首页 > 学术论文知识库 > 关于梯形面积的数学小论文

关于梯形面积的数学小论文

发布时间:

关于梯形面积的数学小论文

魅力无比的定理证明——勾股定理的证明勾股定理是几何学中的明珠,所以它充满魅力,千百年来,人们对它的证明趋之若骛,其中有著名的数学家,也有业余数学爱好者,有普通的老百姓,也有尊贵的政要权贵,甚至有国家总统。也许是因为勾股定理既重要又简单,更容易吸引人,才使它成百次地反复被人炒作,反复被人论证。1940年出版过一本名为《毕达哥拉斯命题》的勾股定理的证明专辑,其中收集了367种不同的证明方法。实际上还不止于此,有资料表明,关于勾股定理的证明方法已有500余种,仅我国清末数学家华蘅芳就提供了二十多种精彩的证法。这是任何定理无法比拟的。在这数百种证明方法中,有的十分精彩,有的十分简洁,有的因为证明者身份的特殊而非常著名。首先介绍勾股定理的两个最为精彩的证明,据说分别来源于中国和希腊。1.中国方法画两个边长为(a+b)的正方形,如图,其中a、b为直角边,c为斜边。这两个正方形全等,故面积相等。左图与右图各有四个与原直角三角形全等的三角形,左右四个三角形面积之和必相等。从左右两图中都把四个三角形去掉,图形剩下部分的面积必相等。左图剩下两个正方形,分别以a、b为边。右图剩下以c为边的正方形。于是a2+b2=c2。这就是我们几何教科书中所介绍的方法。既直观又简单,任何人都看得懂。2.希腊方法直接在直角三角形三边上画正方形,如图。容易看出,△ABA’ ≌△AA’’ C。过C向A’’B’’引垂线,交AB于C’,交A’’B’’于C’’。△ABA’与正方形ACDA’同底等高,前者面积为后者面积的一半,△AA’’C与矩形AA’’C’’C’同底等高,前者的面积也是后者的一半。由△ABA’≌△AA’’C,知正方形ACDA’的面积等于矩形AA’’C’’C’的面积。同理可得正方形BB’EC的面积等于矩形B’’BC’C’’的面积。于是,S正方形AA’’B’’B=S正方形ACDA’+S正方形BB’EC,即 a2+b2=c2。至于三角形面积是同底等高的矩形面积之半,则可用割补法得到(请读者自己证明)。这里只用到简单的面积关系,不涉及三角形和矩形的面积公式。这就是希腊古代数学家欧几里得在其《几何原本》中的证法。以上两个证明方法之所以精彩,是它们所用到的定理少,都只用到面积的两个基本观念:⑴ 全等形的面积相等;⑵ 一个图形分割成几部分,各部分面积之和等于原图形的面积。这是完全可以接受的朴素观念,任何人都能理解。我国历代数学家关于勾股定理的论证方法有多种,为勾股定理作的图注也不少,其中较早的是赵爽(即赵君卿)在他附于《周髀算经》之中的论文《勾股圆方图注》中的证明。采用的是割补法:如图,将图中的四个直角三角形涂上朱色,把中间小正方形涂上黄色,叫做中黄实,以弦为边的正方形称为弦实,然后经过拼补搭配,“令出入相补,各从其类”,他肯定了勾股弦三者的关系是符合勾股定理的。即“勾股各自乘,并之为弦实,开方除之,即弦也”。赵爽对勾股定理的证明,显示了我国数学家高超的证题思想,较为简明、直观。西方也有很多学者研究了勾股定理,给出了很多证明方法,其中有文字记载的最早的证明是毕达哥拉斯给出的。据说当他证明了勾股定理以后,欣喜若狂,杀牛百头,以示庆贺。故西方亦称勾股定理为“百牛定理”。遗憾的是,毕达哥拉斯的证明方法早已失传,我们无从知道他的证法。下面介绍的是美国第二十任总统伽菲尔德对勾股定理的证明。如图,S梯形ABCD= (a+b)2= (a2+2ab+b2), ①又S梯形ABCD=S△AED+S△EBC+S△CED= ab+ ba+ c2= (2ab+c2)。 ②比较以上二式,便得a2+b2=c2。这一证明由于用了梯形面积公式和三角形面积公式,从而使证明相当简洁。1876年4月1日,伽菲尔德在《新英格兰教育日志》上发表了他对勾股定理的这一证明。5年后,伽菲尔德就任美国第二十任总统。后来,人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,就把这一证法称为勾股定理的“总统”证法,这在数学史上被传为佳话。在学习了相似三角形以后,我们知道在直角三角形中,斜边上的高把这个直角三角形所分成的两个直角三角形与原三角形相似。如图,Rt△ABC中,∠ACB=90°。作CD⊥BC,垂足为D。则△BCD∽△BAC,△CAD∽△BAC。由△BCD∽△BAC可得BC2=BD ? BA, ①由△CAD∽△BAC可得AC2=AD ? AB。 ②我们发现,把①、②两式相加可得BC2+AC2=AB(AD+BD),而AD+BD=AB,因此有 BC2+AC2=AB2,这就是a2+b2=c2。这也是一种证明勾股定理的方法,而且也很简洁。它利用了相似三角形的知识。在对勾股定理为数众多的证明中,人们也会犯一些错误。如有人给出了如下证明勾股定理的方法:设△ABC中,∠C=90°,由余弦定理c2=a2+b2-2abcosC,因为∠C=90°,所以cosC=0。所以a2+b2=c2。这一证法,看来正确,而且简单,实际上却犯了循环证论的错误。原因是余弦定理的证明来自勾股定理。人们对勾股定理感兴趣的原因还在于它可以作推广。欧几里得在他的《几何原本》中给出了勾股定理的推广定理:“直角三角形斜边上的一个直边形,其面积为两直角边上两个与之相似的直边形面积之和”。从上面这一定理可以推出下面的定理:“以直角三角形的三边为直径作圆,则以斜边为直径所作圆的面积等于以两直角边为直径所作两圆的面积和”。勾股定理还可以推广到空间:以直角三角形的三边为对应棱作相似多面体,则斜边上的多面体的表面积等于直角边上两个多面体表面积之和。若以直角三角形的三边为直径分别作球,则斜边上的球的表面积等于两直角边上所作二球表面积之和。如此等等。【附录】一、【《周髀算经》简介】《周髀算经》算经十书之一。约成书于公元前二世纪,原名《周髀》,它是我国最古老的天文学著作,主要阐明当时的盖天说和四分历法。唐初规定它为国子监明算科的教材之一,故改名《周髀算经》。《周髀算经》在数学上的主要成就是介绍了勾股定理及其在测量上的应用。原书没有对勾股定理进行证明,其证明是三国时东吴人赵爽在《周髀注》一书的《勾股圆方图注》中给出的。《周髀算经》使用了相当繁复的分数算法和开平方法。二、【伽菲尔德证明勾股定理的故事】1876年一个周末的傍晚,在美国首都华盛顿的郊外,有一位中年人正在散步,欣赏黄昏的美景,他就是当时美国俄亥俄州共和党议员伽菲尔德。他走着走着,突然发现附近的一个小石凳上,有两个小孩正在聚精会神地谈论着什么,时而大声争论,时而小声探讨。由于好奇心驱使,伽菲尔德循声向两个小孩走去,想搞清楚两个小孩到底在干什么。只见一个小男孩正俯着身子用树枝在地上画着一个直角三角形。于是伽菲尔德便问他们在干什么?那个小男孩头也不抬地说:“请问先生,如果直角三角形的两条直角边分别为3和4,那么斜边长为多少呢?”伽菲尔德答道:“是5呀。”小男孩又问道:“如果两条直角边长分别为5和7,那么这个直角三角形的斜边长又是多少?”伽菲尔德不假思索地回答道:“那斜边的平方一定等于5的平方加上7的平方。”小男孩又说:“先生,你能说出其中的道理吗?”伽菲尔德一时语塞,无法解释了,心里很不是滋味。于是,伽菲尔德不再散步,立即回家,潜心探讨小男孩给他出的难题。他经过反复思考与演算,终于弄清了其中的道理,并给出了简洁的证明方法。转引自:中“数学的发现”栏目。图无法转贴,请查看原文。