同上,弄懂有什么不同,为什么不同,只有懂得了“为什么”,才能真正学懂相应知识.
若得到 AC-B^2=0,还不能得到是否有极值的结论,需要借助更高阶的偏导数来判别,理论依据是Taylor公式。一般教材都没介绍,可参考一元函数的极值的第二个充分条件。谢谢你的这个问题,它将作为我校数学专业下一届学生的毕业论文题目。
b^2-ac未定
若得到ac-b^2=0,还不能得到是否有极值的结论。
先求导,然后使导函数等于零,求出x值,接着确定定义域,画表格。最后找出极值。
注意:极值是把导函数中的x值代入原函数。
扩展资料:
求解函数的极值:
寻求函数整个定义域上的最大值和最小值是数学优化的目标。如果函数在闭合区间上是连续的,则通过极值定理存在整个定义域上的最大值和最小值。
此外,整个定义域上最大值(或最小值)必须是域内部的局部最大值(或最小值),或必须位于域的边界上。
因此,寻找整个定义域上最大值(或最小值)的方法是查看内部的所有局部最大值(或最小值),并且还查看边界上的点的最大值(或最小值),并且取最大值或最小的)一个。
极值的定义如下:
若函数f(x)在x的一个邻域D有定义,且对D中除x的所有点,都有f(x) 同理,若对D的所有点,都有f(x)>f(x₀),则称f(x₀)是函数f(x)的一个极小值 参考资料来源:百度百科:极值 数学教学是让学生了解自己的知识、能力水平,弥补缺陷,纠正错误,完善知识系统和思维系统,提高分析和解决问题的能力的过程。下面我给大家带来2021各阶段数学教学论文题目参考,希望能帮助到大家! 中职数学教学论文题目 1、线性方程的叠加原理及其应用 2、作为函数的含参积分的分析性质研究 3、周期函数初等复合的周期性研究 4、“高等代数”知识在几何中的应用 5、矩阵初等变换的应用 6、“高等代数”中的思想 方法 7、中职数学教学中的数学思想和方法 8、任N个自然数的N级排列的逆序数 9、“高等代数”中多项式的值,根概念及性质的推广 10、线性变换“可对角化”的条件及“对角化”方法 11、数域概念的等价说法及其应用 12、中职数学教学与能力培养 13、数学能力培养的重要性及途径 14、论数学中的基本定理与基本方法 15、论电脑、人脑与数学 16、论数学中的收敛与发散 17、论小概率事件的发生 18、论高等数学与初等数学教学的关系 19、论数学教学中公式的教学 20、数学教学中学生应用能力的培养 21、数学教与学的心理探究 22、论数学思想方法的教与学 23、论数学家与数学 24、对称思想在解题中的应用 25、复数在中学数学中应用 26、复变函数论思想方法在中学数学教学中的应用 27、复变函数论思想方法在中学数学竞赛中的应用 28、代数学基本定理的几种证明 29、复变函数的洛必达法则 30、复函数与实函数的级数理论综述 31、微积分学与哲学 32、实数完备性理论综述 33、微积分学中辅助函数的构造 34、闭区间上连续函数性质的推广 35、培养学生的数学创新能力 36、教师对学生互动性学习的影响 37、学生数学应用意识的培养 38、数学解题中的 逆向思维 的应用 39、数学直觉思维的培养 40、数学教学中对学生心理素质的培养 41、用心理学理论指导数学教学 42、开展数学活动课的理论和实践探索 43、《数学课程标准》解读 44、数学思想在数学教学中的应用,学生思维品质的培养 45、数形结合思想在中学数学中的应用 46、运用化归思想,探索解题途径 47、谈谈构造法解题 48、高等数学在中学数学中的应用 49、解决问题的策略思想--等价与非等价转化 50、挖掘题中的隐含条件解题 51、向量在几何证题中的运用 52、数学概念教学初探 53、数学 教育 中的问题解决及其教学途径 54、分类思想在数学教学中的作用 55、“联想”在数学中的作用研究 56、利用习题变换,培养学生的思维能力 57、中学数学学习中“学习困难生”研究 58、数学概念教学研究 59、反例在数学教学中的作用研究 60、中学生数学问题解决能力培养研究 61、数学教育评价研究 62、传统中学数学教学模式革新研究 63、数学研究性学习设计 64、数学开放题拟以及教学 65、数学课堂 文化 建设研究 66、中职数学教学设计及典型课例分析 67、数学课程标准的新增内容的尝试教学研究 68、数学课堂教学安全采集与研究 69、中职数学选修课教学的实话及效果分析 70、常微分方程与初等数学 71、由递推式求数列的通项及和向量代数在中学中的应用 72、浅谈划归思想在数学中的应用 73、初等函数的极值 74、行列式的计算方法 75、数学竟赛中的不等式问题 76、直觉思维在中学数学中的应用 77、常微分方程各种解的定义,关系及判定方法 78、高等数学在中学数学中的应用 79、常微分方程的发展及应用 80、充分挖掘例题的数学价值和 智力开发 功能 小学数学教学论文题目参考 1、小学数学教师几何知识掌握状况的调查研究 2、小学数学教师教材知识发展情况研究 3、中日小学数学“数与代数”领域比较研究 4、浙江省Y县县域内小学数学教学质量差异研究 5、小学数学教师教科书解读的影响因素及调控策略研究 6、中国、新加坡小学数学新课程的比较研究 7、小学数学探究式教学的实践研究 8、基于教育游戏的小学数学教学设计研究 9、小学数学教学中创设有效问题情境的策略研究 10、小学数学生活化教学的研究 11、数字 故事 在小学数学课堂教学中的应用研究 12、小学数学教师专业发展研究 13、中美小学数学“统计与概率”内容比较研究 14、数学文化在小学数学教学中的价值及其课程论分析 15、小学数学教师培训内容有效性的研究 16、小学数学课堂师生对话的特征分析 17、小学数学优质课堂的特征分析 18、小学数学解决问题方法多样化的研究 19、我国小学数学新教材中例题编写特点研究 20、小学数学问题解决能力培养的研究 21、渗透数学思想方法 提高学生思维素质 22、引导学生参与教学过程 发挥学生的主体作用 23、优化数学课堂练习设计的探索与实践 24、实施“开放性”教学促进学生主体参与 25、数学练习要有趣味性和开放性 26、开发生活资源,体现数学价值 27、对构建简洁数学课堂的几点认识和做法 28、刍议“怎样简便就怎样算”中的“二指技能”现象 29、立足现实起点,提高课堂效率 30、宁缺毋滥--也谈课堂教学中有效情境的创设 31、如何让“生活味”的数学课堂多一点“数学味” 32、有效教学,让数学课堂更精彩 33、提高数学课堂教学效率之我见 34、为学生营造一片探究学习的天地 35、和谐课堂,让预设与生成共精彩 