首页 > 学术论文知识库 > 肽论文文献

肽论文文献

发布时间:

肽论文文献

分享一篇多肽信号在胚胎与胚乳之间移动,调控胚胎角质层发育的文章。

在胚胎发育早期,胚胎中产生TWISTED SEED1(TWS1)小肽的前体,通过初生不连续角质层的空隙,扩散到胚乳中,由胚乳特异表达的ABNORMAL LEAF SHAPE1(ALE1)酶加工成活性肽,回到胚胎中,与胚胎特异表达的受体激酶GASSHO1/2(GSO1/2)识别,调控形成完整的胚胎角质层。

植物的角质层(The plant cuticle)是由疏水的脂质和蜡质分泌到表皮细胞的细胞壁外侧后形成的。

在拟南芥胚胎发育的早期,胚胎角质层是初生不连续的,到心形胚时期,胚胎表皮细胞外侧形成完整的角质层,将胚胎细胞与周围的胚乳细胞等隔开。

GASSHO1 (GSO1) 和GSO2 受体激酶在 胚胎 中表达,影响在胚胎发育过程中影响角质层的功能。 gso1 gso2 双突变体表型:对亲水性燃料的透性增强,50-80%的子叶融合。     转录因子ZHOUPI (ZOU) 和ABNORMAL LEAF SHAPE1 (ALE1)是两个胚乳特异的转录因子(endosperm specific proteins)。有研究表明 GSO1、GSO2与ZOU、ALE1在同一条通路上调控胚胎发育。

枯草杆菌蛋白酶(subtilase)在 胚乳 中表达,能够对肽前体进行加工,TWS1 前体和GASSHO 受体在 胚胎 中表达。TWS1在2016年被报道与角质层的沉积有关。

被子植物的种子可以划分为三个区间:合子胚、胚乳、种皮。 CASPARIAN STRIP INTEGRITY FACTORs (CIFs)是一种酪氨酸硫酸化多肽【个人注:酪氨酸硫酸化多肽需要进行翻译后修饰,该类多肽有:PSK\PSY\RGF,通过酪氨酸硫酸化转移酶 TPST 进行催化】, CIF1/2作为GSO1/2的配体 ,调控根内皮层中凯氏带的形成。那CIFs是否调控胚胎角质层的发育呢。作者沿着这条思路,构建遗传材料 cif1 cif2 cif3 cif4 ,并未观察到种子扭曲、高渗表型表型(fig. S1A)。

在2016年报道了TWS1调控胚胎角质层,这里作者重新敲除得到了 tws1 的突变体,与 gso1-1 gso2-1 种子扭曲、高渗表型一致,且不存在加性, 说明TWS1与GSO1/2在同一条通路上。

并且在 tws1 中胚胎角质层的发育也同样受损,更进一步暗示TWS1可能与GSO1/2共同调控胚胎角质层的发育。【可从上述表型,以及已有的报道中推测,因为GSO1/2的配体是与TWS1同属于硫酸化的肽】

【至此,本文通过TPST酶的突变表型,推测受该酶加工的某种肽调控该表型,于是首先猜到CIFs,但是四突没表型,于是猜测其他的,结合TWS1多肽的报道,重新敲除后确定TWS1表型。文章做到这里,一般的思路是往下验证TWS1与GSO1/2互作,共同调控表型,结束,比较常规,且同类家族的多肽CIFs与GSO1/2作为配体受体已经被报道过,新意有待提升。】     那么作者是如何往下进行思考的呢?

【前文提到的 ale1 表型,以及领域内的背景知识:ALE1与GSO1/2在同一条通路上调控胚胎角质层的发育,并且ALE1蛋白酶是在胚乳中特异表达,那如果能够阐明ALE1的加工对于TWS1的活性是必须的,那就与这几个基因的表达部位的特异性,以及细胞分区,精确调控相关,就很有意思了。】

接下来证明 TWS1能够被ALE1加工 ,在烟草体内,和体外纯化中证明TWS1被ALE1加工切割,并进一步细化到切割位点位于His 54 和 Gly 55 。将TWS1的这两个氨基酸突变后,TWS1将不能被ALE1切割,说明这两个氨基酸残基对于TWS1的剪切位点非常关键。并且依赖于ALE1的加工发生在TWS1的C端。【后面的几句没太懂,个人理解是,TWS1和CIFs的氨基酸序列比较来看,由于CIFs位置更靠C端,TWS1没那么靠近C端,所以TWS1的C端需要ALE1进行加工来激活TWS1的活性。】这或许可以解释同类硫酸化多肽在种子和根中发挥不同功能。

通过以上三类实验,证明了:         1、TWS1被ALE1加工         2、TWS1与GSO互作         3、N端硫酸化至关重要         4、C端ALE1切割至关重要

tpst 纯合突变体用野生型花粉进行授粉后,没有胚胎表型,在F1代中只有tpst x tpst展示出表型,说明该表型是 合子起源【?】。

TPST在种子中遍在表达,为了探索哪一个区室的TPST对TWS1产生影响,于是分别用遍在启动子 RPS5A 、胚胎特异启动子 PIN1 、胚乳特异启动子 RGP3 驱动TPST的表达。结果: RPS5A 、 PIN1 下均能回补,只有 RGP3 驱动下,不能回补,这暗示 TPST对TWS1的加工在胚胎中发生 。

并且TWS1的定位分析显示:TWS1在胚胎初期开始在整个胚胎区域表达,随后,被限制在root tip【表达pattern同样暗示了:这种前后期表达的差异非常重要】。

【 那么TWS1作为信号肽在胚胎中产生,在胚胎中用TPST进行N端硫酸化加工,为什么还需要跑到胚乳中用ALE1进行C端加工,然后再跑回胚胎中与受体GSO结合,调控胚胎角质层完整性的沉积?这样穿梭的意义,或者需要在特定细胞分区之间加工的意义是什么呢? 】      作者在 tws1 背景下转入 pTWS1:ALE1 ,得到胚胎特异表达的ALE1,然后通过杂交引入TWS1,这样得到均在胚胎中表达的TWS1、ALE1以及GSO【为什么要在 tws1 背景下】。该类种子成熟时严重枯萎,但仍有部分可以发芽,说明胚胎中所有信号持续共表达会对种子发育产生负面影响,胚胎信号的持续激活,引起种子的应激基因上调。这就为上一个问题提出了解释:空间的分区或许提供了 胚胎信号衰减 的条件。

以上两部分说明了:TWS1信号若在从产生到加工一直在胚胎中,即胚胎信号在胚胎中持续共表达,会引起种子应激,对种子发育有害。在胚乳中进行的加工,具有对胚胎发育/角质层沉积的调节作用。

综上,作者提出,TWS1在胚胎产生,胚乳加工,再返回胚胎发挥功能,这样的双向信号传导模式能够有效地监察胚胎角质层的完整性。具体为:

参考文献

1. 2. 3. 4. 5.

通讯lab

1、学位论文

[序号]主要责任者.文献题名[D].出版地:出版单位,出版年:起止页码(可选).

例如:[4]赵天书.诺西肽分阶段补料分批发酵过程优化研究[D].沈阳:东北大学,2013.

2、专著、论文集、报告

[序号]主要责任者.文献题名[文献类型标识].出版地:出版者,出版年:起止页码(可选).

例如:[1]刘国钧,陈绍业.图书馆目录[M].北京:高等教育出版社,1957:15-18.

3、论文集中的析出文献

[序号]析出文献主要责任者.析出文献题名[A].原文献主要责任者(可选)原文献题名[C].出版地:出版者,出版年:起止页码.

例如:[7]钟文发.非线性规划在可燃毒物配置中的应用[A].赵炜.运筹学的理论与应用——中国运筹学会第五届大会论文集[C].西安:西安电子科技大学出版社,1996:468.

扩展资料:

参考文献类型及文献类型,根据GB3469-83《文献类型与文献载体代码》规定,以单字母方式标识:

1、专著M ; 报纸N ;期刊J ;专利文献P;汇编G ;古籍O;技术标准S ;

2、学位论文D ;科技报告R;参考工具K ;检索工具W;档案B ;录音带A ;

3、图表Q;唱片L;产品样本X;录相带V;会议录C;中译文T;

4、乐谱I; 电影片Y;手稿H;微缩胶卷U ;幻灯片Z;微缩平片F;其他E。

参考文献类型:专著[M],会议论文集[C],报纸文章[N],期刊文章[J],学位论文[D],报告[R],标准[S],专利[P],论文集中的析出文献[A],杂志[G]。