魅力无比的定理证明——勾股定理的证明勾股定理是几何学中的明珠,所以它充满魅力,千百年来,人们对它的证明趋之若骛,其中有著名的数学家,也有业余数学爱好者,有普通的老百姓,也有尊贵的政要权贵,甚至有国家总统。也许是因为勾股定理既重要又简单,更容易吸引人,才使它成百次地反复被人炒作,反复被人论证。1940年出版过一本名为《毕达哥拉斯命题》的勾股定理的证明专辑,其中收集了367种不同的证明方法。实际上还不止于此,有资料表明,关于勾股定理的证明方法已有500余种,仅我国清末数学家华蘅芳就提供了二十多种精彩的证法。这是任何定理无法比拟的。在这数百种证明方法中,有的十分精彩,有的十分简洁,有的因为证明者身份的特殊而非常著名。首先介绍勾股定理的两个最为精彩的证明,据说分别来源于中国和希腊。1.中国方法画两个边长为(a+b)的正方形,如图,其中a、b为直角边,c为斜边。这两个正方形全等,故面积相等。左图与右图各有四个与原直角三角形全等的三角形,左右四个三角形面积之和必相等。从左右两图中都把四个三角形去掉,图形剩下部分的面积必相等。左图剩下两个正方形,分别以a、b为边。右图剩下以c为边的正方形。于是a2+b2=c2。这就是我们几何教科书中所介绍的方法。既直观又简单,任何人都看得懂。2.希腊方法直接在直角三角形三边上画正方形,如图。容易看出,△ABA’ ≌△AA’’ C。过C向A’’B’’引垂线,交AB于C’,交A’’B’’于C’’。△ABA’与正方形ACDA’同底等高,前者面积为后者面积的一半,△AA’’C与矩形AA’’C’’C’同底等高,前者的面积也是后者的一半。由△ABA’≌△AA’’C,知正方形ACDA’的面积等于矩形AA’’C’’C’的面积。同理可得正方形BB’EC的面积等于矩形B’’BC’C’’的面积。于是,S正方形AA’’B’’B=S正方形ACDA’+S正方形BB’EC,即 a2+b2=c2。至于三角形面积是同底等高的矩形面积之半,则可用割补法得到(请读者自己证明)。这里只用到简单的面积关系,不涉及三角形和矩形的面积公式。这就是希腊古代数学家欧几里得在其《几何原本》中的证法。以上两个证明方法之所以精彩,是它们所用到的定理少,都只用到面积的两个基本观念:⑴ 全等形的面积相等;⑵ 一个图形分割成几部分,各部分面积之和等于原图形的面积。这是完全可以接受的朴素观念,任何人都能理解。我国历代数学家关于勾股定理的论证方法有多种,为勾股定理作的图注也不少,其中较早的是赵爽(即赵君卿)在他附于《周髀算经》之中的论文《勾股圆方图注》中的证明。采用的是割补法:如图,将图中的四个直角三角形涂上朱色,把中间小正方形涂上黄色,叫做中黄实,以弦为边的正方形称为弦实,然后经过拼补搭配,“令出入相补,各从其类”,他肯定了勾股弦三者的关系是符合勾股定理的。即“勾股各自乘,并之为弦实,开方除之,即弦也”。赵爽对勾股定理的证明,显示了我国数学家高超的证题思想,较为简明、直观。西方也有很多学者研究了勾股定理,给出了很多证明方法,其中有文字记载的最早的证明是毕达哥拉斯给出的。据说当他证明了勾股定理以后,欣喜若狂,杀牛百头,以示庆贺。故西方亦称勾股定理为“百牛定理”。遗憾的是,毕达哥拉斯的证明方法早已失传,我们无从知道他的证法。下面介绍的是美国第二十任总统伽菲尔德对勾股定理的证明。如图,S梯形ABCD= (a+b)2= (a2+2ab+b2), ①又S梯形ABCD=S△AED+S△EBC+S△CED= ab+ ba+ c2= (2ab+c2)。 ②比较以上二式,便得a2+b2=c2。这一证明由于用了梯形面积公式和三角形面积公式,从而使证明相当简洁。1876年4月1日,伽菲尔德在《新英格兰教育日志》上发表了他对勾股定理的这一证明。5年后,伽菲尔德就任美国第二十任总统。后来,人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,就把这一证法称为勾股定理的“总统”证法,这在数学史上被传为佳话。在学习了相似三角形以后,我们知道在直角三角形中,斜边上的高把这个直角三角形所分成的两个直角三角形与原三角形相似。如图,Rt△ABC中,∠ACB=90°。作CD⊥BC,垂足为D。则△BCD∽△BAC,△CAD∽△BAC。由△BCD∽△BAC可得BC2=BD ? BA, ①由△CAD∽△BAC可得AC2=AD ? AB。 ②我们发现,把①、②两式相加可得BC2+AC2=AB(AD+BD),而AD+BD=AB,因此有 BC2+AC2=AB2,这就是a2+b2=c2。这也是一种证明勾股定理的方法,而且也很简洁。它利用了相似三角形的知识。在对勾股定理为数众多的证明中,人们也会犯一些错误。如有人给出了如下证明勾股定理的方法:设△ABC中,∠C=90°,由余弦定理c2=a2+b2-2abcosC,因为∠C=90°,所以cosC=0。所以a2+b2=c2。这一证法,看来正确,而且简单,实际上却犯了循环证论的错误。原因是余弦定理的证明来自勾股定理。人们对勾股定理感兴趣的原因还在于它可以作推广。欧几里得在他的《几何原本》中给出了勾股定理的推广定理:“直角三角形斜边上的一个直边形,其面积为两直角边上两个与之相似的直边形面积之和”。从上面这一定理可以推出下面的定理:“以直角三角形的三边为直径作圆,则以斜边为直径所作圆的面积等于以两直角边为直径所作两圆的面积和”。勾股定理还可以推广到空间:以直角三角形的三边为对应棱作相似多面体,则斜边上的多面体的表面积等于直角边上两个多面体表面积之和。若以直角三角形的三边为直径分别作球,则斜边上的球的表面积等于两直角边上所作二球表面积之和。如此等等。【附录】一、【《周髀算经》简介】《周髀算经》算经十书之一。约成书于公元前二世纪,原名《周髀》,它是我国最古老的天文学著作,主要阐明当时的盖天说和四分历法。唐初规定它为国子监明算科的教材之一,故改名《周髀算经》。《周髀算经》在数学上的主要成就是介绍了勾股定理及其在测量上的应用。原书没有对勾股定理进行证明,其证明是三国时东吴人赵爽在《周髀注》一书的《勾股圆方图注》中给出的。《周髀算经》使用了相当繁复的分数算法和开平方法。二、【伽菲尔德证明勾股定理的故事】1876年一个周末的傍晚,在美国首都华盛顿的郊外,有一位中年人正在散步,欣赏黄昏的美景,他就是当时美国俄亥俄州共和党议员伽菲尔德。他走着走着,突然发现附近的一个小石凳上,有两个小孩正在聚精会神地谈论着什么,时而大声争论,时而小声探讨。由于好奇心驱使,伽菲尔德循声向两个小孩走去,想搞清楚两个小孩到底在干什么。只见一个小男孩正俯着身子用树枝在地上画着一个直角三角形。于是伽菲尔德便问他们在干什么?那个小男孩头也不抬地说:“请问先生,如果直角三角形的两条直角边分别为3和4,那么斜边长为多少呢?”伽菲尔德答道:“是5呀。”小男孩又问道:“如果两条直角边长分别为5和7,那么这个直角三角形的斜边长又是多少?”伽菲尔德不假思索地回答道:“那斜边的平方一定等于5的平方加上7的平方。”小男孩又说:“先生,你能说出其中的道理吗?”伽菲尔德一时语塞,无法解释了,心里很不是滋味。于是,伽菲尔德不再散步,立即回家,潜心探讨小男孩给他出的难题。他经过反复思考与演算,终于弄清了其中的道理,并给出了简洁的证明方法。回答者:zhang_1118 - 江湖新秀 五级 2-19 17:47中“数学的发现”栏目。图无法转贴,请查看原文。补充回答:这又详细证法,还有图,自己看看