36、走近学生,恰当提问--谈数学课堂提问语的优化策略 37、谈小学数学课堂教学中教师对学生的评价 38、课堂有效提问的初步探究 39、浅谈小学数学研究性学习的途径 40、能说会道,为严谨课堂添彩 41、小学数学教学中的情感教育 42、小学数学学困生的转化策略 43、新课标下提高日常数学课堂效率的探索 44、让学生参与课堂教学 45、浅谈新课程理念下如何优化数学课堂教学 46、数学与生活的和谐之美 47、运用结构观点分析教学小学应用题 48、构建自主探究课堂,促进学生有效发展 49、精心设计课堂结尾巩固提高教学效果 50、浅谈数学课堂提问艺术 51、浅谈发式教学在小学数学教学中的运用 52、浅谈数学课堂中学生问题意识的培养 53、巧用信息技术,优化数学课堂教学 54、新课改下小学复式教学有感 55、让“对话”在数学课堂中焕发生命的精彩 56、小学几何教学的几点做法 初中数学教学论文题目 1、翻转课堂教学模式在初中数学教学中的应用研究 2、数形结合思想在初中数学教学中的实践研究 3、基于翻转课堂教学模式的初中数学教学设计研究 4、初中数学新教材知识结构研究 5、初中数学中的研究性学习案例开发实施研究 6、学案导学教学模式在初中数学教学中的实践与研究 7、从两种初中数学教材的比较看初中数学课程改革 8、信息技术与初中数学教学整合问题研究 9、初中数学学习困难学生学业情绪及其影响因素研究 10、初中数学习题教学研究 11、初中数学教材分析方法的研究 12、初中数学教师课堂教学目标设计的调查研究 13、初中数学学习障碍学生一元一次方程应用题解题过程及补救教学的个案研究 14、初中数学教师数学教学知识的发展研究 15、数学史融入初中数学教科书的现状研究 16、初中数学教师课堂有效教学行为研究 17、数学史与初中数学教学整合的现状研究 18、数学史融入初中数学教育的研究 19、初中数学教材中数学文化内容编排比较研究 20、渗透数学基本思想的初中数学课堂教学实践研究 21、初中数学教师错误分析能力研究 22、初中数学优秀课教学设计研究 23、初中数学课堂教学有效性的研究 24、初中数学数形结合思想教学研究与案例分析 25、新课程下初中数学教科书的习题比较研究 26、中美初中数学教材难度的比较研究 27、数学史融入初中数学教育的实践探索 28、初中数学课堂教学小组合作学习存在的问题及对策研究 29、初中数学教师数学观现状的调查研究 30、初中数学学困生的成因及对策研究 31、“几何画板”在初中数学教学中的应用研究 32、数学素养视角下的初中数学教科书评价 33、北师大版初中数学教材中数形结合思想研究 34、初中数学微课程的设计与应用研究 35、初中数学教学生成性资源利用研究 36、基于问题学习的初中数学情境教学模式探究 37、学案式教学在初中数学教学中的实验研究 38、数学文化视野下的初中数学问题情境研究 39、中美初中数学教材中习题的对比研究 40、基于人教版初中数学教材中数学史专题的教学探索 41、初中数学教学应重视学生直觉思维能力的培养 42、七年级学生学习情况的调研 43、老师,这个答案为什么错了?--由一堂没有准备的探究课引发的思考 44、新课程背景下学生数学学习发展性评价的构建 45、初中数学学生学法辅导之探究 46、合理运用数学情境教学 47、让学生在自信、兴趣和成功的体验中学习数学 48、创设有效问题情景,培养探究合作能力 49、重视数学教学中的生成展示过程,培养学生 创新思维 能力 50、从一道中考题的剖析谈梯形中面积的求解方法 51、浅谈课堂教学中的教学机智 52、从《确定位置》的教学谈体验教学 53、谈主体性数学课堂交流活动实施策略 54、对数学例题教学的一些看法 55、新课程标准下数学教学新方式 56、举反例的两点技巧 57、数学课堂教学中分层教学的实践与探索 58、新课程中数学情境创设的思考 59、数学新课程教学中学生思维的激发与引导 60、新课程初中数学直觉思维培养的研究与实践 2021各阶段数学教学论文题目相关 文章 : ★ 优秀论文题目大全2021 ★ 大学生论文题目大全2021 ★ 大学生论文题目参考2021 ★ 优秀论文题目2021 ★ 2021毕业论文题目怎么定 ★ 2021教育学专业毕业论文题目 ★ 2021优秀数学教研组工作总结5篇 ★ 2021数学教学反思案例 ★ 2021交通运输方向的论文题目及选题 ★ 小学数学教学论文参考(2) 极限理论是数学分析课程的理论依据,就因为引入极限思想,微积分才有了理论根基,从而可以解决很多初等数学不能解决的实际问题.极限理论贯穿于数学分析课程的始终.因此,教学中让学生深刻理解极限理论对学好整门课程起到至关重要的作用.作者就自己多年教授数学分析课程的经验,谈谈数列极限与函数极限的联系与本质区别.1.关于数列极限数列初等数学中对数列这样定义:按照一定顺序排列的一列数称为数列.数学分教材[1]关于数列的定义:若函数f的定义域是全体正整数集N,则称f:N→R或f(n),n∈N为数列.正因为正整数集的元素可按从小到大的顺序排列,所以数列f(n)也可写作a,a,…a…,或简单地记作{a},其中a是该数列的通项.看得出来,数列就是一正整数集为定义域的函数,即所有数列的定义域都是正整数集.数列的极限的定义定义1设{a}为数列,a为定数.若对任给的正数?藓,总存在正整数N,使得当n>N时,有|a-a|<?藓,则称数列{a}收敛于a,定数a为数列{a}的极限,并记作a=.关于函数极限→∞时函数极限定义2设f为定义[a,+∞)在上的函数,A为定数,若对任给的正数?藓,存在正数M(≥a),使得当x>M时有|f(x)-A|<?藓,则称函数当x→+∞时以A为极限,记作f(x)=A.现设f为定义在U(-∞)或U(∞)上的函数,当x→-∞或x→∞时,若函数值无限地接近某定数A,则称f当x→-∞或x→∞时以A为极限,f(x)=A或f(x)=→x时函数极限定义3(函数极限的?藓-δ定义)设函数f在点x的某个空心邻域U(x;δ′)内有定义,A为定数,若对任给的正数ε,存在正数δ(<δ′),使得当0<|x-x|<δ时有|f(x)-A|<0ε,则称函数f当x→x时以A为极限,记作f(x)=A.类似可定义f(x)=A及f(x)=.数列极限与函数极限的异同及根本原因从以上定义可以看出,数列极限与函数极限有相同点也有不同点,研究二者的方法大同小异,相同点是数列极限与函数极限中当x→+∞时的类型完全相似,因此可以用相同的方法研究.