参考资料来源:百度百科——参考文献标准格式

生物活性肽是蛋白质中25个天然氨基酸以不同组成和排列方式构成的从二肽到复杂的线性、环形结构的不同肽类的总称,是源于蛋白质的多功能化合物。活性肽具有多种人体代谢和生理调节功能,易消化吸收,有促进免疫、激素调节、抗菌、抗病毒、降血压、降血脂等作用,食用安全性极高,是当前国际食品界最热门的研究课题和极具发展前景的功能因子。以下为几种重要生物活性肽的发展状况。乳肽早在20世纪50年代,该公司即以乳酪蛋白酶解制取了第一代的酪蛋白肽和氨基酸混合物,含5~8个氨基酸组成的肽和70%以上的游离氨基酸,用于低抗原性防过敏牛奶粉,在市场上行销40多年;60~70年代,开发出第二代的高度水解乳清蛋白肽混合物,含10~12个氨基酸组成的肽和40%~60%的游离氨基酸。以上两代产品的游离氨基酸含量过高,影响了产品的风味和生物效价;90年代,推出了低度水解乳清蛋白肽混合物,含10~15个氨基酸组成的肽和20%以下的游离氨基酸,产品风味明显改善,生物效价提高。 992年,和研究了胰蛋白酶、凝乳蛋白酶等酶的固定化反应器制取乳肽的工艺,可以通过调节流速来控制反应程度,并通过重复使用酶来降低成本。1989年,.和.研究了带超滤膜的酶反应器,在反应器内加入钙和磷酸根离子,用于制备酪蛋白磷酸肽和去磷酸化酪蛋白多肽。 我国对乳肽的研究不多,主要是进行蛋白酶的筛选和酶解工艺的优化,如1991年,肖安乐等人筛选出胰蛋白酶的胰酶是水解变性乳清蛋白质的最佳酶种;1994年,王凤翼等人对胰蛋白酶控制水解α-酪蛋白的最佳条件进行了优选;张和平等人采用胰蛋白酶水解热敏性乳清蛋白,获得热稳定好、易溶解的多肽,并以此开发出稳定性良好的乳清饮料;1995年,于江虹也从牛乳酪蛋白中分离提纯获得酪蛋白磷酸肽,证实了其在小肠中可与钙、铁等矿物质形成可溶性络合物,促进人体对钙、铁的吸收;广州市轻工研究所生产的酪蛋白磷酸肽CPP含量达85%以上,易溶于水,加工性能稳定,已在我国市场上推出。最近,我国生物工作者开发了采用微生物发酵控制、蛋白转化率高的乳肽产品,其中氨态氮占20%左右、肽态氮占80%左右,产品无不良气味,已获专利;湖北工学院吴思方等人进行了固定化胰蛋白酶生产酪蛋白磷酸肽的研究,CPP得率为%,产品中CPP总含量为15%,此工艺中酶可重复多次使用,既降低了成本,又有利于产品分离和生产自动化。大豆肽大豆肽是大豆蛋白质经酸法或酶法水解后分离、精制而得到的多肽混合物,以3~6个氨基酸组成的小分子肽为主,还含有少量大分子肽、游离氨基酸、糖类和无机盐等成分,分子质量在1000μ以下。大豆肽的蛋白质含量为85%左右,其氨基酸组成与大豆蛋白质相同,必需氨基酸的平衡良好,含量丰富。大豆肽与大豆蛋白相比,具有消化吸收率高、提供能量迅速、降低胆固醇、降血压和促进脂肪代谢的生理功能以及无豆腥味、无蛋白变性、酸性不沉淀、加热不凝固、易溶于水、流动性好等良好的加工性能,是优良的保健食品素材。 大豆肽的生产有酸法水解和酶法水解。酸法因水解程度不易控制、生产条件苛刻、氨基酸受到损害而很少采用;酶法水解易控制、条件温和、不损害氨基酸而大多被采用。酶的选择至关重要。通常选用胰蛋白酶、胃蛋白酶等动物蛋白酶,也可选用木瓜和菠萝等植物蛋白酶。但应用较广的主要是放线菌166、枯草芽孢杆菌1389、栖土曲霉3942、黑曲霉3350和地衣型芽杆菌2709等微生物蛋白酶。 20世纪70年代初,美国首先研制出大豆肽,公司建成了年产5000吨食用大豆肽装置;日本于80年代开始研制大豆肽,不二制油公司首先采用酶法规模化生产出3种大豆肽,雪印和森永等乳业公司应用大豆肽生产食品。 我国近几年也开展了大豆肽的生产和应用研究。江西省科学院高科技中心李雄辉等人采用ASI389中性蛋白酶和木瓜蛋白酶双酶水解生产大豆肽,使大豆肽生成率为%,肽态氮含量大于85%,游离氨基酸含量小于8%,平均肽键长度5~8,分子质量2000μ左右。双酶水解工艺既缩短了酶解时间、提高了蛋白质水解度,又减轻了产品苦味。华南理工大学黄惠华等人用木瓜蛋白酶对大豆分离蛋白进行水解试验,测得木瓜蛋白酶的动力学常数。另外,无锡轻工大学的葛文光对大豆肽的生理功能及作用效果进行了研究;郭敏亮采用豆粕生产出大豆肽饮料等。 根据大豆肽的理化特性,可用大豆肽为基本素材,开发肠胃功能不良者和消化道手术病人康复的肠道营养食品的流态食品、降胆固醇、降血压、预防心血管疾病的保健食品,增强肌肉和消除疲劳的运动员食品、婴幼儿及老年人保健食品、促进脂肪代谢的减肥食品、酸性蛋白饮料和用作促进微生物生长、代谢的发酵促进剂等。高F值寡肽高F值寡肽即是由动、植物蛋白酶解后制得的具有高支链、低芳香族氨基酸组成的寡肽,以低苯丙氨酸寡肽为代表,具有独特的生理功能。F值是指支链氨基酸(BCAA)与芳香族氨基酸(AAA)的摩尔比值。 1976年,Yamashita等人首次利用胃蛋白酶和链霉蛋白酶从鱼蛋白和大豆分离蛋白酶解中制得含低苯丙氨酸的寡肽混合物,产率分别为%和%,苯丙氨酸含量分别为%和%。1982年,Nakhost等人用α-胰凝乳蛋白酶和羧肽酶A酶解大豆蛋白,也制得相似的产物。1986年,Soichi等人进行了多种酶分别酶解乳清蛋白制取低苯丙氨酸寡肽的多种工艺、方法试验,结果以胃蛋白酶-链霉蛋白酶两步水解法为佳,产品得率为%、苯丙氨酸含量为%。1991年,Shinya等人用嗜碱蛋白酶和肌动蛋白酶水解玉米醇溶蛋白,制取了无苦味高F值寡肽,产率为%,F值,AAA含量为%。 1996年,西班牙的Bautista等人用肌动蛋白酶和Kerase中性蛋白酶酶解葵花浓缩蛋白,制取高F值寡肽,产率为%,F值为,AAA含量为%。王梅也在1992年首次采用碱性蛋白酶和木瓜蛋白酶降解玉米黄粉;成功地研制出高F值寡肽混合物,产率为%,F值为,AAA含量为%,完全符合高F值制剂的要求,为解决玉米湿法淀粉厂副产品——黄粉的综合利用开创了新路子。 高F值寡肽具有消除或减轻肝性脑病症状、改善肝功能和改善多种病人蛋白质营养失常状态及抗疲劳等功能,除可制作治疗肝疾药品外,还可广泛用作保肝、护肝功能食品,烧伤、外科手术、脓毒血症等高付出病人及消化酶缺乏患者的蛋白营养食品和肠道营养剂,高强度劳动者和运动员食品营养强化剂等。谷胱甘肽(GSH)谷胱甘肽是由谷氨酸、半胱氨酸和甘氨酸经肽键缩合而成的活性三肽,广泛存在于动物肝脏、血液、酵母和小麦胚芽中,各种蔬菜等植物组织中也有少量分布。谷胱甘肽具有独特的生理功能,被称为长寿因子和抗衰老因子。日本在50年代开始研制并应用于食品,现已在食品加工领域得到广泛应用。我国对谷胱甘肽的研究尚处于起步阶段。 谷胱甘肽的生产方法主要有溶剂萃取法、化学合成法、微生物发酵法和酶合成法等4种,其中利用微生物细胞或酶生物合成谷胱甘肽极具发展潜力,目前即以酵母发酵法生产为主。 由于谷胱甘肽分子有一个特异的γ-肽键,决定了它在人机体中的许多重要生理功能,如蛋白质和核糖核酸的合成、氧及营养物质的运输、内源酶的活力、代谢和细胞保护、参与体内三羧酸循环及糖代谢,具有抗氧化、抗疲劳、抗衰老、清除体内过多自由基、解毒护肝、预防糖尿病和癌症等功效,因此而成为机体防御功能肽的代表。谷胱甘肽除可在临床上用作治疗眼角膜疾病,解除丙烯酯、氟化物、重金属、一氧化碳、有机溶剂等中毒症状的解毒药物外,还可用于运动营养食品和功能食品添加剂等。中国在生物活性肽的研究开发上,从事活性肽的研究单位也多从医药角度出发,研究力量及投入较少,限制了活性肽药食两用功能的发挥,市场上国产的活性肽药品和食品寥寥无几。但近几年研究逐步活跃起来,报道渐多,前景看好。当前生物活性肽研究开发的方向是:肽的定向酶解技术开发,包括高效、专一性强的酶种选育、复合酶系共同作用机理、机制,脱苦微生物的分离、纯化和机理研究,酶解工艺改进技术等;功能性肽的分离、分析技术开发,包括新型高效分离设备和分离工艺,灵敏度高、简单易行的目标肽活性分析检测体系和分析技术及下游精制技术;肽的功能性生物学评价研究;生物活性肽功能食品开发等。

好的。找我下。

小分子肽研究论文

小分子活性肽本身可以抑制病变细胞,增强人体免疫能力;激活休眠细胞,清除人体有害自由基;修复受损细胞,调节人体细胞生成;促进新生细胞,改善人体新陈代谢。血红蛋白肽是一款富含猪血红蛋白肽、胶原蛋白肽、枸杞肽、红枣肽、人参提取物等有效成分的活性肽复合产品,能够被人体迅速吸收并靶向营养红细胞,帮助血红细胞再生,对抗缺铁性贫血、失血性贫血、急性缺血性症状以及椎-基底动脉供血不足造成的负面症状,同时还具有理气补血、调理经期、增强人体免疫力等功效。