浅谈诚实与数学

、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、8会

赠照片一张

我也找不到....~~~~(>_<)~~~~ 死了啊—_—|||........~~~!!!

数学图形面积研究小论文

如果一个阴影部分所示的图形既不是基本图形,也不能通过分解、隔离、组合、平移、旋转和割补等方法 转化成基本图形或其相加减的形式时,应该怎么求解呢?如前面所介绍的方框图所示,这时可运用一些特殊的 方法进行分析解答,一、 倍分比较法 有些求面积问题,往往已知甲图形的面积却要求乙图形的面积,这时,可通过寻找甲乙两图形之间存在的 关系去求解。这个关系就是两图形面积之间的倍率(几倍)或分率(几分之几)关系。这种思路往往是通过添 加合适的辅助线来构成等底等高的三角形(或其它面积有倍分关系的图形)来进行比较和解答的。 例1,三角ABC的面积为100平方厘米,D、E、F分别为三条边的四、五、六等分点。求三 角形DEF的面积。 (1) 分析解答:根据题中的已知条件我们可推想,所求面积与已知面积之间存在着一种倍分关系,因为“两三 角形如等高,则其面积之比等于相对应底边长的比”。所以,我们来“创造”这样的三角形来帮助解答。连接 BD,由于AF=5/6AB,所以三角形AFD的面积占三角形ABD面积的5/6,而三角形ABD的面积又刚好是三角形 ABC面积的1/4(因为AD=1/4AC),所以,三角形AFD的面积占三角形ABC面积的分率为1/4×5/6= 5/24,同理,三角形FBE和三角形ECD所占分率分别为4/5×1/6=2/15,3/4×1/5=3/ 20。因此,所求三角形DEF面积所占的分率为1-5/24-2/15-3/20=61/120,其面积为 100×61/120=50.8(平方厘米)。 字母代换法 有些问题直接用算术方法解答不方便,我们可以设字母来代换。这些字母可以是所求量,也可以是中间量 ,它们有时只起媒介作用,在求解过程中,作为一个整体或一个数参加运算,在计算中互相抵销或被替代。有 时却需要通过比较、代换等简单代数运算求出它们所代表的数值后再寻求问题的答案。 例2.用一条长75分米的铁丝围成一个平行四边形的框架,要求它的两条高分别为14分米、16分米 ,这个平行四边形的面积是多少? (2) 分析解答:条件中告诉了两条高的长度。因为在同一平行四边形中,由于面积一定,由“平行四 边形面积=底×该底边上的高”可看出:高与对应的底边成反比例关系,所以可以用设字母等量代换的方法进 行解答。设与两条高相对应的底边分别长a分米和b分米,面积为S平方分米,可得a×14=b×16=S,a=S /14,b=S/16而“a+b”为周长的一半,等于75/2分米,所以有S/14+S/16=75/2,即 S×(1/14+1/16)=75/2;因此,所求平行四边形的面积为: 二、 极端处置法 一般来说,任何事物既遵循某种规律,又有其特殊性,而其特殊性往往反映出了它的普遍性规律。在解答 有些问题时,我们可以用变化的观点将图形设想于某一特殊情形来考虑,这样,往往能绝处逢生,找到解题途 径。

论文自己写才行

检举| 2010-05-20 19:48数学小论文

关于“0”

0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。”

“任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。

“105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示……

爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。

数学小论文二

各门科学的数学化

数学究竟是什么呢?我们说,数学是研究现实世界空间形式和数量关系的一门科学.它在现代生活和现代生产中的应用非常广泛,是学习和研究现代科学技术必不可少的基本工具.