二者的不同点在于,数列极限只有一种类型,就是n→∞时的极限;而函数极限细分有六种类型x→+∞;x→-∞;x→∞;x→x;x→x;x→x的极限,分类的标准是根据的趋向的不同来分类.二者的相同点源自二者都是函数,数列可以认为是特殊情况的函数,任何一个不同的数列都以正整数集为定义域;而通常意义下的函数在数学分析课程中是定义在实数范围的,其定义域可以是实数集也可以是实数集的某个子集.正因为将二者同看成函数的情况下,由于二者的定义域范围不同,导致二者极限类型的不同.数列的定义域是正整数集,那自变量的取值为1、2、3……,自变量的最小取1,因此不可能趋向于-∞,又因为数列各项必须取整数,所以它不可能趋近于某个定数,自变量n只可能有一种趋向于+∞;而通常意义下的函数是在实数范围内的讨论,因此,自变量x既可以趋近于+∞,又可以趋近于-∞;如果自变量x同时趋近于+∞和-∞时函数极限存在,则称x→∞时函数极限存在.同理,因为实数集的稠密性,自变量x会趋近于某个定数x,根据自变量x趋近于x的方向不同又可以分为x点处的左极限和右极限,于是某定点处有三种类型x→x;x→x;x→x函数极限.综上,数列是特殊的函数,正因为数列作为函数的特殊性,使数列极限相对简单并且具有相对理想的性质,收敛数列的所有性质都具有整体性;而收敛函数的所有性质都只能满足局部性质.导致二者性质差别的真正原因也在于二者作为函数定义域的范围不同.笔者认为,还要真正学透极限,一定要从本质上研究导致他们不同的原因,相同的理论完全可以通过类比的方式学习,而学习的重点应该放在二者的不同上,弄懂有什么不同,为什么不同,只有懂得了“为什么”,才能真正学懂相应知识. 根据heine定理,函数极限数列极限是可以转化的:f(x)一>a(x一>xo)的充要条件为对任何以xo为极限的数列xn!xn不等于xo,都有f(xn)一>a(n一>无穷) 作者:唐家三公主链接:来源:知乎著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。基于数学核心素养的教学设计——以“简单的线性规划问题”为例职前数学教师学科知识的调查研究——以小学“数与代数”内容为例向量数量积的多元表示及其应用在线教育平台用户行为研究数学分析中的函数表示苏教版小学数学教材中组合问题的内容编排高中生理解数学归纳法的障碍分析及应对策略SOLO分类理论在评价解题特征中的应用研究“中国学习者悖论”之解——基于学生数学学习态度的视角表征视角下的数形结合思想教学研究软集分析理论中的积分理论软度量空间下的软P-H-R 型压缩及软Meir-Keeler 压缩的不动点定理人教版、苏教版与北师版教材的对比分析——以初中教材《全等三角形》为例小学生对除法概念及性质理解水平的调查研究国际背景下中国学生数学观现状研究——基于淮海经济区初二学生的调查模糊软度量空间的性质及其上的不动点理论一类非线性微分方程的Hyers-Ulam稳定性关于苏教版和人教版教科书中数学核心素养的比较分析不动点原理及其应用2013-2017年江苏高考数学试题浅析基于综合风险评价模型对水资源短缺的预测 ---以徐州市为例新课程标准下的高中数学教学设计和试题编写相关研究基于小波降噪的HMM模型在沪深300指数择时中的应用C语言编程在小学数学教学中的初探浅谈极限思想在中小学的应用斯金纳的强化理论在数学课堂教学上的应用一类特殊函数的极限数学实验在初中数学教学中的应用从常微分方程的解到代数方程的根新课程标准下高中数学教学过程中如何培养学生的核心素养小学数学几何直观能力培养的教学策略研究常微分方程特殊形式转换成标准形式的应用几类数学思想在中学数学中的应用关于Fibonacci数列通项公式证明的数学方法分类中学数学翻转课堂实施情况及实现路径平面与球面三角形的比较具有多时滞的2型糖尿病血糖-胰岛素调节系统周期解的存在性及其稳定性研究常见统计流形的几何结构初中生几何证明认知障碍分析及对策研究数学错题本的教学价值和实现路径两类二阶差分方程解的渐近性质二元函数极值的充分条件新课标下小学数学教材中“综合与实践”的比较——以苏教版和人教版为例蝴蝶定理的证明、推广及其应用对《等周问题的一个初等证明》的报告中学阶段的数学启发式教学热方程在几何中的应用一类具有负反馈和抑制的反应扩散生态模型动力学行为的理论分析等宽曲面的构造高中不等式证明的对策研究比较视角下江苏高考"不等式"内容的综合难度研究线性变换思想在中学数学中的应用整数环上多项式的可约性数学分析中的部分问题初探对江苏近十年高考数学一卷最后一题的研究黎卡提方程与二阶齐次线性微分方程的解法探究三阶常系数线性微分方程的常数变易法一类二阶线性微分方程的常数变易法BKP方程的十类解用方程思想解决中学数学问题浅谈微元法在数学中的应用管状曲面上的特殊曲线一类函数列的积分中值点列的收敛子列的渐进性数学文化在数学教学中的渗透研究悬链面上的渐近线一类二阶非线性微分方程的解法昆虫爬行最短路径问题黄金椭圆的若干优美性质 摘要:本文对工程测量学重新进行了定义,指出了该学科的地位和研究应用领域;阐述了工程测量学领域通用和专用仪器的发展;在理论方法发展方面,重点对平差理论、工程网优化设计、变形观测数据处理方法进行了归纳和总结。扼要地叙述了大型特种精密工程测量在国内外的发展情况。结合科研和开发实践,简介了地面控制与施工测量工程内外业数据处理一体化自动化系统——科傻系统。最后展望了21世纪工程测量学若干发展方向。关键词:工程测量工业测量精密工程测量测量机器人工程网优化设计一、学科地位和研究应用领域学科定义工程测量学是研究地球空间中具体几何实体的测量描绘和抽象几何实体的测设实现的理论方法和技术的一门应用性学科。它主要以建筑工程、机器和设备为研究服务对象。学科地位测绘科学和技术是一门具有悠久历史和现代发展的一级学科。该学科无论怎样发展,服务领域无论怎样拓宽,与其他学科的交叉无论怎样增多或加强,学科无论出现怎样的综合和细分,学科名称无论怎样改变,学科的本质和特点都不会改变。总的来说,整个学科的二级学科仍应作如下划分:——大地测量学;——工程测量学;——航空摄影测量与遥感学;——地图制图学;——不动产地籍与土地整理。研究应用领域目前国内把工程建设有关的工程测量按勘测设计、施工建设和运行治理三个阶段划分;也有按行业划分成:线路工程测量、水利工程测量、桥隧工程测量、建筑工程测量、矿山测量、海洋工程测量、军事工程测量、3维工业测量等,几乎每一行业和工程测量都有相应的著书或教材。由Hennecke,Mueller,Werner3个德国人所编著的工程测量学,主要按下述内容进行划分和编写:①测量仪器和方法;②线路、铁路、公路建设测量;③高层建筑测量;④地下建筑测量;⑤安全监测;⑥机器和设备测量。