生物活性肽是蛋白质中25个天然氨基酸以不同组成和排列方式构成的从二肽到复杂的线性、环形结构的不同肽类的总称,是源于蛋白质的多功能化合物。活性肽具有多种人体代谢和生理调节功能,易消化吸收,有促进免疫、激素调节、抗菌、抗病毒、降血压、降血脂等作用,食用安全性极高,是当前国际食品界最热门的研究课题和极具发展前景的功能因子。以下为几种重要生物活性肽的发展状况。乳肽早在20世纪50年代,该公司即以乳酪蛋白酶解制取了第一代的酪蛋白肽和氨基酸混合物,含5~8个氨基酸组成的肽和70%以上的游离氨基酸,用于低抗原性防过敏牛奶粉,在市场上行销40多年;60~70年代,开发出第二代的高度水解乳清蛋白肽混合物,含10~12个氨基酸组成的肽和40%~60%的游离氨基酸。以上两代产品的游离氨基酸含量过高,影响了产品的风味和生物效价;90年代,推出了低度水解乳清蛋白肽混合物,含10~15个氨基酸组成的肽和20%以下的游离氨基酸,产品风味明显改善,生物效价提高。 992年,和研究了胰蛋白酶、凝乳蛋白酶等酶的固定化反应器制取乳肽的工艺,可以通过调节流速来控制反应程度,并通过重复使用酶来降低成本。1989年,.和.研究了带超滤膜的酶反应器,在反应器内加入钙和磷酸根离子,用于制备酪蛋白磷酸肽和去磷酸化酪蛋白多肽。 我国对乳肽的研究不多,主要是进行蛋白酶的筛选和酶解工艺的优化,如1991年,肖安乐等人筛选出胰蛋白酶的胰酶是水解变性乳清蛋白质的最佳酶种;1994年,王凤翼等人对胰蛋白酶控制水解α-酪蛋白的最佳条件进行了优选;张和平等人采用胰蛋白酶水解热敏性乳清蛋白,获得热稳定好、易溶解的多肽,并以此开发出稳定性良好的乳清饮料;1995年,于江虹也从牛乳酪蛋白中分离提纯获得酪蛋白磷酸肽,证实了其在小肠中可与钙、铁等矿物质形成可溶性络合物,促进人体对钙、铁的吸收;广州市轻工研究所生产的酪蛋白磷酸肽CPP含量达85%以上,易溶于水,加工性能稳定,已在我国市场上推出。最近,我国生物工作者开发了采用微生物发酵控制、蛋白转化率高的乳肽产品,其中氨态氮占20%左右、肽态氮占80%左右,产品无不良气味,已获专利;湖北工学院吴思方等人进行了固定化胰蛋白酶生产酪蛋白磷酸肽的研究,CPP得率为%,产品中CPP总含量为15%,此工艺中酶可重复多次使用,既降低了成本,又有利于产品分离和生产自动化。大豆肽大豆肽是大豆蛋白质经酸法或酶法水解后分离、精制而得到的多肽混合物,以3~6个氨基酸组成的小分子肽为主,还含有少量大分子肽、游离氨基酸、糖类和无机盐等成分,分子质量在1000μ以下。大豆肽的蛋白质含量为85%左右,其氨基酸组成与大豆蛋白质相同,必需氨基酸的平衡良好,含量丰富。大豆肽与大豆蛋白相比,具有消化吸收率高、提供能量迅速、降低胆固醇、降血压和促进脂肪代谢的生理功能以及无豆腥味、无蛋白变性、酸性不沉淀、加热不凝固、易溶于水、流动性好等良好的加工性能,是优良的保健食品素材。 大豆肽的生产有酸法水解和酶法水解。酸法因水解程度不易控制、生产条件苛刻、氨基酸受到损害而很少采用;酶法水解易控制、条件温和、不损害氨基酸而大多被采用。酶的选择至关重要。通常选用胰蛋白酶、胃蛋白酶等动物蛋白酶,也可选用木瓜和菠萝等植物蛋白酶。但应用较广的主要是放线菌166、枯草芽孢杆菌1389、栖土曲霉3942、黑曲霉3350和地衣型芽杆菌2709等微生物蛋白酶。 20世纪70年代初,美国首先研制出大豆肽,公司建成了年产5000吨食用大豆肽装置;日本于80年代开始研制大豆肽,不二制油公司首先采用酶法规模化生产出3种大豆肽,雪印和森永等乳业公司应用大豆肽生产食品。 我国近几年也开展了大豆肽的生产和应用研究。江西省科学院高科技中心李雄辉等人采用ASI389中性蛋白酶和木瓜蛋白酶双酶水解生产大豆肽,使大豆肽生成率为%,肽态氮含量大于85%,游离氨基酸含量小于8%,平均肽键长度5~8,分子质量2000μ左右。双酶水解工艺既缩短了酶解时间、提高了蛋白质水解度,又减轻了产品苦味。华南理工大学黄惠华等人用木瓜蛋白酶对大豆分离蛋白进行水解试验,测得木瓜蛋白酶的动力学常数。另外,无锡轻工大学的葛文光对大豆肽的生理功能及作用效果进行了研究;郭敏亮采用豆粕生产出大豆肽饮料等。 根据大豆肽的理化特性,可用大豆肽为基本素材,开发肠胃功能不良者和消化道手术病人康复的肠道营养食品的流态食品、降胆固醇、降血压、预防心血管疾病的保健食品,增强肌肉和消除疲劳的运动员食品、婴幼儿及老年人保健食品、促进脂肪代谢的减肥食品、酸性蛋白饮料和用作促进微生物生长、代谢的发酵促进剂等。高F值寡肽高F值寡肽即是由动、植物蛋白酶解后制得的具有高支链、低芳香族氨基酸组成的寡肽,以低苯丙氨酸寡肽为代表,具有独特的生理功能。F值是指支链氨基酸(BCAA)与芳香族氨基酸(AAA)的摩尔比值。 1976年,Yamashita等人首次利用胃蛋白酶和链霉蛋白酶从鱼蛋白和大豆分离蛋白酶解中制得含低苯丙氨酸的寡肽混合物,产率分别为%和%,苯丙氨酸含量分别为%和%。1982年,Nakhost等人用α-胰凝乳蛋白酶和羧肽酶A酶解大豆蛋白,也制得相似的产物。1986年,Soichi等人进行了多种酶分别酶解乳清蛋白制取低苯丙氨酸寡肽的多种工艺、方法试验,结果以胃蛋白酶-链霉蛋白酶两步水解法为佳,产品得率为%、苯丙氨酸含量为%。1991年,Shinya等人用嗜碱蛋白酶和肌动蛋白酶水解玉米醇溶蛋白,制取了无苦味高F值寡肽,产率为%,F值,AAA含量为%。 1996年,西班牙的Bautista等人用肌动蛋白酶和Kerase中性蛋白酶酶解葵花浓缩蛋白,制取高F值寡肽,产率为%,F值为,AAA含量为%。王梅也在1992年首次采用碱性蛋白酶和木瓜蛋白酶降解玉米黄粉;成功地研制出高F值寡肽混合物,产率为%,F值为,AAA含量为%,完全符合高F值制剂的要求,为解决玉米湿法淀粉厂副产品——黄粉的综合利用开创了新路子。 高F值寡肽具有消除或减轻肝性脑病症状、改善肝功能和改善多种病人蛋白质营养失常状态及抗疲劳等功能,除可制作治疗肝疾药品外,还可广泛用作保肝、护肝功能食品,烧伤、外科手术、脓毒血症等高付出病人及消化酶缺乏患者的蛋白营养食品和肠道营养剂,高强度劳动者和运动员食品营养强化剂等。谷胱甘肽(GSH)谷胱甘肽是由谷氨酸、半胱氨酸和甘氨酸经肽键缩合而成的活性三肽,广泛存在于动物肝脏、血液、酵母和小麦胚芽中,各种蔬菜等植物组织中也有少量分布。谷胱甘肽具有独特的生理功能,被称为长寿因子和抗衰老因子。日本在50年代开始研制并应用于食品,现已在食品加工领域得到广泛应用。我国对谷胱甘肽的研究尚处于起步阶段。 谷胱甘肽的生产方法主要有溶剂萃取法、化学合成法、微生物发酵法和酶合成法等4种,其中利用微生物细胞或酶生物合成谷胱甘肽极具发展潜力,目前即以酵母发酵法生产为主。 由于谷胱甘肽分子有一个特异的γ-肽键,决定了它在人机体中的许多重要生理功能,如蛋白质和核糖核酸的合成、氧及营养物质的运输、内源酶的活力、代谢和细胞保护、参与体内三羧酸循环及糖代谢,具有抗氧化、抗疲劳、抗衰老、清除体内过多自由基、解毒护肝、预防糖尿病和癌症等功效,因此而成为机体防御功能肽的代表。谷胱甘肽除可在临床上用作治疗眼角膜疾病,解除丙烯酯、氟化物、重金属、一氧化碳、有机溶剂等中毒症状的解毒药物外,还可用于运动营养食品和功能食品添加剂等。中国在生物活性肽的研究开发上,从事活性肽的研究单位也多从医药角度出发,研究力量及投入较少,限制了活性肽药食两用功能的发挥,市场上国产的活性肽药品和食品寥寥无几。但近几年研究逐步活跃起来,报道渐多,前景看好。当前生物活性肽研究开发的方向是:肽的定向酶解技术开发,包括高效、专一性强的酶种选育、复合酶系共同作用机理、机制,脱苦微生物的分离、纯化和机理研究,酶解工艺改进技术等;功能性肽的分离、分析技术开发,包括新型高效分离设备和分离工艺,灵敏度高、简单易行的目标肽活性分析检测体系和分析技术及下游精制技术;肽的功能性生物学评价研究;生物活性肽功能食品开发等。

我 就 是从事 肽 行业 的, 这 个 活 动 我 也 去 了, 我 记 得 这 个活 动好 像 是 人 民国 肽集 团 联 合国 家 科 技部 中国 生 产 力 促 进中 心协 会 、 浙 江 大学 以及 几 家 国 外的 大学共 同举 办的,规 格 很高,应该是 近 年 来肽行 业的最 高盛会 了。

知识大揭秘,小分子肽对人类健康起到什么作用,看看视频

抗菌肽研究的论文

早在上世纪 60 年代,日本科学家名取俊二教授,就从苍蝇的消化道中分离到一种小分子蛋白质,将它滴在伤寒、霍乱、痢疾、脑炎、肠炎等病菌的培养基上,生长得好好的病原菌大部分都溶化死去了。就是这种杀菌物质,使苍蝇身在病菌中,从来不生病。 经过众多科学家的研究,又在其它昆虫的体内,哺乳动物中也找到了类似的抗菌蛋白,科学将它命名为抗菌肽。抗菌肽是昆虫血淋巴产生的,目前,科学家已从双翅目和鳞翅目昆虫中,分离出了几十种抗菌肽。它们很容易溶解在水中,对多种病菌都有杀灭作用,是一种广谱的杀菌物质。它们专门对付原核细菌和病变的真核细胞,对人十分安全。我国科学家用纯化的柞蚕抗菌肽攻击宫颈癌细胞和阴道滴虫,杀伤力明显。抗菌肽还能有效杀死人体寄生虫,对采采蝇体内的原虫也有毒杀作用,给非洲大陆莱姆病的治疗带来希望。 现在几乎所有的病原菌对抗生素产生了不同程度的耐药性,抗感染成了医生的一大难题。据医学报道,葡萄状球菌和结核杆菌有卷土重来之势,全球患结核病的人数上升,青霉素和链霉素对这两种菌已没有效果,抗菌肽成了对付病原菌的新武器

[1] 王新刚,韩春茂.真皮损伤后完全修复的可能性.中华损伤与修复杂志,2007,2(3):138-141.[2] 韩春茂,岳晓洁,Stig Bengmark.晚期糖化终产物与慢性疾病.中华医学杂志,2008,88(4):284-287.[3] 韩春茂,贺肖洁,马奇.Tenascin-C在瘢痕疙瘩和增生性瘢痕中的基因表达研究. 中华整形外科杂志,2005,21(1):40-43.[4] 陆新,韩春茂.组织工程皮肤的缺陷与对策. 医学研究生学报,2005,18(1):74-76.[5] 韩春茂,余建新,付素珍.含合生元的早期肠内营养对严重烧伤病人血浆内毒素的影响.营养学报,2005,27(1):66-69.[6] 黄回,韩春茂.乳杆菌生态免疫营养在维护肠黏膜屏障中的作用. 中华烧伤杂志,2005,21(2):155-157.[7] 胡学庆,韩春茂,石海飞,马列,高长有.三种胶原-壳聚糖多孔支架组织相容性的初步研究. 中国修复重建外科杂志,2005,19(10):826-830.[8] 任海涛,韩春茂.抗菌肽在烧伤领域的研究进展. 中华烧伤杂志,2005,21(5):399-400.[9] 陈国贤,韩春茂.重组人生长激素影响重度烧伤患者预后的前瞻性多中心研究.中华烧伤杂志,2005,21(5):347-349.[10] 石海飞,韩春茂, 胡学庆, 陈轶欣,毛峥伟,高长有. 兔耳背植入人工真皮支架模型的应用评价.浙江医学,2005,27(5):334-336.[11] 陈国贤,张片红,韩春茂.重度烧伤病人早期肠内营养支持的研究.营养学报,2005,27(4):342-344.[12] 陈炯,韩春茂,林小玮,唐志坚,苏士杰.纳米银敷料在修复Ⅱ度烧伤创面的应用研究. 中华外科杂志,2006,44(1):50-52.[13] 韩春茂.拓宽视野 搞好烧伤临床营养支持工作. 中华烧伤杂志,2006,22(4):313-315.[14] 陈国贤,韩春茂.重度烧伤早期肠内营养支持的经济学评价.中国临床营养杂志,2006 14(1):7-10.[15] 陈炯,韩春茂.Ⅱ度烧伤创面外用药的药物经济学评价. 中华烧伤杂志,2006,22(5):377-378.[16] 陈炯,韩春茂,夏时春,唐志坚,苏士杰.新型羟乙基淀粉应用于烧伤休克期液体复苏的疗效及安全性评价. 中华烧伤杂志,2006,22(5):333-336.[17] 陈轶新,韩春茂.胶原基人工皮肤的研究进展.国际外科学杂志.2006,33(4):312-315.[18] 王素一,赖平平,韩春茂.骨髓干细胞向上皮细胞分化的研究进展.国际外科学杂志,2006,33(4):306-309.[19] 孙锦章,韩春茂.组织工程皮肤构建的研究进展.国际外科学杂志,2006,33(5):389-393.[20] 任海涛,韩春茂,张嵘,徐志江,孟智启,翁宏飚,牛宝龙.抗菌肽天蚕素B对铜绿假单胞菌感染小鼠创面的抗菌作用. 中华烧伤杂志,2006,22(6):445-447.[21] 陈炯,韩春茂,俞云松,李克诚,唐志坚,苏国良.特重度烧伤感染多重耐药鲍氏不动杆菌一例. 中华烧伤杂志,2007,23(1):70.[22] 韩春茂,陈国贤.伤口治疗中心的运作. 中华烧伤杂志,2007,23(4):302-303.[23] 陈炯,韩春茂. 重度烧伤并发难控性高血糖一例.中华烧伤杂志,2007,23(6):462-463.[24] 王素一,韩春茂,赖平平,岑航辉.人骨髓间充质干细胞向表皮细胞分化的研究.中华烧伤杂志,2007,23(1):66-68.[25] 石海飞,韩春茂, 毛峥伟,陈轶欣,马列,高长有. 肝素化胶原/壳聚糖多孔支架的制备及其血管化的研究. 中国生物医学工程学报,2007,26(1):106-112.