同其他科学一样,数学有着它的过去、现在和未来.我们认识它的过去,就是为了了解它的现在和未来.近代数学的发展异常迅速,近30多年来,数学新的理论已经超过了18、19世纪的理论的总和.预计未来的数学成就每“翻一番”要不了10年.所以在认识了数学的过去以后,大致领略一下数学的现在和未来,是很有好处的.

现代数学发展的一个明显趋势,就是各门科学都在经历着数学化的过程.

例如物理学,人们早就知道它与数学密不可分.在高等学校里,数学系的学生要学普通物理,物理系的学生要学高等数学,这也是尽人皆知的事实了.

又如化学,要用数学来定量研究化学反应.把参加反应的物质的浓度、温度等作为变量,用方程表示它们的变化规律,通过方程的“稳定解”来研究化学反应.这里不仅要应用基础数学,而且要应用“前沿上的”、“发展中的”数学.

再如生物学方面,要研究心脏跳动、血液循环、脉搏等周期性的运动.这种运动可以用方程组表示出来,通过寻求方程组的“周期解”,研究这种解的出现和保持,来掌握上述生物界的现象.这说明近年来生物学已经从定性研究发展到定量研究,也是要应用“发展中的”数学.这使得生物学获得了重大的成就.

谈到人口学,只用加减乘除是不够的.我们谈到人口增长,常说每年出生率多少,死亡率多少,那么是否从出生率减去死亡率,就是每年的人口增长率呢?不是的.事实上,人是不断地出生的,出生的多少又跟原来的基数有关系;死亡也是这样.这种情况在现代数学中叫做“动态”的,它不能只用简单的加减乘除来处理,而要用复杂的“微分方程”来描述.研究这样的问题,离不开方程、数据、函数曲线、计算机等,最后才能说清楚每家只生一个孩子如何,只生两个孩子又如何等等.

还有水利方面,要考虑海上风暴、水源污染、港口设计等,也是用方程描述这些问题再把数据放进计算机,求出它们的解来,然后与实际观察的结果对比验证,进而为实际服务.这里要用到很高深的数学.

谈到考试,同学们往往认为这是用来检查学生的学习质量的.其实考试手段(口试、笔试等等)以及试卷本身也是有质量高低之分的.现代的教育统计学、教育测量学,就是通过效度、难度、区分度、信度等数量指标来检测考试的质量.只有质量合格的考试才能有效地检测学生的学习质量.

至于文艺、体育,也无一不用到数学.我们从中央电视台的文艺大奖赛节目中看到,给一位演员计分时,往往先“去掉一个最高分”,再“去掉一个最低分”.然后就剩下的分数计算平均分,作为这位演员的得分.从统计学来说,“最高分”、“最低分”的可信度最低,因此把它们去掉.这一切都包含着数学道理.

我国著名的数学家关肇直先生说:“数学的发明创造有种种,我认为至少有三种:一种是解决了经典的难题,这是一种很了不起的工作;一种是提出新概念、新方法、新理论,其实在历史上起更大作用的、历史上著名的正是这种人;还有一种就是把原来的理论用在崭新的领域,这是从应用的角度有一个很大的发明创造.”我们在这里所说的,正是第三种发明创造.“这里繁花似锦,美不胜收,把数学和其他各门科学发展成综合科学的前程无限灿烂.”

正如华罗庚先生在1959年5月所说的,近100年来,数学发展突飞猛进,我们可以毫不夸张地用“宇宙之大、粒子之微、火箭之速、化工之巧、地球之变、生物之谜、日用之繁等各个方面,无处不有数学”来概括数学的广泛应用.可以预见,科学越进步,应用数学的范围也就越大.一切科学研究在原则上都可以用数学来解决有关的问题.可以断言:只有现在还不会应用数学的部门,却绝对找不到原则上不能应用数学的领域.

数学小论文三

数学是什么

什么是数学?有人说:“数学,不就是数的学问吗?”

这样的说法可不对。因为数学不光研究“数”,也研究“形”,大家都很熟悉的三角形、正方形,也都是数学研究的对象。

历史上,关于什么是数学的说法更是五花八门。有人说,数学就是关联;也有人说,数学就是逻辑,“逻辑是数学的青年时代,数学是逻辑的壮年时代。”

那么,究竟什么是数学呢?

伟大的革命导师恩格斯,站在辩证唯物主义的理论高度,通过深刻分析数学的起源和本质,精辟地作出了一系列科学的论断。恩格斯指出:“数学是数量的科学”,“纯数学的对象是现实世界的空间形式和数量关系”。根据恩格斯的观点,较确切的说法就是:数学——研究现实世界的数量关系和空间形式的科学。

数学可以分成两大类,一类叫纯粹数学,一类叫应用 数学。

纯粹数学也叫基础数学,专门研究数学本身的内部规律。中小学课本里介绍的代数、几何、微积分、概率论知识,都属于纯粹数学。纯粹数学的一个显著特点,就是暂时撇开具体内容,以纯粹形式研究事物的数量关系和空间形式。例如研究梯形的面积计算公式,至于它是梯形稻田的面积,还是梯形机械零件的面积,都无关紧要,大家关心的只是蕴含在这种几何图形中的数量关系。

应用数学则是一个庞大的系统,有人说,它是我们的全部知识中,凡是能用数学语言来表示的那一部分。应用数学着限于说明自然现象,解决实际问题,是纯粹数学与科学技术之间的桥梁。大家常说现在是信息社会,专门研究信息的“信息论”,就是应用数学中一门重要的分支学科, 数学有3个最显著的特征。