由于工程测量的研究应用领域非常广泛,发展变化也很快,因此写书十分困难。目前国内外没有一本全面涉及工程测量学理论、技术、方法和实际应用的现代专著或教材。国际测量师联合会的第六委员会称作工程测量委员会,过去它下设4个工作组:测量方法和限差;土石方计算;变形测量;地下工程测量。此外还设了一个非凡组:变形分析与解释。现在,下设了6个工作组和2个专题组。6个工作组是:大型科学设备的高精度测量技术与方法;线路工程测量与优化;变形测量;工程测量信息系统;激光技术在工程测量中的应用;电子科技文献和网络。2个专题组是:工程和工业中的非凡测量仪器;工程测量标准。德国、瑞士、奥地利3个德语语系国家自50年代发起组织每3~4年举行一次的“工程测量国际学术讨论会”。过去把工程测量划分为以下几个专题:测量仪器和数据获取;数据解释、处理和应用;高层建筑和设备安装测量;地下和深层建筑测量;环境和工程建筑物变形监测。1992年第11届讨论会的专题是:测量理论与测量方案;测量技术和测量系统;信息系统和CAD;在建筑工程和工业中的应用。1996年的第12届讨论会的专题是:测量和数据处理系统;监测和控制;在工业和建筑工程中的质量问题;数据模型和信息系统;交叉学科的大型工程项目。从以上可见,工程测量学的研究领域既有相对的固定性,又是不断发展变化的。笔者认为,工程测量学主要包括以工程建筑为对象的工程测量和以设备与机器安装为对象的工业测量两大部分。在学科上可划分为普通工程测量和精密工程测量。工程测量学的主要任务是为各种工程建设提供测绘保障,满足工程所提出的要求。精密工程测量代表着工程测量学的发展方向,大型特种精密工程建设是促进工程测量学科发展的动力。二、工程测量仪器的发展工程测量仪器可分通用仪器和专用仪器。通用仪器中常规的光学经纬仪、光学水准仪和电磁波测距仪将逐渐被电子全测仪、电子水准仪所替代。电脑型全站仪配合丰富的软件,向全能型和智能化方向发展。带电动马达驱动和程序控制的全站仪结合激光、通讯及CCD技术,可实现测量的全自动化,被称作测量机器人。测量机器人可自动寻找并精确照准目标,在1s内完成一目标点的观测,像机器人一样对成百上千个目标作持续和重复观测,可广泛用于变形监测和施工测量。GPS接收机已逐渐成为一种通用的定位仪器在工程测量中得到广泛应用。将GPS接收机与电子全站仪或测量机器人连接在一起,称超全站仪或超测量机器人。它将GPS的实时动态定位技术与全站仪灵活的3维极坐标测量技术完美结合,可实现无控制网的各种工程测量。专用仪器是工程测量学仪器发展最活跃的,主要应用在精密工程测量领域。其中,包括机械式、光电式及光机电结合式的仪器或测量系统。主要特点是:高精度、自动化、遥测和持续观测。用于建立水平的或竖直的基准线或基准面,测量目标点相对于基准线的偏距,称为基准线测量或准直测量。这方面的仪器有正、倒锤与垂线观测仪,金属丝引张线,各种激光准直仪、铅直仪、自准直仪,以及尼龙丝或金属丝准直测量系统等。在距离测量方面,包括中长距离、短距离和微距离及其变化量的精密测量。以ME5000为代表的精密激光测距仪和TERRAMETERLDM2双频激光测距仪,中长距离测量精度可达亚毫米级;可喜的是,许多短距离、微距离测量都实现了测量数据采集的自动化,其中最典型的代表是铟瓦线尺测距仪DISTINVAR,应变仪DISTERMETERISETH,石英伸缩仪,各种光学应变计,位移与振动激光快速遥测仪等。采用多谱勒效应的双频激光干涉仪,能在数十米范围内达到μm的计量精度,成为重要的长度检校和精密测量设备;采用CCD线列传感器测量微距离可达到百分之几微米的精度,它们使距离测量精度从毫米、微米级进入到纳米级世界。高程测量方面,最显著的发展应数液体静力水准测量系统。这种系统通过各种类型的传感器测量容器的液面高度,可同时获取数十乃至数百个监测点的高程,具有高精度、遥测、自动化、可移动和持续测量等特点。两容器间的距离可达数十公里,如用于跨河与跨海峡的水准测量;通过一种压力传感器,答应两容器之间的高差从过去的数厘米达到数米。与高程测量有关的是倾斜测量,即确定被测对象在竖直平面内相对于水平或铅直基准线的挠度曲线。各种机械式测斜仪、电子测倾仪都向着数字显示、自动记录和灵活移动等方向发展,其精度达微米级。具有多种功能的混合测量系统是工程测量专用仪器发展的显著特点,采用多传感器的高速铁路轨道测量系统,用测量机器人自动跟踪沿铁路轨道前进的测量车,测量车上装有棱镜、斜倾传感器、长度传感器和微机,可用于测量轨道的3维坐标、轨道的宽度和倾角。液体静力水准测量与金属丝准直集成的混合测量系统在数百米长的基准线上可精确测量测点的高程和偏距。综上所述,工程测量专用仪器具有高精度、快速、遥测、无接触、可移动、连续、自动记录、微机控制等特点,可作精密定位和准直测量,可测量倾斜度、厚度、表面粗糙度和平直度,还可测振动频率以及物体的动态行为。 三、工程测量理论方法的发展测量平差理论最小二乘法广泛应用于测量平差。最小二乘配置包括了平差、滤波和推估。附有限制条件的条件平差模型被称为概括平差模型,它是各种经典的和现代平差模型的统一模型。测量误差理论主要表现在对模型误差的研究上,主要包括:平差中函数模型误差、随机模型误差的鉴别或诊断;模型误差对参数估计的影响,对参数和残差统计性质的影响;病态方程与控制网及其观测方案设计的关系。由于变形监测网参考点稳定性检验的需要,导致了自由网平差和拟稳平差的出现和发展。观测值粗差的研究促进了控制网可靠性理论,以及变形监测网变形和观测值粗差的可区分性理论的研究和发展。针对观测值存在粗差的客观实际,出现了稳健估计;针对法方程系数阵存在病态的可能,发展了有偏估计。与最小二乘估计相区别,稳健估计和有偏估计称为非最小二乘估计。巴尔达的数据探测法对观测值中只存在一个粗差时有效,稳健估计法具有反抗多个粗差影响的优点。建立改正数向量与观测值真误差向量之间的函数关系,可对多个粗差同时进行定位和定值,这种方法已在通用平差软件包中得到算法实现和应用。方差和协方差分量估计实质上是精化平差的随机模型,过去一直仅停留在理论的研究上。实际中,要求对多种观测量进行综合处理,因此,方差分量估计已成为测量平差的必备内容了。目前,通用平差软件包中已增加了该功能,但还需要在测量规范中明确提出来。需要指出的是:许多测量作业单位喜欢采用附合导线进行逐级加密,主要依据目前规范中有关一、二、三级导线和图根导线的规定。无疑附合导线具有许多优点,但由于多余观测少,发现和反抗粗差的能力较弱,不宜滥用。