请勿抄袭 望采纳 一.树干为什么是圆的?在观察大自然的过程中我偶然发现,树干的形态都近似圆的——空圆锥状。树干为什么是圆锥状的?圆锥状树干有哪些好处?为了探索这些问题,我进行了更深入的观察、分析研究。在辅导老师的帮助下,我查阅了有关资料,了解到植物的茎有支持植物体、运输水分和其他养分的作用。树木的茎主要由维管束构成。茎的支持作用主要由木质部木纤维承担,虽然木本植物的茎会逐年加粗,但是在一定时间范围内,茎的木纤维数量是一定的,也就是树木茎的横截面面积一定。接着,我们围绕树干横截面面积一定,假设树干横截面长成不同形状,设计试验,探索树干呈圆锥状的原因和优点。经过实验,我们发现:(1)横截面积和长度一定时,三棱柱状物体纵向支持力最大,横向承受力最小;圆柱状物体纵向支持力不如三棱柱状物体,但横向承受力最大;(2)等质量不同形状的树干,矮个圆锥体形树干承受风力最大;(3)风是一种自然现象,影响着树木横截面的形状和树木生长的高矮。近似圆锥状的树干,重心低,加上庞大根系和大地连在一起,重心降得更低,稳度更大;(4)树干横截面呈圆形,可以减少损伤,具有更强的机械强度,能经受住风的袭击。同时,受风力的影响,树干各处的弯曲程度相似,不管风力来自哪个方向,树干承受的阻力大小相似,树干不易受到破坏。以上的实验反映了自然规律、自然界给我们启示:(1)横截面呈三角形的柱状物体,具有最大纵向支持力,其形态可用于建筑方面,例如角钢等;(2)横截面是圆形的圆状物体,具有最大的横向承受力,类似形态的建筑材料随处可见,如电视塔、电线杆等。 在我的观察、试验和分析过程中,逐渐解释、揭示了树干呈圆锥状的奥秘,增长了知识,把学到的知识联系实际加以应用,既巩固了学到的知识,又提高了学习的兴趣,还初步学会了科学观察和分析方法。二. 怎样写科学小论文全国青少年创造发明和科学讨论会,自1982年在上海市举办以来,每2年举行一届,迄今已历10届(从2000年第十届起,改名为全国青少年科技创新大会),成为中小学科技活动的传统项目和学校教育的重要组成部分。好多同学的优秀作品在全国各地报刊上发表,有的还在全国甚至国际上获了奖呢!一、什么是科学小论文有些同学把写科学小论文看得很神秘,认为是科学工作者的事,对我们少年儿童是高不可攀的。这完全是一种误解,同学们不仅能写而且可以写出质量较高的论文来。科学工作者写的科学论文,是指作者根据所制定的科研项目和确定的科研课题,通过实验、观察等手段,获得大量的科学数据,在此基础上,再进行分析研究,得出科学结论,从而写出的科研报告。同学们写的科学小论文,比科学工作者写的科学论文要短一些、浅一些。科学小论文实际上是同学们在课内外学科学活动中进行科学观察、实验或考察后一种成果的书面总结。它的表现形式是多种多样的:可以是对某一事物进行细致观察和深入思考后得出结论;可以是动手实验后分析得出的结论;也可以是对某地进行考察后的总结;还可以靠逻辑推理得出结论……那么,科学小论文有没有质量标准呢?有。它必须具备“三性”。1、科学性。科学性是科学小论文有别于其他各类体裁文章的重要特点之一,是科学小论文的生命。它要求选题科学,研究的方法正确,论据确凿,论证合理且符合逻辑,文字简洁准确。2、创造性。小论文的选题、主要观点要有自己新的发现、独特的见解,而且对人们的生产生活等有一定的实际意义,同样的小论文没有参加过各级科学讨论会,也没有在各级报刊上发表过。当然,你如果在别人研究的基础上进一步研究,提出新颖、独到而又论据充分、言之有理的见解也是可行的,不失创造性。3、实践性。论文选题必须是作者本人在科学探索活动中发现的;支持主要观点的论据必须是作者通过观察、考察、实验等研究手段亲自获得的,有实践依据;论文必须是作者本人撰写的。不能有凭空捏造、猜测、成人包办代替的迹象。以上“三性”是衡量科学小论文的质量标准。如写“太阳花”,尽管你的观察细致入微,它的姿态描写得栩栩如生,它的品格剖析得完美无缺,但如果没有获得科学的、有意义的结论,那最多只能算是一篇好的散文或观察日记,而不是科学小论文。写科学小论文是一件很艰辛的工作,更是一项非常有意义的活动。成功属于勇于探索、不懈追求的青少年朋友!二、科学小论文的类型科学小论文最常见的形式有科学观察小论文、科学实验小论文、科学考察小论文和科学说明小论文。(一)科学观察小论文科学观察小论文,是指青少年对某事物或自然现象通过周密细致的观察,并对取得的材料和数据进行认真的分析、综合研究后得出结论,作出科学的解释和描述。湖南廖郝同学的爸爸经常咳嗽,他通过长期、反复的观察,发现了风向与爸爸咳嗽有着十分密切的关系,并查出了“罪魁祸首”--湖南橡胶厂的大烟囱里飘来很多烟气,里面含有二氧化硫,爸爸一闻到它,咽喉部就产生过敏反应,反射性地引起咳嗽。他的《爸爸的咳嗽》这篇小论文主要是利用观察这一研究方式得出结论,属于科学观察小论文,获得了第二届全国青少年科学讨论会三等奖。需要注意的是,科学观察小论文中研究的对象是客观存在的自然事物或现象,是在自然发光的条件下不加以人为控制发生的,所以文中所描述的内容应是作者所观察的对象、过程和它产生的条件、各种现象,不能附加人为的任何条件或个人偏见。另外,观察是一项长期的、系统的、反复进行的活动,需要作者耐心、细致、锲而不舍的精神。(二)科学实验小论文科学实验小论文,有时也称“实验报告”,是青少年对研究的对象创设特定的条件,经过反复实验,对获取的材料和数据进行分析、综合得出结论而写出的文章。它着眼于对实验过程的客观叙述以及实验现象的科学解释。爬山虎能爬墙,这是许多同学所知道的。但是,爬山虎为什么能爬墙呢?武汉的熊斌同学通过观察发现这与爬山虎的“触角”有关,接着他测算了平均每一米长的爬山虎茎干上有25个吸附在墙上的“触角”,并作了“触角的拉力测定和吸附作用”实验,实验目的明确,实验步骤详尽,数据准确,说明力强,得出的结论真实可信,不失为一篇优秀的科学实验小论文。(三)科学考察小论文你想研究某一与人们生活息息相关的水域污染程度、某地的空气污染源,弄清某奇石奇山的演化过程、某范围动植物资源及分布情况等,你就得实地考察。通过调查、访问、实地勘探等考察方式为主要研究手段写出的小论文称为科学考察小论文。有时也称为“科学考察报告”、“科学调查报告”。荣获第五届全国青少年科学讨论会一等奖的《愿胜天水库的水常绿》一文中,小作者们对水库的地理生态环境、库容等作了实地考察,并力所能及地进行了实测,找出水库存在的隐患,提出了较为合理的建议。文中除写明了考察时间、对象、内容及综合分析得出的结论外,还绘出了“胜天水库集雨图”、“强烈侵蚀中山示意图”,加上一些实际数据,使读者对考察对象有比较概括清晰的认识。写科学考察小论文时,有时还应将有关动植物、岩石、土壤等标本或照片附在文后,以增强说服力。(四)科学说明小论文科学说明小论文是指作者通过利用翔实可靠的资料对某一自然现象或自然事物进行解释和说明的一类小论文。一般来说,它并不直接采用观察、实验、考察等研究手段,而主要是从书刊资料、师长等地方获取丰富的第二手材料,并经过自己的综合分析、逻辑推理,用自己所理解的语言阐明某一观点。《为什么说贵阳是祖国的第二春城》是获第二届全国青少年科学讨论会三等奖的小论文,该文作者的研究方法有其特别之处,一是利用广播、电视,坚持记录整理贵阳与昆明两地的天气和温度;二是利用现成的科研成果《中国气候图集》找出有代表性的重庆、北京的气温情况来同贵阳、昆明相比较;三是从书上查证昆明与贵阳1、4、7月和10月的平均气温,进而综合分析得出结论。这类文章虽然没有前三类的亲自实践得到论据,但它毕竟是通过作者精心地收集整理资料,综合分析提出了新的观点,新的见解,所以也承认它是科学小论文。特别提醒的是,写科学说明小论文是,千万不要提出一个问题后就赶忙查资料,再不加分析地原本照抄、作出解释,这样没有新意,没有新的见解的文章只能算是一般性科普文章,不能称为科学小论文,更不能培养自己研究问题的能力。三、科学小论文的选题写作小论文的第一步,就是要确定研究的对象,考虑研究什么问题,这就是选题。有人说,选择好题等于完成小论文的一半,可见小论文选题的重要性。有的同学说,大自然的奇妙现象太多了,研究什么好呢?有的同学说,大自然的事物我都已看惯了,没有发现什么新奇现象。再说,我想研究的东西别人已经研究过了,写了没多大意义。实际上,只要你明白了选题的基本原则,掌握常见的几种选题方法,而且在日常学习、生活和科技活动中做个有心人,就一定能发现值得探讨的题目。科学小论文选题的方法很多,个人可根据不同的情况适时选择。下面介绍几种常见的选题方法,供同学们选题时参考。1、偶然发现法。一个星期天,松滋的胡长城同学在屋后的小沟边玩耍。沟里有许多小蝌蚪游来游去。忽然,他发现有一个小蝌蚪与其它蝌蚪不和似的,孤独地在一边游。他用小树枝把那脱群的蝌蚪拔到成群的蝌蚪中去,不一会儿,它又孤独地游到一边去了。他感到奇怪,就用瓶子将他和另外成群的几个小蝌蚪分别装起来,放在家里饲养观察。最后,不合群的小蝌蚪成了青蛙,其它长成了癞蛤蟆。通过长期观察,它弄清了青蛙和癞蛤蟆的幼子之别,写出了一篇优秀小论文。这种选题没有事先考虑,只是对偶然发现的一瞬即逝的现象产生了兴趣,从而抓住不放,追根求源。2、课堂延伸法。小学自然课《动物与环境》中,同学们研究了蚯蚓与光、温度及水分的关系,弄清了蚯蚓喜欢阴暗、超市、温暖的环境,而且学会了用差异法进行试验以判断失误因果联系。课后,你可用学过的方法研究蜈蚣、蟋蟀、蚂蚁等小动物的生活环境,你可以继续研究蚯蚓的其他奥秘:如蚯蚓有眼睛吗?蚯蚓张耳朵吗?蚯蚓的再生能力、松土能力等。3、问题探究法。苍蝇这个小东西真讨厌,它是传染疾病的罪魁祸首呢!但他也真怪,它经常接触各种细菌而自己却为什么不会的病呢?睡觉可以解除疲劳,恢复精力,那整天在水里悠闲游荡的鱼类也睡觉吗?……日常生活和学习中,你肯定会有一些不懂的问题,你能不能把它作为小论文的研究对象呢?湖南省道县五年级学生毛登圣,一天和几个同学一起在学校附近的竹林里玩,为竹子里面究竟是空的还是装有什么东西而争论不休。细心的毛登圣一直把这个问题记在心里,它课余查资料,做实验,用大量的证据得出了结论:竹子里面不是空的,装有空气,有氧、氮、二氧化碳等气体。据此写的《竹子里面有什么》小论文,荣获了第一届全国青少年科学小论文竞赛一等奖。4、教师指导法。如果你饲养了一只小动物或栽培了一些花卉,项研究它们但又不知从哪方面入手,你可去请教老师,让老师根据你的实际情况和条件选择课题。如果你参加了学校的科技小组,你可以把研究的设想告诉老师,请老师确定研究的题目,你再围绕题目去观察、实验。如重庆市人民小学生物小组的同学们在老师的指导下,选择了一些考察、研究课题,完成了《重庆黄角树特性调查》、《愿胜天水库的水常绿》等多篇小论文,并多次获得全国青少年小论文一等奖。5、成语、谚语科学验证法。成语大多是人们在长期的社会生活和实践中创造出来的,但有的是来自寓言故事、民间传说,也有些是约定俗成的。其中少数成语不一定符合客观实际。你可以用科学的方法去辨析和验证。“水滴石穿”这个成语是大家熟悉的,意思是水不住地滴下来,能把石头滴穿,比喻只要坚持不懈,力量虽小也能做出看来很难办到的事情。但常识告诉我们,“水滴”只不过是一滴液体,他力量很小,冲击速度也不算太快,怎么能把坚硬的岩石滴穿呢?成员同学从对这个成语的科学性产生怀疑开始,通过做模拟实验和查阅资料,验证了这个成语的科学性。“春东风,雨祖宗”是一句流传得比较广泛的气象谚语。一位同学3月份一个月的气温、风向、天气情况作了详细观察记录,然后利用科学统计法得出了这句谚语的适用范围,为气象预报提供了参考基数。“葵花朵朵向太阳”这还有假吗?但湖南蒋林波同学对这一定论发起了挑战。他通过两年的实验观察,以令人信服的论据得出了“葵花并不是总向太阳转”“向日葵跟着太阳转应该是指花蕾期,到开花后,就不转动了”的结论。由此看来,即使对早已被公认的结论,也要认真地研究,不要人云亦云。只有这样,才能有所创新。特别要注意的是,选题时要考虑主客观条件。俗话说:”知己知彼,百战不殆”。选题时要弄清楚自己的长处是什么,短处是什么,自己对研究的问题是否有兴趣,有没有这个能力把它研究清楚,自己是否达到了这个知识层次和认识水平,自己受否有毅力去完成这个题目以及是否具备研究这个问题的实验器材、场地等。如果完成《探索一种蛇的奥秘》这个题目,研究前就必须掌握有关蛇的基础知识,具备捕捉蛇的本领,能够区别有毒蛇和无毒蛇,掌握被毒蛇咬伤的救护方法。此外,还要具备饲养蛇的器具等。否则,还是换一个更切合主客观条件的选题为好。四、小论文的取材与分析选题确定后,就可进行取材与分析了,具体内容为制订研究计划,收集整理资料,深入实地考察,进行观察实验,分析各种材料,归纳得出结论。(一)取材1、直接观察。就是用眼睛仔细去看,它是人们对自然现象在自然发生条件下进行考察的一种方法。观察时要认真仔细,不放过任何细微末节。云南庄跃平同学利用2_0_天时间详细观察了家鸽孵化的全过程,几乎每天都有新发现,连小鸽子身上一粒黑点、眼皮上的皱纹都没放过,所以写出的小论文《家鸽孵化的观察》真实可信,内容丰富。同时,观察时要做好详细记载,否则就不可能得到真实的第一手材料了。2、动手实验。实验方法是人为地干预、控制所研究的对象,它比观察更利于发挥同学们的能动性去揭示隐藏的自然奥秘。昆虫的后腿有什么作用?湖北的张俊同学先后捉来了蝗虫、蚂蚱、蟋蟀等十几种昆虫,分别将它们的后腿切断,通过反复实验,观察比较,发现了昆虫的许多特殊功能。3、实地考察。包括调查、访问、实地勘探等方式。考察前,必须明确考察目的,准备好必需的工具、仪器、药品、生活用具等。考察过程中,一定要把时间、地点、过程及考察的结果随时随地详细地记录清楚,有时还要采回必要的标本、样品,将比较重要的现象拍照,这些都是很有用的第一手材料。4、查阅资料。有些材料由于时间、空间或客观条件的限制,不可能亲自去观察、实验、考察,这就得查阅书刊或请教老师、家长等,这种间接地获取的材料叫第二手材料。有些问题是你的知识水平、能力和条件所不能解决的,而这个问题又是你的选题中必须解决的问题,你就得去查资料,把它弄清楚。(二)分析取得材料后,就要进行分析研究,从中选出可以作为论据的材料,还要根据论点进行去粗去精,去伪存真,按照科学的态度进行整理分析,并得出自己的论点和看法。首先,应审核各种材料的真伪虚实,有些查阅到的材料是早已过时的观点,有些解释只适合某范围内,有些材料没有普遍性,有些材料在记录时有错误或本身就是自己虚构的,这样的材料应坚决不用。其次,要注意材料的典型性,也就是选择的材料要能说明问题,不要多,而要精,与论点无关或关系不大的材料应舍弃。第三,将选择的材料进行归类,研究他们之间的共同点与不同点,以及相互联系,然后概括得出结论即论点。论文论点是从对材料的分析\研究中产生的,不能先定论点,后找适合证明论点的材料.如熊小佳同学研究蚯蚓的视力,她选择了4个材料(1)用木棍\红领巾、铅笔等在蚯蚓面前晃动的现象;(2)蚯蚓面对各种食物的反应;(3)蚯蚓放在“屋”门口的反应;(4)请叫爷爷得出关于蚯蚓是否有眼睛的材料。它通过前三个实验分析,初步判断蚯蚓没有眼睛,是靠嗅觉找到食物,靠感光细胞找到阴暗的地方。第四个材料更加证实了她的推论,使得论点论证充分,有较强的说服力。五、科学小论文的撰写对材料的整理分析完成后,就可以开始撰写了。写作虽没有固定的格式,但一般应按提出问题、作出假设、研究分析、得出结论的步骤进行。一般来说,科学小论文应包括以下几个部分。标题标题是小论文的“眼睛”,好的标题确切简明,富有吸引力,能给读者以新鲜的感受和深刻的印象,起画龙点睛的作用。所谓“确切”,就是小论文的标题必须概括文章的中心内容,使人一目了然,不能离题或扣题不紧,更不能用夸大的字眼。所谓“简明”是指标题要精炼,既要概括全面,又能突出主题,做到言简意骇。开头开头的方式多种多样,依研究内容、自己喜欢的写作风格而定,但一般应开门见山地提出你讨论的问题,你是怎样想到要研究这个问题的。《为什么说贵阳是祖国的第二春城》一文开头:”我住在贵阳,常听人们说'昆明是春城,贵阳是第二春城'。至于为什么,我也弄不明白,我决心记录天气预报,看贵阳真是第二春城吗?”由常言产生验证其科学性的欲望。有些文章的问题是在偶然观察中产生、发现的,你也可以开头先根据时间顺序叙述其过程,再适时提出问题。正文即分析问题、解决问题部分。它包括对提出问题做出假设、观察、实验、考察过程、发现的现象、判断、推理得出结论等,这是小论文的核心部分。应注意的是:研究步骤要写得详略得当,实验过程、数据的来历、现象要写清楚,叙述时应有一定的顺序。数据材料要准确,可设计成能说明问题的表格、图解,必要时可附上拍摄的照片、采集的标本等,以增强说服力。获得的结论要有自己独特的见解,并且和论据保持一致性,论据要有严密的逻辑性。文字要简洁生动,层次清晰,条理分明。结尾小论文的结尾应写你得出的结论和对某一问题的建议。《蚯蚓的视力》一文结尾:“噢,我明白了,蚯蚓是不折不扣的瞎子,它是靠嗅觉来寻找爱吃的食物,用感光器来辨别光的强弱。”以得出结论作为结尾,同开头提出问题相呼应,收到良好效果。小论文的初稿完成后,还要反复修改。看开头是否简明扼要,论据是否典型真实,论证是否符合逻辑,论点是否新颖一致,段落是否衔接自然,语言是否通顺准确等。改好后再让同学和老师帮助修改,逐步完善。最后誊清寄往报刊发表或参加各级小论文竞赛。 三.做实验是我最喜欢的娱乐方式,我经常会到书店去看一些关于做实验的书籍,然后回家凭着记忆做实验。这天,我又来到书店,突然发现了一个奇异的实验:火柴跳舞。你会相信吗,一根光秃秃的火柴会在水里跳舞?我可不敢相信。我带着一颗好奇的心回到家里,准备用做实验的方法来解开心中的疑团。回到家,与往常一样,我凭着记忆做起了实验。我先端来一盆清水,又拿来一根火柴和一瓶“万能胶”。我在火柴头上涂了一层厚厚的“万能胶”,然后,小心翼翼地把火柴放入清水中。等了一会儿,没见什么反应。我静下心来,耐心等待。又过了几分钟。“奇迹”果然出现了!只见火柴直立在水中,一摇一摆地跳起舞来了。可是,没过半分钟,火柴又浮在水面上。再过了几分钟,火柴又跳起舞来了。如此循环了七八次,火柴再也不动了。是什么神奇的力量驱使火柴“舞蹈”呢?我脑子里充满了疑惑,怎么琢磨也琢磨不透。最终,还是我那无声的老师—电脑帮了我。原来,当“万能胶、与火柴头上的磷接触后,就会产生一种物质。这种物质越聚越多,会使火柴直立起来。这种物质挥发时,火柴便被带动得“舞蹈”起来。一会儿,火柴头最外面产生出来的物质挥发完了,火柴也就不动了。再这一段时间,产生出来的这种物质又聚集起来,火柴便再一次“跳舞”,直到万能胶和磷的反应结束。此时此刻,我才恍然大悟:啊!火柴棍能跳舞,原来是这么回事啊