高度的抽象性是数学的显著特征之一。数学理论都算有非常抽象的形式,这种抽象是经过一系列的阶段形成的,所以大大超过了自然科学中的一般抽象,而且不仅概念是抽象的,连数学方法本身也是抽象的。例如,物理学家可以通过实验来证明自己的理论,而数学家则不能用实验的方法来证明定理,非得用逻辑推理和计算不可。现在,连数学中过去被认为是比较“直观”的几何学,也在朝着抽象的方向发展。根据公理化思想,几何图形不再是必须知道的内容,它是圆的也好,方的也好,都无关紧要,甚至用桌子、椅子和啤酒杯去代替点、线、面也未尝不可,只要它们满足结合关系、顺序关系、合同关系,具备有相容性、独立性和完备性,就能够构成一门几何学。

体系的严谨性是数学的另一个显著特征。数学思维的正确性表现在逻辑的严谨性上。早在2000多年前,数学家就从几个最基本的结论出发,运用逻辑推理的方法,将丰富的几何学知识整理成一门严密系统的理论,它像一根精美的逻辑链条,每一个环节都衔接得丝丝入扣。所以,数学一直被誉为是“精确科学的典范”。

广泛的应用性也是数学的一个显著特征。宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日用之繁,无处不用数学。20世纪里,随着应用数学分支的大量涌现,数学已经渗透到几乎所有的科学部门。不仅物理学、化学等学科仍在广泛地享用数学的成果,连过去很少使用数学的生物学、语言学、历史学等等,也与数学结合形成了内容丰富的生物数学、数理经济学、数学心理学、数理语言学、数学历史学等边缘学科。

陈鸿杰         多投一分也行   拜托!!!!!!

论文?我试试吧我也是初中的(*^__^*)嘻嘻……分类讨论将围成的图形分为矩形三角形和圆应该是圆的面积最大理由是40厘米是图形的周长照此计算矩形的长+宽=20厘米有一数学原理两乘数差越小则积越大因此矩形围出的面积最大为100平方厘米即长与宽差为0列成公式是(1/4C)²三角形的平均一条边14厘米左右三角形两边之和大于第三边所以将它看成最大直角三角形面积也越在70平方厘米左右列成公式是1/2(1/3C)²(约等于而已)圆的直径也就是40÷π≈13其半径为6厘米左右πr²≈110平方厘米列成公式是π[1/2(π/C)]²结果不言而明仅供借鉴希望对你有帮助

数学小论文五年级多边形的面积

五年级数学学习多边形面积,我们不能孤立的记住某个图形的面积,而是建立起图形之间的逻辑关系。比如本单元是以平行四边形为基础。三角形和梯形都是通过平行四边形的面积来推导出来的。理解了公式的由来,我们就能够掌握多边形面积的计算。

正多边形的面积还等于多边形的周长与边心距离乘积的一半。边心距离是多边形中心到边的垂直距离。

1、长方形的 面积=长×宽

字母表示:S=ab

长方形的 长=面积÷宽 a=S÷b

长方形的 宽=面积÷长 b=S÷a

2、正方形的 面积=边长×边长

字母表示: S= a²

3、平行四边形的 面积=底×高

字母表示: S=ah

平行四边形的 高=面积÷底 h=S÷a

平行四边形的 底=面积÷高 a=S÷h

4、三角形的 面积=底×高÷2

字母表示: S=ah÷2

三角形的 高= 2×面积÷底 h=2S÷a

三角形的 底= 2×面积÷高 a=2S÷h

5、梯形的 面积=(上底+下底)×高÷2

字母表示:S=(a+b)·h ÷2

梯形的 高=2×面积÷(上底+下底) h=2S÷(a+b)

梯形的 上底=2×面积÷高—下底 a=2S÷h-b

梯形的 下底=2×面积÷高—上底 b=2S÷h-a

多边形的面积公式是:

1、长方形的面积=长×宽

字母表示:S=ab

长方形的长=面积÷宽a=S÷b

长方形的宽=面积÷长b=S÷a

2、正方形的面积=边长×边长

字母表示:S= a²

3、平行四边形的面积=底×高

字母表示:S=ah

平行四边形的高=面积÷底h=S÷a

平行四边形的底=面积÷高a=S÷h

4、三角形的面积=底×高÷2

字母表示:S=ah÷2

三角形的高=2×面积÷底h=2S÷a

三角形的底=2×面积÷高a=2S÷h

5、梯形的面积=(上底+下底)×高÷2

字母表示:S=(a+b)·h ÷2

梯形的高=2×面积÷(上底+下底)h=2S÷(a+b)

梯形的上底=2×面积÷高—下底a=2S÷h-b

梯形的下底=2×面积÷高—上底b=2S÷h-a

三、多边形基本概念1、组成多边形的线段至少有3条,三角形是最简单的多边形。组成多边形的每一条线段叫做多边形的边;相邻的两条线段的公共端点叫做多边形的顶点;多边形相邻两边所组成的角叫做多边形的内角;连接多边形的两个不相邻顶点的线段叫做多边形的对角线。2、多边形内角的一边与另一边反向延长线所组成的角叫做多边形的外角。3、在多边形的每一个定点处取这个多边形的一个外角,它们的和叫做多边形的外角和。

正方形的面积是边长乘边长,字母公式:C=4a;长方形的面积是长乘宽,字母公式:S=ab;平行四边形的面积是底乘高,字母公式: S=ah;梯形的面积是上底加下底的和乘高除以2,字母公式: S=(a+b)h÷2,(上底=面积×2÷高-下底,下底=面积×2÷高-上底;高=面积×2÷(上底+下底)。

常见的多边形指的是,长方形、正方形、平行四边形和梯形。

三角形面积公式推导: 平行四边形可以转化成一个长方形; 两个完全一样的三角形可以拼成一个平行四边形,

长方形的长相当于平行四边形的底;长方形的宽相当于平行四边形的高;因为长方形面积=长×宽,所以平行四边形面积=底×高,长方形的面积等于平行四边形的面积。 平行四边形的底相当于三角形的底;平行四边形的高相当于三角形的高;平行四边形的面积等于等底等高三角形面积的2倍。

关于多边形面积的研究论文题目

《多边形的面积》知识点汇总相关内容: 多边形 面积 知识点 汇总《多边形的面积》知识点汇总【平行四边形的面积】长方形长方形面积=长×宽;字母公式:s=ab正方形正方形面积=边长×边长;字母公式:s= 或者s=a×a平行四边形平行四边形面积=底×高;字母公式:s=ah平行四边形面积公式推导:剪拼、平移 平行四边形可以转化成一个长方形。【三角形的面积】三角形的面积=底×高÷2;用字母表示:S=ah÷2三角形面积公式推导:旋转【梯形的面积】梯形的面积=(上底+下底)x高÷2;用字母表示:S=(a+b)h÷2梯形面积公式推导:旋转,两个完全一样的梯形拼成一个平行四边形。