建立一个区域的控制,首级网点采用GPS测量,下面最好用一个等级的导线网作全面加密。从测量平差理论来看,全面布设的导线网具有更好的图形强度,精密较均匀,可靠性也较高。工程控制网优化设计理论和方法网的优化设计方法有解析法和模拟法两种。解析法是基于优化设计理论构造目标函数和约束条件,解求目标函数的极大值或极小值。一般将网的质量指标作为目标函数或约束条件。网的质量指标主要有精度、可靠性和建网费用,对于变形监测网还包括网的灵敏度或可区分性。对于网的平差模型而言,按固定参数和待定参数的不同,网的优化设计又分为零类、一类、二类和三类优化设计,涉及到网的基准设计,网形、观测值精度以及观测方案的设计。在工程测量中,施工控制网、安装控制网和变形监测网都需要作优化设计。由于采用GPS定位技术和电磁波测距,网的几何图形概念与传统的测角网有很大的区别。除非凡的精密控制网可考虑用专门编写的解析法优化设计程序作网的优化设计外,其他的网都可用模拟法进行设计。模拟法优化设计的软件功能和进行优化设计的步骤主要是:根据设计资料和地图资料在图上选点布网,获取网点近似坐标。模拟观测方案,根据仪器确定观测值精度,可进一步模拟观测值。计算网的各种质量指标如精度、可靠性、灵敏度。精度应包括点位精度、相邻点位精度、任意两点间的相对精度、最弱点和最弱边精度、边长和方位角精度。进一步可计算坐标未知数的协方差阵或部分点坐标的协方差阵,协方差阵的主成份计算,特征值计算,点位误差椭圆、置信椭圆的计算等。可靠性包括每个观测值的多余观测分量和某一观测值的粗差界限值对平差坐标的影响。灵敏度包括灵敏度椭圆、在给定变形向量下的灵敏度指标以及观测值的灵敏度影响系数。将计算出的各质量指标与设计要求的指标比较,使之既满足设计要求,又不致于有太大的富余。通过改变观测值的精度或改变观测方案或局部改变网形等方法重新作上述设计计算,直到获取一个较好的结果。在实践中,总结出了下述优化设计策略:先固定观测值的精度,对选取的网点,观测所有可能的边和方向,计算网的质量的指标,若质量偏低,则必须提高观测值的精度。在某一组先验精度下,若网的质量指标偏高了,这时可按观测值的内部可靠性指标ri,删减观测值。ri太大,说明该观测值显得多余,应删去;若ri很小,则该观测值的精度不宜增加。这种根据ri大小来删除观测值的方法称为从“密”到“疏”,从“肥”到“瘦”的优化策略。从模拟法优化设计的整个过程来看,它是一种试算法,需要有一个好的软件。该软件除具有通用平差软件的功能外,在成果输出的多样性、直观性,在可视化以及人机交互界面设计方面都有更高要求。同时也要求设计者具有坚实的专业知识和丰富的经验。用模拟法可获得一个相对较优且切实可行的方案,可进一步用模拟观测值作网的平差计算,同时可模拟观测值粗差并计算对结果的影响。这种方法称为数学扭曲法或蒙特卡洛法。对于一个精度、可靠性以及灵敏度要求极高的监测网或精密控制网,作上述优化设计和精细计算是十分必要的。国内在这方面的应用道较少。多是为了安全起见,有较大的质量富余,建网费用偏高。网优化设计费用很少,所带来的效益较大,凡是较重要的工程控制网,都应作优化设计。变形观测数据处理工程建筑物及与工程有关的变形的监测、分析及预是工程测量学的重要研究内容。其中的变形分析和预涉及到变形观测数据处理。但变形分析和预的范畴更广,属于多学科的交叉。变形观测数据处理的几种典型方法 工程测量被广泛应用于测绘、国土规划、土建工程等多领域,包含普通测量、控制测量、地形测量、海洋测量、大地测量、道路测量、建筑测量、地下工程测量、桥梁工程测量、隧道工程测量等技能的专业技术。下面是我为大家整理的有关工程测量论文 范文 ,供大家参考。 《 工程测量在水电水利工程建设中的作用 》 摘要:工程测量可为水利工程建设提供准确的数据、资料,对水利工程建设具有重要意义,保持水利水电工程的安全运行,为人民生命财产安全提供着技术性的支持,对促进水利水电事业起着至关重要的作用。本文从以下几个方面对工程测量在水电水利工程建设中的重要作用进行了详细论述。 关键词:工程建设;工程测量;测量数据;作用 在水利水电工程中,测量是一项很重要的工作,它贯穿着水利水电工程建设全过程。经过准确、周密的测量后,水利工程可以顺利的按图施工,还可以为施工质量提供重要的技术支持与保障,更是质量检查的主要手段与 方法 。在规划设计水利工程时,需要进行地形资料的收集与整理,要提供提供中、小比例尺的地形图以及相关的信息,在进行建筑物的设计时需要注意,应该提供的是大比例尺地形图。所以,工程建设与工程测量是确保水利工程项目建设,能够取得成功的重要基础与关键。 1水电水利工程建设中工程测量重要性 (1)现今测量作为一门专业技术,以其能够将设备、建筑物等按照大小、形状、位置等不同设计要求在实地进行标定,以及够准确的采集和表示各种地貌及地物的几何信息等显著特点,被广泛应用到了各种工程建设之中。水利工程施工测量是保证工程施工测量过程处于受控状态,并严格按设计图纸、修改通知、技术规范和合同等的具体要求,进行控制测量的作业。通过资料和图纸进行规划和设计,同时选定最为经济、合理的方案,再通过测量与各项工程的施工相配合,并确保设计意图的正确执行。为满足竣工后工程在管理、使用、维修乃至扩建时的需要,还需编绘竣工图。工程测量数据还可为确定水利工程的堤坝高度、设计水利工程中的各项水工建筑等提供依据。 (2)水利工程结构定型的依据即工程测量,工程测量决定了水利工程的设计和定位,可以利用工程测量来确定水利工程基础、诊断水利工程问题,并且是诊断水利工程质量的最重要手段,各种测量数据可尽早的发现水利工程存在的问题,其意义十分重大。施工测量准备工作是保证整个工程施工测量工作顺利进行的重要环节,包括施工图纸的审核,监理单位提供的平面坐标点和高程点的交接及校核,施工测量方案的编制与数据的整理等。测量在高程放样方面可为模板施工提供准确的基准点,能够保证模板施工的平整度以及混凝土施工提供标高控制线,以确保其在施工后和平整度。工程测量可以为工程施工管理提供可靠的资料以及技术支持,并可对水利工程项目混凝土施工中混凝土种类的使用、混凝土厚度等提供精确的数据。 2水电水利工程测量存在的问题 (1)在水利工程建设要达到水利工程项目建设质量不断提升的目标,就需要进行详细的工程测量,并将工程测量的数据予以应用,以消除那些不可预见的因素确保工程质量。水利工程的施工质量对区域性经济发展和居民的生命安全有重要的影响,在水利水电工程建设阶段需要明确各个控制要点,满足工程实际测量体系的具体要求。