多肽合成毕业论文

同时,游离在细胞质中的tRNA把它携带的特定氨基酸放在核糖体的mRNA的相应位置上,然后tRNA离开核糖体,再去搬运相应的氨基酸,这样,在合成开始时,总是携带甲硫氨酸的tRNA先进入核糖体,接着带有第二个氨基酸的tRNA才进入,此时带甲硫氨酸的tRNA把甲硫氨酸卸下,放在mRNA的起始密码位置上,然后自己离开核糖体,甲硫氨酸的-COOH端与第二个氨基酸的-NH2形成肽键。接着携带第三个氨基酸的tRNA进入核糖体,第二个氨基酸的-COOH又与第三个氨基酸的-NH2形成肽键。第二个tRNA又离开核糖体,再去搬运相应的氨基酸,第四个氨基酸的tRNA即进入核糖体。tRNA进入核糖体的顺序,是由mRNA的遗传密码决定的。就这样,反复不已,直到碰到mRNA上的终止密码时,肽链的合成才结束。mRNA的遗传密码便翻译为一条多肽链,当一条多肽链合成完毕后,核糖体将多肽链释放下来,多肽链经过盘曲,折叠形成具有一定空间结构的蛋白质分子,同时核糖体也从mRNA上脱落下来,再重新与mRNA结合,参加下一次蛋白质的合成,一条mRNA可以有多个核糖体在上面滑动,一个核糖体可以合成一个蛋白质分子,所以,一个mRNA可以同时合成多条多肽链。