“发现和研究多边形的面积”

把自己对多边形的认识写下来。

由在同一平面且不在同一直线上的三条或三条以上的线段首尾顺次连结且不相交所组成的封闭图形叫做多边形。在不同平面上的多条线段首尾顺次连结且不相交所组成的图形也被称为多边形,是广义的多边形。

组成多边形的线段至少有3条,三角形是最简单的多边形。组成多边形的每一条线段叫做多边形的边;相邻的两条线段的公共端点叫做多边形的顶点;多边形相邻两边所组成的角叫做多边形的内角;连接多边形的两个不相邻顶点的线段叫做多边形的对角线。

多边形内角的一边与另一边反向延长线所组成的角,叫做多边形的外角。

在多边形的每一个顶点处取这个多边形的一个外角,它们的和叫做多边形的外角和。

多边形还可以分为正多边形和非正多边形。正多边形各边相等且各内角相等。

多边形分平面多边形和空间多边形。平面多边形的所有顶点全在同一个平面上,空间多边形至少有一个顶点和其它的顶点不在同一个平面上。

平面图形面积研究小论文

小学数学图形教学分析论文

摘要: 教学手段从过去的文字和黑板转变成幻灯片和投影之后,以计算机作为核心的教学手段逐渐显露头角,Flash作为计算机中的基础技术,能够广泛应用于教学中。基于此,本文主要对小学数学的图形教学中Flash的应用进行了分析研究,通过具体的教学实例,从图形方位变换教学、平面几何图形教学以及立体几何图形教学这三个方面阐述了Flash的具体应用,意在帮助小学数学教学找到应用Flash的正确途径。

关键词: Flash;小学数学;图形教学

一、前言

在传统的图形教学中,教师主要通过模型展示以及学生的动手裁剪开展教学,让学生从触觉和视觉两个角度进行图形的认识和理解。但是教育学家指出,对于小学生来说,他们的思维已经从表象转为抽象,并具备一定的逻辑能力。因此,在图形教学中,需要改变模型展示这种教学方法,重点进行图形变换以及辨析的展示,通过动画或者图形来引导学生进行图形的认识和理解,顺应学生的思维发展特点。

二、图形方位变换教学中的Flash应用

笔者主要将图形的平移和旋转这一课程为例,探究Flash的应用。图形的旋转主要来自于现实生活。因此,在开展教学之前,教师需要使用生活实例进行引导,比如,电风扇在运转时叶片的转动现象、汽车的雨刷器运动现象以及风力发电机的叶片旋转想象等,让学生对旋转现象有初步的认识,并激发学生的学习兴趣;然后教师就可以应用事先制作好的Flash动画进行旋转知识的进一步教学,在制作Flash动画时,教师可以在动画中指出图形的旋转点以及旋转条件,比如,直角三角形沿着长的直角边和斜边交点进行逆时针九十度的旋转或者顺时针九十度的旋转等;最后,在学生理解了旋转的本质之后,教师再使用Flash进行考察,确保学生能够熟练判断出图形的旋转过程,并要求学生在方格纸中画出旋转之后的图形,从而加深学生对于旋转知识的理解。另外,教师在制作Flash动画时,可以使用黄色作为动画界面,使用对比鲜明的深绿色作为旋转图形的颜色,通过活泼且对比鲜明的颜色调动学生的积极性。与此同时,为了更加清晰地展现出旋转的过程,教师可以应用分图层的方法将旋转过程中的不同要素安放在不同的图层中,然后通过连续的帧进行不同图层的播放,以此来展示出旋转的多个要素。通常来说,Flash的每一秒播放需要控制在12帧以内,这样才能避免出现播放过快学生理解困难或者播放过慢学生注意力不集中的现象。

三、平面几何图形教学中的Flash应用

笔者主要将平行四边形面积推导这一课程为例,探究Flash的应用。该课程的教学对象是小学五年级的学生,他们已经在之前的学习中了解了正方形、圆形、长方形以及三角形等图形的面积和周长计算公式,能够为教师进行平行四边形面积的讲解提供便利。在进行教学之前,教师可以将学生分成若干个小组,让学生在小组内进行平行四边形面积计算公式的探讨。在学生的探讨过程中,可能会得出两种推导方法,其一是将沿着平行四边形的高将直角三角形剪下,并将这一三角形平移到平行四边形的另一边,可以发现平行四边形变成了长方形,由此可以得出平行四边形的面积公式与长方形一致;其二是沿着平行四边形的高将两个梯形剪下,将这一梯形平移到平行四边形的另一边,可以发现平行四边形变成了长方形,由此得出其面积计算公式。基于学生的讨论结果,教师可以将平行四边形裁剪以及平移的过程使用Flash制作出来,这样能够使学生更加直观地看到平行四边形的变换,从而深入理解平行四边形的面积推导过程,而且学生在课后复习过程中也能够观看Flash动画,为学生巩固数学知识提供了便利。另外,在学生讨论之后,教师播放Flash动画,能够将学生的注意力从激烈的讨论中转移到多媒体屏幕上,有效缩短了学生集中注意力的时间,在很大程度上提升了数学课堂的教学效率。需要注意的.是,教师制作的Flash动画,需要采用对比鲜明的颜色,比如平行四边形可以采用深绿色描绘,剪裁的部分使用红色描绘,这种鲜明的颜色对比能够使学生明确平行四边形变换过程中的重点部分,从而帮助学生理解数学知识。

四、立体几何图形教学中的Flash应用

笔者主要将涂色大正方体的切割这一课程为例,探究Flash的应用。该课程的教学目标是培养学生的数学思维能力以及空间想象能力,使学生在探索大正方体切割的过程中,体会到数学的魅力,让学生在学习中获取成就感和喜悦感,从而提高学生的学习积极性。在实际的教学过程中,学生可以很容易地通过自己的想象得出大正方体均等分之后,三个面涂色、两个面涂色以及一个面涂色的小正方体的数量,但是对于没有涂色的小正方体数量却不确定。因为随着大正方体均等分份数的增加,学生的想象就越困难,这就需要教师应用Flash动画,通过动画展示出大正方体六个面依次被剥去的过程,从而使学生直观地看到没有涂色的小正方体的数量。Flash的应用打破了学生的思维瓶颈,使学生更容易理解相关的数学知识,从而达成课程的教学目标。另外,为了给学生营造三维空间的立体感,教师在进行Flash动画的制作时,可以将背景色设定为黑色,将大正方体设定为橘色,将没有涂色的正方体面设定为灰色,这样能够使学生更加直观地感受到正方体的涂色面和没有涂色面,从而为学生得出相关规律提供便利。