在水利水电工程开工建设前期的测量工作,必须按照建设单位的建设规模和具体要求,以及按照项目所在地的自然条件和预期目的进行规模设计。否则将会出现测量数据的误差,就有可能导致水利工程在施工过程中出现严重的质量问题,甚至是引发重大的安全事故造成严重的经济损失,同时对社会方面也会增加严重的负面舆情。 (2)主体结构的施工过程中,要重视工程测量对多方面数据确定的影响,要做好水利工程的轴线、坡面的平整度、 渠道 的中线、大型水利工程建筑物垂直度控制以及主体标高控制等项工作,以防止出现、变形、偏位、渗漏等常见病害的发生,造成对水利工程质量的严重伤害,从而使水利工程项目在日常运行过程的安全性能受到影响。还要作好水工建筑物的变形观测,杜绝由于水工建筑物沉降、位移所引起的安全质量事故发生,以确保水利工程安全的稳定性。工程测量对水利水电工程建设有一定的指导性意义,因此需要结合施工工程设计形式的要求,对不同的设计环节进行分析,适应水利水电工程的建设需求。 3工程测量在水电水利工程建设中的管理与应用 (1)工程测量不但广泛的应用于建筑、土地测量等领域,其在水利工程建设也占据着重要的位置。工程测量能够为水利工程建设提供各项数据,可能保证水利工程建设基础的质量,从而确保整个水利工程项目的质量。随着计算机技术的飞速发展以及“互联网+”时代的到来,出现了地面测量、数字化测绘和RS、GIS、3S、GPS等,先进技术设备和集成测绘新技术的深入应用,使水利水电工程测量的手段和方法进行着快速的更新换代,同时也在不断的开拓着服务领域。这些测量方法最大的特点就是可对数据进行修正,能够让测量对象的参数得到及时修正,提升测量数据的精准度和连续性。 (2)在结合实际对测量工作进行合理的安排,有效提升测量精度,推动水利水电工程建设、促进区域经济健康发展的同时,还应该注重加强包括测量技术水平提高、责任意提升等施工管理人员综合能力素养方面的培养,这样有助于在具体的工作中,采取切实有效的 措施 与方法,以确保工程测量的准确性。需对具体管理人员以及施工人员的工程测量意识进行巩固与加强,通过培训等对他们的质量意识和责任意识进行不断完善,使其在工作能够做到按部就班、不出纰漏,按照流程根据施工图纸进行放样,确定控制高程,以为后面的施工奠定基础,从而加强工程质量。 (3)现阶段对大坝水底地形的测量,主要还是技术人员根据卫星定位技术与多波束探测仪之间的紧密配合来进行的。近年来,我国水利水电工程测量研究投入增多,发展很快,进步很大,取得了显著成绩,在此基础之上我们还应注意,要加强管理人员以及施工人员的测量意识,要进一步提高对测量工作的重视度,从而达到各个环节工程测量水平的全面提升。随着测量数据传播与应用的多样化、网络化及社会化和测量数据采集与处理的实时化、自动化及数字化,还有测量数据管理的标准化、规格化与科学化,水利水电工程测量技术一定会有一个辉煌的未来。 4结束语 工程测量精准的观测成果,为水利水电工程质量和人民生命财产的安全提供了坚实的保障。水利工程的规划、设计和施工以及运行管理等各环节、各阶段都离不开测量工作。工程测量工作要不断的 总结 工作 经验 ,提升专业素质,引用、掌握先进测量仪器,以满足不同时期水利水电工程的不同需求。 参考文献: [1]杨玉平,杨玉华.论工程测量在水利水电工程建设中的重要性[J].江西测绘,2014,(4):53-54+57. [2]李添萍.浅析水利水电工程质量检测的重要作用[J].青海科技,2010,(4):136-138. 《 建筑工程测量施工放样方法及应用 》 摘要:随着我国经济发展水平的不断提高,建筑行业得到了显著发展,建筑工程测量作为建筑工程的重要组成,在整个建筑施工前期阶段发挥着重要作用,需要不断对工程测量施工放样技术进行改进与创新才能满足建筑项目需求。本文将对建筑工程测量施工的放样方法与应用进行分析,从而表现做好测量放样处理对工程的重要性。 关键词:建筑工程测量施工放样方法技术探讨 建筑工程开展过程中对尺寸与施工范围有着严格要求与控制,这就需要应用测量放样技术,工程测量存在于整个施工阶段,对施工质量与施工开展有重要意义,需要对放样精度与测量结果反复对比,增强测量放样的精度。鉴于测量施工结果是施工依据与参照,一旦放样测量出现误差,将会影响立模、打桩、钢筋混凝土施工方方面面,在施工位置上容易出现偏差,对施工方带来损失。 1建筑工程测量施工放样概述 内涵 施工放样就是按照设计图标注的内容实地定标的过程。此过程需要使用到全站仪、测量仪器等设备,需要明确设计图纸上平面位置与高程,使用测量仪将实地位置标记出来,按照建筑物间几何关系将距离与特征确定出来,得到距离、高程、角度等数据,再结合控制点位置,在实际建筑中将建筑物特征点标定出来。 施工放样的主要方式 (1)平面放样。 施工放样分为平面位置放样与高程放样两种。平面位置放样较为常见的方法有直角坐标法、方向线交法以及交汇法,每一种方法基本操作方法都需要按照长度与角度进行;极坐标法则是使用数学极坐标原理将极轴确定为连线轴,将其中的某一极点作为放样控制坐标,将极点距离与放样极点连线方向到极点的夹角计算出来,将其作为放样参考[1]。通常,放样点距离控制点很近,需要极坐标与其保持120米距离,这样在测量时将更加方便,角度测量可以使用经纬仪或者测距仪,在使用电子测距仪时需要将控制点的距离延长,这样才能使放样作业更加方便、灵活;直角坐标法主要就是保持坐标轴的平行控制线,先沿横坐标放样,再沿控制线方向放样,只需将直角测设出来便可。 (2)高程放样。 几何水准测量法应用时需要先控制高程点,将控制点精度引入到施工范围内,使用方便固定与保存的方法,在水准点的保密上可以使用一次仪器完成高程放样。常规测量方法为:放样点附近到控制点存在高差,此时,需要使用较长钢尺对高程测设。具体施工中需要使用木桩将放样高程固定下来,使用红线对木桩侧面标记,需要结合具体情况注记高程。三角高程测量法:对水平距离与天顶距两点进行观测,将两点的高差计算出来,这种观测方法虽然简单,但受条件限制需对大地控制点高程测量。基本原理为:将地面两点设为a、b,站在a点观测b点标高,将竖向角度设为α,两点水平距离为S0,a点仪器高设为i1,i2作为标高,此时a、b两点间高差表示为:S0tgα,假设地球表面是一个平面结构,能利用上述公式将直线条件计算出来,大地测量时,还需要对地球弯曲与大气垂直折光度充分考虑[2]。为将三角高程测量精度提高,可以使用对向观测法,将两点高差推导出来。 建筑工程总定位放样方法 可以使用经纬仪将放样方向确定下来,再使用钢尺将测量距离,对地势较平坦的地区需要将定向设置在平缓点位置,再使用测距仪完成测量。