多肽合成是一个重复添加氨基酸的过程,固相合成顺序一般从C端(羧基端)向 N端(氨基端)合成。固相合成法,大大的减轻了每步产品提纯的难度。为了防止副反应的发生,参加反应的氨基酸的侧链都是保护的。羧基端是游离的,并且在反应之前必须活化。固相合成方法有两种,即Fmoc和tBoc。由于Fmoc比tBoc存在很多优势,现在大多采用Fmoc法合成。

(1)具体合成由下列几个循环组成:

1. 去保护:Fmoc保护的柱子和单体必须用一种碱性溶剂(piperidine)去 除氨基的保护基团。

2. 激活和交联:下一个氨基酸的羧基被一种活化剂所活化。活化的单体与游离的氨基反应交联,形成肽键。在此步骤使用大量的超浓度试剂驱使反应完成。循环:这两步反应反复循环直到合成完成。

3. 洗脱和脱保护:多肽从柱上洗脱下来,其保护基团被一种脱保护剂(TFA) 洗脱和脱保护。

(2)树脂的选择及氨基酸的固定

将固相合成与其他技术分开来的最主要的特征是固相载体,能用于多肽合成的固相载体必须满足如下要求:必须包含反应位点(或反应基团),以使肽链连在这些位点上,并在以后除去;必须对合成过程中的物理和化学条件稳定;载体必须允许在不断增长的肽链和试剂之间快速的、不受阻碍的接触;另外,载体必须允许提供足够的连接点,以使每单位体积的载体给出有用产量的肽,并且必须尽量减少被载体束缚的肽链之间的相互作用。

用于固相法合成多肽的高分子载体主要有三类:聚苯乙烯-苯二乙烯交联树脂、聚丙烯酰胺、聚乙烯-乙二醇类树脂及衍生物,这些树脂只有导入反应基团,才能直接连上(第一个)氨基酸。

根据所导入反应基团的不同,又把这些树脂及树脂衍生物分为氯甲基树脂、羧基树脂、氨基树脂或酰肼型树脂。BOC合成法通常选择氯甲基树脂,如Merrifield树脂;FMOC合成法通常选择羧基树脂如王氏树脂。

氨基酸的固定主要是通过保护氨基酸的羧基同树脂的反应基团之间形成的共价键来实现的,形成共价键的方法有多种:氯甲基树脂,通常先制得保护氨基酸的四甲铵盐或钠盐、钾盐、铯盐,然后在适当温度下,直接同树脂反应或在合适的有机溶剂如二氧六环、DMF或DMSO中反应;羧基树脂,则通常加入适当的缩合剂如DCC或羧基二咪唑,使被保护氨基酸与树脂形成共酯以完成氨基酸的固定;氨基树脂或酰肼型树脂,却是加入适当的缩合剂如DCC后,通过保护氨基酸与树脂之间形成的酰胺键来完成氨基酸的固定。

(3)氨基、羧基、侧链的保护及脱除

要成功合成具有特定的氨基酸顺序的多肽,需要对暂不参与形成酰胺键的氨基和羧基加以保护,同时对氨基酸侧链上的活性基因也要保护,反应完成后再将保护基因除去。同液相合成一样,固相合成中多采用烷氧羰基类型作为α氨基的保护基,因为这样不易发生消旋。最早是用苄氧羰基,由于它需要较强的酸解条件才能脱除,所以后来改为叔丁氧羰基(BOC)保护,用TFA(三氟乙酸)脱保护,但不适用含有色氨酸等对酸不稳定的肽类的合成。chang Meienlofer和Atherton等人采用Carpino报道的Fmoc(9-芴甲氧羰基)作为α氨基保护基,Fmoc基对酸很稳定,但能用哌啶-CH2CL2或哌啶-DMF脱去,近年来,Fmoc合成法得到了广泛的应用。羧基通常用形成酯基的方法进行保护。

甲酯和乙酯是逐步合成中保护羧基的常用方法,可通过皂化除去或转变为肼以便用于片断组合;叔丁酯在酸性条件下除去;苄酯常用催化氢化除去。对于合成含有半胱氨酸、组氨酸、精氨酸等带侧链功能基的氨基酸的肽来说,为了避免由于侧链功能团所带来的副反应,一般也需要用适当的保护基将侧链基团暂时保护起来。

保护基的选择既要保证侧链基团不参与形成酰胺的反应,又要保证在肽合成过程中不受破坏,同时又要保证在最后肽链裂解时能被除去。如用三苯甲基保护半胱氨酸的S-,用酸或银盐、汞盐除去;组氨酸的咪唑环用2,2,2-三氟-1-苄氧羰基和2,2,2-三氟-1-叔丁氧羰基乙基保护,可通过催化氢化或冷的三氟乙酸脱去。精氨酸用金刚烷氧羰基(Adoc)保护,用冷的三氟乙酸脱去。详情请咨询合肥国肽生物

具体合成由下列几个循环组成: 分析HPLC使用柱子和泵系统,可以经受传递高压,这样可以用极细的微粒(3-10μ m)做填料。由此多肽要在几分钟内高度被分析。HPLC分两类:离子交换和反相。 离子交换HPLC依靠多肽和固相间的直接电荷相互作用。柱子在一定PH范围带有特定电荷衍变成一种离子体,而多肽或多肽混合物,由其氨基酸组成表现出相反电荷。 分离是一种电荷相互作用,通过可变PH, 离子强度, 或两者洗脱出多肽,通常, 先用低离子强度的溶液,以后逐渐加强或一步一步加强,直到多肽火柱中洗脱出。离子交换分离的一个例子使用强阳离子交换柱。如sulfoethylaspartimide通过酸性PH中带正电来分离。反相HPLC条件与正常层析正相反。多肽通过疏水作用连到柱上,用降低离子强度洗脱, 如增加洗脱剂的疏水性。通常柱子由共价吸附到硅上的碳氢烷链构成,这种链长度为G4-G8碳原子。 由于洗脱是一种疏水作用。长链柱比短链对小的, 高带电肽好。另一方面大的疏水肽用短链柱洗脱好。 然而,总体实践中, 这两类柱互变无多少显著差别,别类载体由碳水化合物构成, 比如苯基。典型的操作常由两绶冲剂组成,和80% acetonitrile 稀acetonitrile。用线型梯变以每分钟到改变的速度混合。常见分析和纯化用柱为×250mm(3-10μ m)和22×250mm(10μ m). 如果用径向填柱,那么大小是8×100(3-10μ m)和25×250mm(10μ m)大量各种缓冲剂含许多不同试剂,比如heptafluorobutyric酸,磷酸, 稀He formic酸(5-6%, pH2-4), 10-100mM NH4HCO3, 醋酸钠/氨,TFA/TEA,磷酸钠或钾,异戊酚。这样许多不同组合可形成缓冲剂,但要注意一点:硅反相柱料不能长时间暴露于高pH,甚至微碱pH, 因为这样会破坏柱子。不要把肽含量和纯度搞混了。肽的纯度可能是100%, 而肽含量相关带电基团(如Arg, Lys )的抗离子量和肽亲水性决定。这是合成肽的本身特性。