五、结论

综上所述,在图形教学中,Flash的应用打破了传统教学方法的弊端,提升了教学的效果。通过本文的分析可知,小学数学教师需要加强对计算机技术的学习,从而制作出更加适合图形教学的Flash动画,培养小学生的逻辑思维和数学素养。希望本文能够为研究学者进行Flash的应用研究提供参考。

参考文献:

[1]马乃骥.电子白板在小学数学图形教学中的应用[J].中小学电教(下半月),2017,(06):55.

[2]廖倚春.例谈几何画板在小学数学图形教学中的应用[J].中国信息技术教育,2015,(22):129.

第一篇: 在生活中,各式各样的事情都能从一个普普通通毫不起眼的小事变成一个个既生动又引人深思的数学题。我们常做的应用题,就是在生活中取材,再稍加改编而成的题目。这不,我又在做数学题时发现了一道趣题:在一个游泳池内,有一艘小船,上面有许多石头,现在把石头全部从船里扔到水中,请问,游泳池内的水位会上升、下降,还是不变? 乍一看题目,我便疑惑不解:这道题似乎和数学沾不上一点关系啊!这下该怎么做呢?我不气馁,努力思考,不一会儿便理出了头绪:当石头扔到水中后,船的重量减轻,便会上浮,水位也会下降,但石头在水中占了一部分空间,水位又要随之上升。因为这都是同一堆石头,所以上升与下降的幅度也应该一致,水位当然保持不变啦!可爸爸看了,却说是下降,我很不服气,决定与他打个赌 可是,用什么来证明我的猜想正确与否呢?这时,抽象的想象就没有真实的操作好了。于是,我便在爸爸的协助下作了一个实验:由于我能力有限,没法从外面搬来一个游泳池,也没法去造一艘小船,只好把题中的条件按比例缩小了。游泳池变成塑料盆,小船变成肥皂盒,石头则变成了五块橡皮。我先在塑料盆里倒进一些水,再把装着五块橡皮的肥皂盒放入水中,然后用直尺量出水位是20厘米。最关键的时刻到了,我把五块橡皮小心翼翼地从肥皂盒中取出,再全部投入水中,最后用直尺量出水位--天哪!竟然只有18厘米,是下降了!我错了! 虽然事实证明,水位是下降了,但我还是丈二和尚--摸不着头脑:这水位怎么会下降呢? 我苦思冥想了好长时间,草稿纸上全是一幅幅演示图,可我还是一筹莫展。我急得团团转,可越急脑子越乱,反而想不出了。就当我即将放弃的时候,我突然想起了数学家陈景润孜孜不倦,夜以继日算题目的故事,血液中仿佛充斥着一股勇往直前的力量,任何困难都挡不住我。果然,不出半小时,这道题我终于想通了:当石头在船上时,上升水的重量=石头的重量,而石头的密度比水大,因此同等重量的水和石头,水的体积大于石头的体积。当石头被投进水中后,水便下降了石头的重量,而石头在水中要占空间,因此,石头扔进水中后,水上升的体积=石头的体积。而同等体积的水和石头,水的重量小于石头的重量。综合以上几点,得到:石头扔下去后,水位下降的重量大于石头的重量,水位上升的重量小于石头的重量,也就是下降的水的重量大于上升的水的重量,于是下降的水的体积便大于上升的水的体积,水位当然下降了。就这样,一道难题便迎刃而解了。 其实,仔细观察,这道题与数学密不可分,其中的体积、重量、密度,都属于数学的范畴之内。你瞧,一个生活中的小事也能变成一道数学题,数学是无处不在的,让我们热爱数学,学好数学吧第二篇:我们生活中的数学"数学来源于生活,也服务于生活。"下面是我的一些亲身经历,它都证明了这是条真理。有一次,我和妈妈一起去超市购物,妈妈说:"要有计划地把这些购物券用完,所以每买一件东西都要算一算用了多少钱",当我们买完所需的东西之后,刚要离开,我看见货架上正好摆着火腿肠,于是我让妈妈买些火腿肠,妈妈同意了。可是刚走几步,我又看见货架上摆着一包一包的,同样品牌,同样重量,里面有10根,每包元。到底买一包一包的呢,还是买一根一根的?我犹豫了。突然,我的脑子一转,有了,只要比较一下,哪一种合算就买哪一种。于是我开始算起来:零卖的如果买10根,每根4角,共是4元,而整包的要元,多了3毛钱,所以我决定买散装的。我把我计算的过程说给妈妈听,妈妈听了直夸我爱动脑,因此我也就成为了妈妈的"小会计"。 在我们的生活中还有许多平面图形和立体图形。我家的桌子的面是正方形,钟的面是正方形,我家的床面是长方形,门的面也是长方形,我们用的三角板是三角形的…… 冰箱是长方体,牙膏盒是长方体,我家的电脑外包装箱是一个正方体……现在我已经学会了计算各种平面图形的面积,也学会了长方体、正方体的表面积的体积的有关计算,还能灵活地运用,解决我们生活中的实际问题。比如:上星期,妈妈带我们去一个游泳馆,妈妈说:你看我们面前的这个游泳池,你知道这个池内贴瓷片的面积和它能容纳多少水吗?"我得意地说:"这个当然没有问题,其实就是计算它的表面积和容积,需要知道它们的长、宽和高。首先,我来解决第一个问题,就是求它的表面积,我们要特别注意一个问题:这个游泳池没有上面,也就是要求5个面的总面积,就是用长×宽+(长×高+宽×高)×2,求出来的就是这个游泳池的表面积,最后要用面积单位;第二个问题是求它的容积,是用它的长×宽×高,但注意最后要用体积单位。"我讲得津津有味,似乎有点我们老师的味道,想着想着我就更加得意了。站在一旁的爸爸和妈妈都夸我讲得好,这时别提我有多高兴了。同学们,数学是很奥妙的,也是很灵活的,除了我刚才提到的以外,生活中的数学还有很多种呢!所以学数学就是为了能在实际生活中应用,数学是人们用来解决实际问题的,其实数学问题就产生在生活中。希望同学们到生活中学数学,在生活中用数学,数学与生活密不可分,学深了,学透了,自然会发现,其实数学很有用处。怎么样,数学是不是很重要? 所以,我要提醒你一定要学好数学哦!