曲线定位放线也是常用手段,分为直线、圆曲线等,先将圆曲线桩坐标设计出来,再对坐标加密处理,利用公式进一步对坐标测算。 2放样中注意的问题 放样工作中,有很多内容需要注意:首先,在主轴点放样中,可以使用三点交会法、三边测距法,不能仅使用两点测角定点法,需要选择至少三个方向,将校核点设定为第三点。如果使用测角定点,则要在观测时从四个方向出发,丈量好轮廓距离,不管使用哪种放样法,都需要与理论值对比,防止出现误差。在使用光电测距法放样定点式,现场至少选择一个放样点,丈量设计间距时,能够使校核作用增强。如果通过规则图放样使,则首先要考虑的是放样点间的几何关系,并反复检查几何关系,使用方向法放样时,在使用仪器时可以确定至少两个方向,对方位观察看是否合格,如果精度过低或者存在倾斜,要使用天顶距观测法,防止出现校核偏差。 3放样过程中的现场平差 现场平差就是指在现场放样,现场测量存在偏差消除时可以使用现场平差法。比如,在测放某一个方向时,需要先定点倒镜与正镜,最终将两个方向中点方向值确定下来。在建筑施工中,对测量放样精度有较高要求,分为严密性与松散性要求,从建筑物角度看,严密性与构件存在相关性,如果放样存在的误差较大,将使建筑质量降低。而建筑各部分间的联系则能体现松弛关系,这种情况下需要对建筑各部分有深入了解,将三维数据规定确定下来,也可以结合施工具体情况将放样影响度降低[3]。要想更深刻了解放样精度特征,需要使放样保持严密性,多对严密性进行考虑。如果针对松散构件,则要将误差分散开,确保总体工程质量不会受到影响。与现场平差不同的是,不是将误差全部消除,而是将其放样到质量相关的地方,对其进行吸纳。如果是精密性较高的建筑部位,则要从控制主轴线上实施放样工作,不用考虑控制网精度设计,在完成对主轴线测设后,就可以将建筑部位设定为主轴线基础,将主轴为基准才能确保建筑具备严密性,减少测设带来的精度误差,保证测设的严密性。在具体施工中,还能在主轴基础上将误差分散到建筑各个部分,防止误差过于集中。 4防范误差的对策 受多种因素的影响,测量经常出现误差,极大影响到了建筑施工的顺利开展,人员组成、操作以及施工管理都是重要的影响因素,必须切实做好这些内容的管理与防范才能减少误差。要想将测量放样误差减少,首先就要做好测量准备工作,反复校核设计图纸中的数据,并核实总平面数据与坐标,将基础图与平面图轴线位置确定下来,对符号与标高尺寸进行检查,确保各项数据、参数的准确,对总平面布设位置与分段尺寸进行设定,使分段长度与各段长度一致。其次,还要在人员组织分配上尽量选择技术精湛、有高度责任心的施工人员,将这些人员分为5组。在具体测量中,需要准备好测量仪器与工具,并调整好仪器的温度,增强仪器使用的效率与准确性。及时将测量结果记录下来,确保测量的数据能够更加真实、准确,并能在核对中及时发现问题、解决问题,必须经过两个人反复核对以后才能将最终结果确定下来,使用加减相消法能够及时发现错误。针对问题采取科学、有效的定位复测措施,完成定位以后,复测建筑平面几何尺寸与角度坐标,对建筑物图纸设计与标高是否相符进行核对,对建筑方向准确性进行检查,发现存在的问题。质量监督机构要定期对放样操作进行监督,将质量管理检查机构建设起来,采取自检、互检以及复检方法使放样精度得到保证。 5结束语 建筑工程测量施工是一个复杂且漫长的过程,是建筑施工中必不可少的组成,一个环节出现误差或者遗漏就会对整个施工质量造成影响,为施工单位带来损失。为此,加强放样管理,强化放样操作,做好校核平差工作显得非常重要。这有这样,才能将测量误差消除,确保建筑工程质量与测量精度。 参考文献 [1]邓志永,冯显征.建筑施工测量误差分析及对施工放样精度要求的探讨[J].建筑工程技术与设计,2014(22):779-779. [2]袁俊利.采用传统测量技术进行复杂立交桥工程测量的方法和措施[J].建筑技术,2012,43(9):806-809. [3]郝安华,贾涛.试论市政道路工程测量放样控制工作的要点与对策[J].商品与质量•建筑与发展,2014(5): 《 地铁工程测量技术及应用 》 摘要:在地铁工程项目中,地铁测绘工作及测量技术是项目建设的基础工作,它不仅贯穿于整个地铁工程建设始终,还对地铁工程质量产生重要影响。本文结合地铁测绘工作的实践经验,分析了常见的地铁工程测量技术,就具体的实践应用进行了分析探讨,以期对相关的地铁工程测绘工作有所启示作用。 关键词:地铁测绘;测量技术;地铁工程 伴随我国经济建设的蓬勃发展,各地城市交通建设也面临着全新的发展局面,作为城市交通的最基础建设之一,地铁工程与百姓生活密切相关,其工程质量自然也备受社会关注。地铁测绘工作是地铁工程的一项重要环节,它贯穿于整个地铁工程,从地铁工程开始筹划直到工程的后续运营,几乎都离不开测绘工作的支持。因此作为工程施工单位,需重视地铁工程测量技术的应用,保证测量的准确性,提高工程建设水平。本文结合具体工程实例,对上述问题进行探析,具有一定的参考价值。 1.地铁工程概述 为方便本次研究分析,本文选取了某地铁工程的具体实践建设作为研究参考对象。工程为某城市的地铁线路,是南北方向的主干线,线路全长约,其中地下线长约,地上线长约,该项工程是解决主城南北客运主流向出行需求的南北主轴线。结合本次地铁工程概述及以往的施工经验,总结本次地铁工程测绘工作和测量技术工作具有以下特点。首先,本次地铁工程项目属于城市地铁线路主干线,对城市交通影响较大;而且地铁项目投资大,工程建设周期长,因此地铁测绘工作要贯穿于整个项目始终,从地铁工程开始筹划直到工程的后续运营,都需要测量技术支持。其次,地铁工程界限规定严格,施工过程中存在的误差都必须受到严格控制,测量技术必须有精确性和可靠性的保障。最后,地铁测量工作必须抓好每一个细节,要通过测量技术的管理提高项目管理质量,对于施工过程中一些关键环节如铺轨基标测量、隧道施工方面测量等,都要做好严格把控,从整体上提高测量技术水平,为地铁工程打下良好的基础。 2.地铁工程测量技术分析 地铁测绘工作贯穿于整个地铁工程建设项目始终,具体包括工程勘测阶段、地铁施工图设计阶段、地铁施工测量阶段、地铁的运营期等几个方面。本文主要从施工阶段对地铁工程测量技术的应用进行分析,具体如下。 测量机器人的应用 测量机器人是本次地铁工程施工阶段的主要测量技术,其具体实质上属于一种智能型电子全站仪,它能够代替人工来进行一系列的测量工作,如自动搜索、跟踪、识别,此外它还能精确照准目标并获取角度、距离、三维坐标以及影像等信息,在实际工程中取得了良好的测量效果。该项技术的测量优势在于测量精度高,智能自动化,自动照准,锁定跟踪,遥控测量及自动调焦等。