寡肽的研究现状论文

已知自然界生物体中存在着数万种生物活性肽,而我们人体中具有活性的肽就有1000种之多,仅脑中就存在近40种,人们还在不断地发现、分离、纯化新的活性肽物质。 通常,人们依据生物活性肽的作用和分泌部位将其分为下丘脑一垂体月亮石激素、消化道激素、其他激素和活性肽。 1)下丘脑一垂体肽激素 丘脑与垂体紧密相连,组成神经内分泌调节系统。包括促肾上腺皮质激素、促甲状腺素释放激素、促性腺素释放激素、生长激素释放激素(CHRH)、生长激素抑制素(CHIH)、促黑色素细胞抑制激素(MRIH)、促黑色素细胞释放激素(MRH)、催乳素释放激素(PRH)、催乳素抑制激素(PIH)、促皮质素释放激素(LRH)、抗利尿激素(ADH)和催产素等。 2)消化道激素 由胃肠道合成的肽类激素包括促胃泌素(34肽)、肠促胰液素(27肽)、缩胆囊素(8肽)、胃动素(22肽)、血管活性肠肽(28肽)、神经降压肽(13肽)等。现已证明,许多胃肠道肽类激素在大脑和外周神经系统中也有发现,称为脑肠肽。这些肽类物质不断调整机体的反应性,以适应内外环境的变化,保证机体的健康状态。 3)其他激素和活性肽 其他激素和活性肽包括胸腺肽、胰岛素、胰高血糖素、降钙素、血管紧张肽Ⅰ(10肽)、Ⅱ(8肽)、Ⅲ(7肽)、内啡肽、脑啡肽、谷胱甘肽等。 下面介绍人体内几种重要的小分子活性肽。 1)谷胱甘肽 谷胱甘肽(GSH)是一种含γ-酰胺键和巯基的3肽,由谷氨酸、半胱氨酸及甘氨酸组成,存在于几乎身体的每一个细胞中。谷胱甘肽能帮助人体保持正常的免疫系统功能,并具有抗氧化作用和整合解毒作用。 2)促甲状腺素释放激素 促甲状腺素释放激素是由下丘脑合成分泌的一种3肽物质.它能促进腺垂体分泌促甲状腺素,后者促进甲状腺细胞增生、合成并分泌甲状腺激素。 3)胸腺肽 胸腺肽是胸腺组织分泌的具有生理活性的5肽物质。 临床上常用的胸腺肽是从小牛胸腺发现并提纯的有非特异性免疫效应的小分子多肽。 胸腺肽能促进淋巴细胞转化,增强巨噬细胞吞噬活性,可用于治疗多种免疫缺陷病。 4)脑啡肽 脑啡肽是由5个氨基酸残基组成的神经肽。脑啡肽广泛存在于中枢神经系统中,在下丘脑前部、尾状核及苍白球处有较高的活性,在中枢神经系统中起神经递质或神经调节物作用,参与抑制痛觉传导,与体温调节、心血管调节、内分泌激素的释放均有关。 5)加压素 加压素(又称抗利尿激素)是由下丘脑的视上核和室旁核的神经细胞分泌的9肽激素,经下丘脑一垂体束到达神经垂体后叶后释放出来。其主要作用是提高远曲小管和集合管对水的通透性,促进水的吸收,是尿液浓缩和稀释的关键性调节激素。 6)催产素 催产素又称缩宫素,是由下丘脑合成、垂体后叶释放的一种 肽物质。催产素在雌性哺乳动物生产时大量释放,可扩张子宫颈和收缩子宫,促进分娩。催产素还能使人对陌生人产生信赖感,有助于治疗孤独症等病。 7)促性腺激素释放激素 促性腺激素释放激素(GnRH)是下丘脑分泌产生的10肽神经激素,刺激或抑制垂体促性腺激素的分泌,对脊椎动物生殖的调控起重要作用。 6)神经降压肽 神经降压肽(NT)是一种由13个氨基酸组成的内源性多肽,主要存在于下丘脑前部与底部、伏核和隔部,脑干和脊髓中主要在胶质带的小细胞中间神经元和三叉神经运动核等处,可使毛细血管通透性增强、皮肤血管扩张、血压降低、促进胰高血糖素释放,抑制胰岛素释放,刺激胃肠道收缩,抑制胃酸分泌等。 随着人们对生物活性多肽认知的不断深入,近年来科学家们逐渐将目光转向活性肽药物的开发。多肽类药主要用于治疗癌症、代谢类疾病、心血管疾病、内分泌类疾病、血液病,缓解疼痛,调节认知等各个领域。 参考文献 [1] 李勇.肽临床营养学[M].北京:北京大学医学出版社,2012. [2] 冯秀燕,计成.寡肽在蛋白质营养中的作用[j].动物营养学报,2001,13(3):8-13. [3] Agar WT,Hird F J,Sidhu G S. The active absoption of amino-acids by the intestine[J].Physiol.,1953,121(2):255一263. [4] Neway H,Smith P H . Intercellular hydrolysis of dipeptides during intestinal absorption[J].Physiol.,1996,152:367一380. [5] Daniel H. Molecular and Integrative PhysioI0gy of Intestinal Peptide Transport[J].Annual Rev. Physiol.,2004,66:361一384. [6] zaloga G P . Physiologic effects of peptides based enternal formulae[J].Nutrition in cIinical practice,1990,5:231—237. [7] Hara H,Funabili M,Iwata,et al . Portal absorption of small peptides in rats under unrestrained conditions[J].J Nutr.,1984,114:1122—1129. [8] Leonard J V,Marrs T C,Addison J M,et al. Intestinal absorption of amino acids and peptides in Hartnup disorder[J].Pediatr Res.,1976,10(4):246—249 [9] 李冠楠,夏雪娟,隆耀航,等.抗菌肽的研究进展及其应用[J].动物营养学报,2014,26(1):17一25. [10] 王春艳,田金强,王强.改善心血管健康的食源性生物活性肽构效关系研究进展[J].食品科学,2010,31(13):307一311. [11] 李世敏.食源性活性多肽与降血压研究进展日[J].老年医学保健,2008,14(2):125一127. [12] Dziuba J,Minkiewicz P,Nalecz D,et al. Database of biologically active peptide sequences[J].Nattrunges.,1999,43:190—195.‘ [13] Shin Z,Yu R,Park S A,et al. His-His-Leu ,an angiotensin 1 converting enzyme inhibitory peptide derived from Korean soybean paste,exerts arltihyPertensive activity in vivo[J].J Agric Food chem.,2001,49(6):3004一3009. [14] Hirasawa M , Shijubo N,Uede T,et al. Integhn expression and ability to adhere to extracellular matrix protelns and endothelial cells in human lung cancer lines[J].Br J Cancer.,1994,70(3):466—473. [15] Florentin l,Chung V,Martinez J,et al. In vivo immuno-pharmacological properties of tuftsin(Thr-Lys-Pro-Arg)and some analogues[J].Methods Find Exp Clin Pharmacol.,1986,8(2):73—80. [16] Tsuchita H,Suzuki T,Kuwata effect of casein phosphopeptides on calcium absorption from calcium-fortified milk in growing rats[J].Br J Nutr.,2001,85(1):5一10. [17] 张昊,任发政.天然抗氧化肽的研究进展[J].食品科学,2008,29(4):443一447. [18] 张莉莉,严群芳,王恬.大豆生物活性肽的分离及其抗氧化活性研究[J].食品科学,2007,28(5):208一211. [19] 荣建华,李小定,谢笔钧.大豆肽体外抗氧化效果的研究[J].食品科学,2002,23(11):118一120. [20] 崔剑,李兆陇,洪啸莺吟.自由基生物抗氧化与疾病[J].清华大学学报自然科学版,2000,40(6):9一2. [21] 陆融,王卓.小分子多肽抗肿瘤作用的研究进展[J].天津医科大学学报,2005,11(3):499一502. [22] Chène P,Fuchs J,Bohn J,et al. A small synthetic peptide , which inhibits the p53-hdm2 interaction,stimulates the p53 pathway in tumour cell lines[J].J Mol Biol.,2000,299(1):245一253. [23] Issaeva N,Friedler A,Bozko P,et al. Rescue of mutants of the tumor supPressor p53 in cancer cells by a designed peptide[J].Proc Natl Acad Sci USA.,2003,100(23):13303一13307. [24] 朱维铭.临床营养角色的转变:从营养支持到解怡疗[J].肠外与肠内营养,2009,16(1):1—3l. [25] 裴新荣,杨奋悦,张召锋,等.海洋胶原肽抗皮肤老化作用的实验研究[J].中华预防医学杂志,2008,42(4):235—238. [26] 梁锐,张召锋,赵明,等.海洋胶原肽对剖宫产大鼠伤口愈合促进作用[J].中国公共卫生,2010,26(9):1144一1145. [27] 王竹青,李八方.生物活性肽及其研究进展[J].中国海洋药物杂志,2010,29(2):60一68. [28] 何平均.抗肿瘤寡肽类药物研究进展[J].中国医药生物技术.2009,4(4):288一290. [29] 孙立春,COY David H.多肽药物研究进展[J].上海医药,2014,35(5):55一60. [30] Fang H,Luo M,Sheng Y,et al. The antihypertensive effect of peptides:a novel altemative to drugs?[J].Peptides,2008,29(6):1062一1071. [31] 聂彩辉,徐寒梅.多肽药物的发展现状[J].药学进展,2014,38(3):1:6一202. [32] 李晓玉.安泰胶囊的免疫增强和保肝作用[J].中国药理学通讯,1999,16(2):28一30.

生物活性肽是蛋白质中25个天然氨基酸以不同组成和排列方式构成的从二肽到复杂的线性、环形结构的不同肽类的总称,是源于蛋白质的多功能化合物。活性肽具有多种人体代谢和生理调节功能,易消化吸收,有促进免疫、激素调节、抗菌、抗病毒、降血压、降血脂等作用,食用安全性极高,是当前国际食品界最热门的研究课题和极具发展前景的功能因子。以下为几种重要生物活性肽的发展状况。乳肽早在20世纪50年代,该公司即以乳酪蛋白酶解制取了第一代的酪蛋白肽和氨基酸混合物,含5~8个氨基酸组成的肽和70%以上的游离氨基酸,用于低抗原性防过敏牛奶粉,在市场上行销40多年;60~70年代,开发出第二代的高度水解乳清蛋白肽混合物,含10~12个氨基酸组成的肽和40%~60%的游离氨基酸。以上两代产品的游离氨基酸含量过高,影响了产品的风味和生物效价;90年代,推出了低度水解乳清蛋白肽混合物,含10~15个氨基酸组成的肽和20%以下的游离氨基酸,产品风味明显改善,生物效价提高。 992年,和研究了胰蛋白酶、凝乳蛋白酶等酶的固定化反应器制取乳肽的工艺,可以通过调节流速来控制反应程度,并通过重复使用酶来降低成本。1989年,.和.研究了带超滤膜的酶反应器,在反应器内加入钙和磷酸根离子,用于制备酪蛋白磷酸肽和去磷酸化酪蛋白多肽。 我国对乳肽的研究不多,主要是进行蛋白酶的筛选和酶解工艺的优化,如1991年,肖安乐等人筛选出胰蛋白酶的胰酶是水解变性乳清蛋白质的最佳酶种;1994年,王凤翼等人对胰蛋白酶控制水解α-酪蛋白的最佳条件进行了优选;张和平等人采用胰蛋白酶水解热敏性乳清蛋白,获得热稳定好、易溶解的多肽,并以此开发出稳定性良好的乳清饮料;1995年,于江虹也从牛乳酪蛋白中分离提纯获得酪蛋白磷酸肽,证实了其在小肠中可与钙、铁等矿物质形成可溶性络合物,促进人体对钙、铁的吸收;广州市轻工研究所生产的酪蛋白磷酸肽CPP含量达85%以上,易溶于水,加工性能稳定,已在我国市场上推出。最近,我国生物工作者开发了采用微生物发酵控制、蛋白转化率高的乳肽产品,其中氨态氮占20%左右、肽态氮占80%左右,产品无不良气味,已获专利;湖北工学院吴思方等人进行了固定化胰蛋白酶生产酪蛋白磷酸肽的研究,CPP得率为%,产品中CPP总含量为15%,此工艺中酶可重复多次使用,既降低了成本,又有利于产品分离和生产自动化。大豆肽大豆肽是大豆蛋白质经酸法或酶法水解后分离、精制而得到的多肽混合物,以3~6个氨基酸组成的小分子肽为主,还含有少量大分子肽、游离氨基酸、糖类和无机盐等成分,分子质量在1000μ以下。大豆肽的蛋白质含量为85%左右,其氨基酸组成与大豆蛋白质相同,必需氨基酸的平衡良好,含量丰富。大豆肽与大豆蛋白相比,具有消化吸收率高、提供能量迅速、降低胆固醇、降血压和促进脂肪代谢的生理功能以及无豆腥味、无蛋白变性、酸性不沉淀、加热不凝固、易溶于水、流动性好等良好的加工性能,是优良的保健食品素材。 大豆肽的生产有酸法水解和酶法水解。酸法因水解程度不易控制、生产条件苛刻、氨基酸受到损害而很少采用;酶法水解易控制、条件温和、不损害氨基酸而大多被采用。酶的选择至关重要。通常选用胰蛋白酶、胃蛋白酶等动物蛋白酶,也可选用木瓜和菠萝等植物蛋白酶。但应用较广的主要是放线菌166、枯草芽孢杆菌1389、栖土曲霉3942、黑曲霉3350和地衣型芽杆菌2709等微生物蛋白酶。 20世纪70年代初,美国首先研制出大豆肽,公司建成了年产5000吨食用大豆肽装置;日本于80年代开始研制大豆肽,不二制油公司首先采用酶法规模化生产出3种大豆肽,雪印和森永等乳业公司应用大豆肽生产食品。 我国近几年也开展了大豆肽的生产和应用研究。江西省科学院高科技中心李雄辉等人采用ASI389中性蛋白酶和木瓜蛋白酶双酶水解生产大豆肽,使大豆肽生成率为%,肽态氮含量大于85%,游离氨基酸含量小于8%,平均肽键长度5~8,分子质量2000μ左右。双酶水解工艺既缩短了酶解时间、提高了蛋白质水解度,又减轻了产品苦味。华南理工大学黄惠华等人用木瓜蛋白酶对大豆分离蛋白进行水解试验,测得木瓜蛋白酶的动力学常数。另外,无锡轻工大学的葛文光对大豆肽的生理功能及作用效果进行了研究;郭敏亮采用豆粕生产出大豆肽饮料等。 根据大豆肽的理化特性,可用大豆肽为基本素材,开发肠胃功能不良者和消化道手术病人康复的肠道营养食品的流态食品、降胆固醇、降血压、预防心血管疾病的保健食品,增强肌肉和消除疲劳的运动员食品、婴幼儿及老年人保健食品、促进脂肪代谢的减肥食品、酸性蛋白饮料和用作促进微生物生长、代谢的发酵促进剂等。高F值寡肽高F值寡肽即是由动、植物蛋白酶解后制得的具有高支链、低芳香族氨基酸组成的寡肽,以低苯丙氨酸寡肽为代表,具有独特的生理功能。F值是指支链氨基酸(BCAA)与芳香族氨基酸(AAA)的摩尔比值。 1976年,Yamashita等人首次利用胃蛋白酶和链霉蛋白酶从鱼蛋白和大豆分离蛋白酶解中制得含低苯丙氨酸的寡肽混合物,产率分别为%和%,苯丙氨酸含量分别为%和%。1982年,Nakhost等人用α-胰凝乳蛋白酶和羧肽酶A酶解大豆蛋白,也制得相似的产物。1986年,Soichi等人进行了多种酶分别酶解乳清蛋白制取低苯丙氨酸寡肽的多种工艺、方法试验,结果以胃蛋白酶-链霉蛋白酶两步水解法为佳,产品得率为%、苯丙氨酸含量为%。1991年,Shinya等人用嗜碱蛋白酶和肌动蛋白酶水解玉米醇溶蛋白,制取了无苦味高F值寡肽,产率为%,F值,AAA含量为%。 1996年,西班牙的Bautista等人用肌动蛋白酶和Kerase中性蛋白酶酶解葵花浓缩蛋白,制取高F值寡肽,产率为%,F值为,AAA含量为%。王梅也在1992年首次采用碱性蛋白酶和木瓜蛋白酶降解玉米黄粉;成功地研制出高F值寡肽混合物,产率为%,F值为,AAA含量为%,完全符合高F值制剂的要求,为解决玉米湿法淀粉厂副产品——黄粉的综合利用开创了新路子。 高F值寡肽具有消除或减轻肝性脑病症状、改善肝功能和改善多种病人蛋白质营养失常状态及抗疲劳等功能,除可制作治疗肝疾药品外,还可广泛用作保肝、护肝功能食品,烧伤、外科手术、脓毒血症等高付出病人及消化酶缺乏患者的蛋白营养食品和肠道营养剂,高强度劳动者和运动员食品营养强化剂等。谷胱甘肽(GSH)谷胱甘肽是由谷氨酸、半胱氨酸和甘氨酸经肽键缩合而成的活性三肽,广泛存在于动物肝脏、血液、酵母和小麦胚芽中,各种蔬菜等植物组织中也有少量分布。谷胱甘肽具有独特的生理功能,被称为长寿因子和抗衰老因子。日本在50年代开始研制并应用于食品,现已在食品加工领域得到广泛应用。我国对谷胱甘肽的研究尚处于起步阶段。 谷胱甘肽的生产方法主要有溶剂萃取法、化学合成法、微生物发酵法和酶合成法等4种,其中利用微生物细胞或酶生物合成谷胱甘肽极具发展潜力,目前即以酵母发酵法生产为主。 由于谷胱甘肽分子有一个特异的γ-肽键,决定了它在人机体中的许多重要生理功能,如蛋白质和核糖核酸的合成、氧及营养物质的运输、内源酶的活力、代谢和细胞保护、参与体内三羧酸循环及糖代谢,具有抗氧化、抗疲劳、抗衰老、清除体内过多自由基、解毒护肝、预防糖尿病和癌症等功效,因此而成为机体防御功能肽的代表。谷胱甘肽除可在临床上用作治疗眼角膜疾病,解除丙烯酯、氟化物、重金属、一氧化碳、有机溶剂等中毒症状的解毒药物外,还可用于运动营养食品和功能食品添加剂等。中国在生物活性肽的研究开发上,从事活性肽的研究单位也多从医药角度出发,研究力量及投入较少,限制了活性肽药食两用功能的发挥,市场上国产的活性肽药品和食品寥寥无几。但近几年研究逐步活跃起来,报道渐多,前景看好。当前生物活性肽研究开发的方向是:肽的定向酶解技术开发,包括高效、专一性强的酶种选育、复合酶系共同作用机理、机制,脱苦微生物的分离、纯化和机理研究,酶解工艺改进技术等;功能性肽的分离、分析技术开发,包括新型高效分离设备和分离工艺,灵敏度高、简单易行的目标肽活性分析检测体系和分析技术及下游精制技术;肽的功能性生物学评价研究;生物活性肽功能食品开发等。