六年级数学小论文(我们生活中的数学)"数学来源于生活,也服务于生活。"下面是我的一些亲身经历,它都证明了这是条真理。有一次,我和妈妈一起去超市购物,妈妈说:"要有计划地把这些购物券用完,所以每买一件东西都要算一算用了多少钱",当我们买完所需的东西之后,刚要离开,我看见货架上正好摆着火腿肠,于是我让妈妈买些火腿肠,妈妈同意了。可是刚走几步,我又看见货架上摆着一包一包的,同样品牌,同样重量,里面有10根,每包元。到底买一包一包的呢,还是买一根一根的?我犹豫了。突然,我的脑子一转,有了,只要比较一下,哪一种合算就买哪一种。于是我开始算起来:零卖的如果买10根,每根4角,共是4元,而整包的要元,多了3毛钱,所以我决定买散装的。我把我计算的过程说给妈妈听,妈妈听了直夸我爱动脑,因此我也就成为了妈妈的"小会计"。 在我们的生活中还有许多平面图形和立体图形。我家的桌子的面是正方形,钟的面是正方形,我家的床面是长方形,门的面也是长方形,我们用的三角板是三角形的…… 冰箱是长方体,牙膏盒是长方体,我家的电脑外包装箱是一个正方体……现在我已经学会了计算各种平面图形的面积,也学会了长方体、正方体的表面积的体积的有关计算,还能灵活地运用,解决我们生活中的实际问题。比如:上星期,妈妈带我们去郑州的一个游泳馆,妈妈说:"小语,你现在已经上五年级了,看我们面前的这个游泳池,你知道这个池内贴瓷片的面积和它能容纳多少水吗?"我得意地说:"这个当然没有问题,其实就是计算它的表面积和容积,需要知道它们的长、宽和高。首先,我来解决第一个问题,就是求它的表面积,我们要特别注意一个问题:这个游泳池没有上面,也就是要求5个面的总面积,就是用长×宽+(长×高+宽×高)×2,求出来的就是这个游泳池的表面积,最后要用面积单位;第二个问题是求它的容积,是用它的长×宽×高,但注意最后要用体积单位。"我讲得津津有味,似乎有点我们老师的味道,想着想着我就更加得意了。站在一旁的爸爸和妈妈都夸我讲得好,这时别提我有多高兴了。同学们,数学是很奥妙的,也是很灵活的,除了我刚才提到的以外,生活中的数学还有很多种呢!所以学数学就是为了能在实际生活中应用,数学是人们用来解决实际问题的,其实数学问题就产生在生活中。希望同学们到生活中学数学,在生活中用数学,数学与生活密不可分,学深了,学透了,自然会发现,其实数学很有用处。怎么样,数学是不是很重要? 所以,我要提醒你一定要学好数学哦!

教材把认识平面图形的内容编排在《认识立体图形》之后,它通过立体图形和平面图形的关系引入教学。因为在现实生活中学生直接接触的大多是立体图形,随时随地都能看到物体的面。这样就可以根据学生已有的生活经验,通过丰富的学习活动帮助其直观认识常见的平面图形。在直观认识长方体、正方体、圆柱和三棱柱的基础上,让学生用摸一摸、找一找、画一画等方法,从物体上"分离"出面,研究面的形状,形成长方形、正方形、三角形和圆的表象,让学生体会到"面"在"体"上。这样安排既蕴含了面与体的关系,使学生在整体上直观认识这几种平面图形,也符合了低年级儿童的认知规律,有利于他们主动地认识平面图形。教材强调在活动中掌握知识,其设计的若干具有开放性的活动,既可以将学生所需掌握的知识蕴含在活动中,又满足不同特点学生的需要。通过学生亲自动手操作,有利于学生培养空间观念和解决问题的能力,发展学生的数学思维,又自然地完成学习过程。并且教材选取的题材符合儿童的年龄特征,生动有趣,有利于培养学生的学习兴趣。1、强调数学知识与现实生活的密切联系,激发学生兴趣通过"说说生活中在哪儿见过这些平面图形"这一问题情境,既引导学生回顾前面学习的立体图形,也自然地过渡到平面图形的认识;更密切了数学与生活的联系,调动了学生原有的生活经验,使学生觉得数学有用,数学就在自己的身边。课堂上学生始终乐此不疲,兴趣盎然。整个数学学习活动充满情趣,有的学生甚至忘了在上课,直接走到其他孩子旁边与他人做一些交流。2、共同操作,独立思考,学会初步合作与交流本节课是通过大量的动手操作来完成的,利用"摸"面、"找"面、"画"面、"说"面几个环节的学习活动,既注重让学生以自己内心的体验来学习数学,培养学生的观察能力、运用数学进行交流的意识,又使学生初步感知这些实物(模型)的表面,获得对平面图的感性认识,体会"面"由"体"的得和"面"与"体"之间的联系与区别。同时培养了学生观察能力、动手操作的能力、语言表达能力以及分析、比较、概括的能力,发展学生的空间观念。而在画一画这一环节上,学生通过合作操作,把任务完成得比较理想,也得到了比较令人满意的效果。并且在以上的学习过程中,学生对于合作与交流有了初步的感知,知道小组成员应该互帮互让。因为在老师让他们找出自己最喜欢的立体图形的时候,,是高高兴兴地拿起其他物体与同组小朋友进行交流,有个别学生与别的同学商量着互换手中的物体。3、初步渗透分类的思想在让学生操作得到平面图形之后,我没有把学生的作品放在实物投影上加以展示其画得如何的端正,而是直接要求学生把图形贴到黑板上各种图形所在的相应位置。在贴的时候有几个小孩把位置贴错了,给其他小孩多了一个重新分类的机会,这可真是一件好事。这样的安排既把学生的作品做了展示,又让学生把各种图形进行了分类,并且初步渗透了分类的思想,为下一部分内容的学习做了铺垫。

  • 索引序列
  • 关于梯形面积的数学小论文
  • 数学图形面积研究小论文
  • 数学小论文五年级多边形的面积
  • 关于多边形面积的研究论文题目
  • 平面图形面积研究小论文
  • 返回顶部