本次工程测量实例中应用了测量机器人,对于本次地铁工程测量的可靠性和效率都有明显提升,测量精度度高,测量与绘制工作可以一体化进行。在实际工程中发现,测量机器人有着良好的对数据实时分析处理能力,这对于提高本次工程数据处理能力,提升测量精度发挥了重要作用。此外,电子全站仪的应用实现了集成化管理,可以有效确保数据的共享交换,施工放样的质量和效率都大幅提升,安装误差控制在一个很小的范围内。 定向测量 传统的竖井定向测量手段均采用全站仪、垂准仪和陀螺经纬仪联合的方式,而在本次工程的具体实例中,应用了定向测量系统,在隧道盾构的情况下,利用自动化引导系统进行隧道开挖,而且定向测量能够实现实时显示,对于隧道轴线的点偏移值能够及时发现并处理,保证了隧道开挖的可靠性,提高了隧道开挖的精度程度,对于工程中所存在的误差值也能控制在理想的范围内。此外,在本次工程的地下顶管施工过程中,考虑到传统的施工手段技术(即人工测量)费时费力,施工效益低下,因此在本次实际施工中采用了顶管自动引导测量系统,由计算机远程控制测量机器人来自动完成作业,取得了非常理想的施工效果。 断面测量 在本次工程的断面测量上,施工单位综合采取了断面测量系统,该系统的具体内容包括了全站仪、数据采集器、计算机和觇牌等等。在隧道施工中的各个环节上,该断面测量系统取得了良好的实践效果,放样、测量、检测和计算等诸多环节上都没有出现问题。在隧道的初砌和开挖工作中,测量准确性得到了保证,同时测量效率提升,节约了大量的人力物力。本次施工发现,利用断面测量来保证隧道施工的测量工作,一方面可以大大提高施工进度,测量速度有保障;另一方面,在同等的施工时间内,测量精度可以控制在理想范围内,一般精度范围可控制在毫米,测量精准度大大提升。此外在本次施工工程中,还利用到了无反射和全自动棱镜三维断面测量,一方面保证了测量数据采集的高效性,另一方面由于实现了多断面共同测量,且操作简便高效,可靠性强,因此又进一步提高了测量效率。 无棱镜测量的应用 在本次的地铁工程施工中,还涉及到了无棱镜测量机器人的具体应用。该项技术通过辐射测量极坐标的方式,准确并高效地完成了一系列的工测量工作,具体包括了隧道掘进放样、断面测量、围岩净空位移量测等等,测量精确度高,测量效率好。该项测量技术进行了有针对性的创新,在工程中利用计算机自动处理,有效减少了工程成本,测量起来也十分方便。该项测量技术的一个典型特点是把设计图中的地铁相应物体的位置及大小都放到实地中,这种趋近于真实的参考参照,大大提高了本次工程的放样精确程度。此外,施工基坑监测系统能够实现对数据的及时分析管理,对于地铁基坑监测项目也具有非常高的可行性。 地铁施工铺设阶段 在地铁施工铺设阶段,本次施工也采用了测量机器人。该项技术的主要原理是应用到了无线传输技术,通过它将测量数据持续传输到机载计算机,然后再利用计算机实现对地铁铺设的精确控制。通过该项技术在本次工程施工中的应用,施工铺设的安全性与质量都得到了有效保障。同时在铺设精度得到有效控制的前提下,铺设成本大大降低,工程经济效益得到了有效保证。此外在施工路面扫描系统中,测量机器人也有很高的应用价值,可将监测目标分为圆棱镜,无棱镜和反射贴片三种。 竣工测量阶段 在本次项目的地铁工程竣工阶段,也需要进行大量的数据测量,这些测量的数据将作为竣工验收的参考,并做相应好存档工作。这些具体的测量内容包括了地铁结构的平面位置、埋深、线路等诸多方面。通过测量机器人的应用,可以实现对相关建筑物(包括附属结构)的尺寸测量、线路及高程测量等,提升了轨道测量精度,保障了地铁工程测量放样的顺利实现。 总结 综上所述,地铁测绘工作是一项系统且复杂的内容,它贯穿于整个工程始终,并对工程质量提供了强有力的保障。在当前各地城市交通建设不断发展的新时期,地铁工程自然占据了十分重要的位置,相关单位需要在保证工程质量的前提下,加强工程测量管理工作,强化对地铁工程测量技术的研究,保证测量各个环节的质量与水平,确保工程顺利开展并取得良好的综合效益,推动我国地铁交通事业的发展迈向一个新高度。 参考文献: [1]张铁斌.地铁工程测量技术及应用分析[J].科技展望,2015,09:39. [2]龚振文,龙晓敏,胡朝英.昆明地铁工程测量技术分析及测绘新技术应用[J].山西建筑,2013,33:208-210. [3]程栋.地铁工程测量中平面联系测量的应用[J].科技展望,2015,35:35. 有关有关工程测量论文范文推荐: 1. 有关工程测量论文范文 2. 有关工程测量毕业论文范文 3. 工程测量毕业论文范文 4. 工程测量工程论文范文精选 5. 浅谈工程测量论文范文 6. 工程测量毕业论文例文 7. 工程测量技术论文 极坐标 开放分类: 数学、教育、坐标 在 平面内取一个定点O, 叫极点,引一条射线Ox,叫做极轴,再选定一个长度单位和角度的正方向(通常取逆时针方向)。对于平面内任何一点M,用ρ表示线段OM的长度,θ表示从Ox到OM的角度,ρ叫做点M的极径,θ叫做点M的极角,有序数对 (ρ,θ)就叫点M的极坐标,这样建立的坐标系叫做极坐标系。 第一个用极坐标来确定平面上点的位置的是牛顿。他的《流数法与无穷级数》,大约于1671年写成,出版于1736年。此书包括解析几何的许多应用,例如按方程描出曲线,书中创见之一,是引进新的坐标系。17甚至18世纪的人,一般只用一根坐标轴(x轴),其y值是沿着与x轴成直角或斜角的方向画出的。牛顿所引进的坐标之一,是用一个固定点和通过此点的一条直线作标准,例如我们现在的极坐标系。牛顿还引进了双极坐标,其中每点的位置决定于它到两个固定点的距离。由于牛顿的这个工作直到1736年才为人们所发现,而瑞士数学家J.贝努力利于1691年在《教师学报》上发表了一篇基本上是关于极坐标的文章,所以通常认为J.贝努利是极坐标的发现者。J.贝努利的学生J.赫尔曼在1729年不仅正式宣布了极坐标的普遍可用,而且自由地应用极坐标去研究曲线。他还给出了从直角坐标到极坐标的变换公式。确切地讲,J.赫尔曼把 ,cos ,sin 当作变量来使用,而且用z,n和m来表示 ,cos 和sin 。欧拉扩充了极坐标的使用范围,而且明确地使用三角函数的记号;欧拉那个时候的极坐标系实际上就是现代的极坐标系。 有些几何轨迹问题如果用极坐标法处理,它的方程比用直角坐标法来得简单,描图也较方便。1694年,J.贝努利利用极坐标引进了双纽线,这曲线在18世纪起了相当大的作用 求极大极小值,一部分化简,通常只要掌握最基础的就行关于极限的毕业论文
极坐标的应用毕业论文