EGF(Epidermal Growth Factor)—— 表皮细胞生长因子,又名人寡肽-1,是人体内的一种活性物质。

关于它的讨论一直挺多的

商家常用的宣传语是:“唯一得到诺贝尔奖的美容成分”、“尖端生物科技”,“皮肤衰老就是体内EGF减少造成的”。

但有相当数量、具备一定专业知识的反对者认为,EGF是纯忽悠,还觉得它致癌或导致增生。他们用一些相关论文佐证EGFr(人体细胞上的EGF受体)和多种癌症严密相关,并指出EGF不是合法护肤品添加成分,国家的许可成分里是没有EGF的。

使用者的反馈也是两极分化

有人认为非常有效,也有人觉得效果并不惊艳;有说EGF治好了敏感肌的,也有说一用就过敏的;有人觉得这成分美白祛斑,同时也有不少人说根本白瞎。

到底是怎么回事呢?

为方便时间紧张的童鞋,先上结论:

Wiki是这么定义EGF的

表皮生长因子(Epidermal growth factor,EGF),是最早发现的生长因子, 对调节细胞生长、 增殖和分化起着重要作用。人类的表皮生长因子蛋白有53个氨基酸残基,三个二硫键,质量6千道尔顿。

表皮生长因子通过与细胞表面的表皮生长因子受体(EGFR)结合而起作用。它与表皮生长因子受体的高亲和力结合,会激发受体内在的酪氨酸激酶的活性,从而启动信号转导系统的级联反应,发生多种生物化学变化。细胞内钙水平上升, 增加糖酵解与蛋白质合成, 增加某些基因(包括表皮生长因子受体)的表达, 最终导致DNA合成和细胞增殖。

结合相关文献与我们的亲身使用感受

我们是这样看待EGF的

(对权威性有强烈要求的读者,请自行以EGF或者人寡肽-1为关键词,检索相关论文。)

在表皮有破损、伤口的情况下

推荐的 EGF 修复效果

这一点已经不用多说, EGF最早的战场,也是在医学领域被用来促进创伤和烧伤的愈合,并在临床验证中取得了很好的效果。 各大EGF品牌早就把这个功能宣传的人尽皆知,不需要我们再背书了。

只简单的给一个观点:

不管是从我们自己的使用感受出发(美羊羊在激光后使用EGF的经历;张大叔在医美诊所的实地案例观察),还是从科学界的研究结果来看, 在表皮有明显创口、皮肤组织受损的时候,EGF可以帮助表皮细胞更快地分裂、再生,并促进组织的修复。

诺贝尔奖有点牵强

“唯一诺贝尔奖美容成分”,这估计是被宣传得最多的一句广告语。 但这句话其实不够准确,甚至颇为牵强, 准确的说法应该是“与诺贝尔生理学或医学奖有关的美容成分”, 因为:

用于日常护肤有点鸡肋

这部分应该是大多数童鞋最关心的。毕竟时不时去趟医美诊所,在自己脸上动动刀、扎扎针可不属于普罗大众的日常生活。 我们最关心的还是当用在健康皮肤上时,有没有宣传中的抗衰老效果。

EGF虽然确实有激发胶原蛋白、促进肌肤生长、修复胶原纤维的功效, 但我们一再说,它的威力,得在肌肤受损时、通过皮肤表面的创口进入皮肤内才能充分发挥出来。 在肌肤没有损伤的健康情况下,细胞接收到EGF也不会做出太大的反应。

而且在皮肤足够健康完整的情况下,外用EGF是否能如品牌宣传的那样被皮肤充分吸收和利用, 目前还没有定论。

首先,单独的优质EGF用在健康皮肤上的美容效果确实如科学界的实验报告一样,普遍不明显。有很多观点认为是分子量过大无法吸收造成的。不过也有一些乐观的声音,对于渗透率也有一些针对性的试验,比如用猪皮来测定外用EGF的吸收率等。同时EGF的具体的渗透率与肌肤状态也有关系。

而且,EGF作为信号蛋白,与一般常用的美容成分不同,被细胞的EGF-r吸收后,细胞如何做出回应,并不是单一因素造成的,这就决定了你使用的产品的配方和EGF的活性、纯度、保存条件的不同,也影响到你使用产品后的效果。

美羊羊自己也在皮肤健康时使用过EGF产品,总体来说看不到太多对皮肤的明显改善效果。

EGF产品背后的猫腻

既然当用于健康皮肤时,EGF的功效并不突出,为什么还有那么多童鞋感受到了非常明显的效果呢?

个人认为,有这种可能性: 他们买到的是名为EGF,实为多种成分复配的产品。 而国内某些EGF产品最常见的搭配成分就是各种胜肽,添加时的浓度往往还特别大方 (因为一些不可说的原因,成本一般比较便宜,比如使用的是仿版肽而非原厂产品)。

至于为什么要这么做? EGF名气大、好宣传是一个原因;另外还有个原因,如果说是自产的EGF,可以显得有核心科技嘛 (那些肽都是有版权的,作为仿品真不适合拿出来宣传)。

胜肽的小知识

由于肽的种类太多,目前已知有应用的肽类已达四万多种,遍布各行各业,光护肤领域就有数百种。加之行业里肽类的命名比较随意,所以童鞋们非常容易搞混, 比如老以为六胜肽就是去皱的,其实六胜肽也分很多种。

肽类的一般命名方式如下: 以“ 乙酰基六肽-8 ”为例, 最前头的“乙酰基”说明这个肽使用乙酰基修饰, 类似的还有生物素、棕榈酰、肉豆蔻酰等修饰方法; “六肽”是指有六个氨基酸 (至于具体是哪些氨基酸,要看分子式,总共有20的六次方种排列组合) ; -8表示第一个造出或发现这个肽的厂商,认为这是第8种六肽,或者没准就是觉得8这个数字比较吉利(玩笑), 所以加上了这个后缀,以和其他乙酰基修饰的六肽作区分。

事实上,很多肽类的这个后缀数字经常会由于命名冲突,不得不变来变去。也有时候某个肽类用的比较广泛,就直接命名为寡肽几了。

比如,EGF叫寡肽-1(它是第一个被发现的信号蛋白)。一般十肽以下归为胜肽或小分子肽;十肽以上、50肽以下归为多肽;五十肽以上就算蛋白质了。

新一代的EGF

对的,为了能让EGF在美容行业真正的发光发热,原料厂家真的没闲着。 EGF已经有仿生肽了,就是从EGF身上找到的片段组合——寡肽24。

寡肽24的分子量大幅小于EGF, 因而便于吸收且易于保存,潜在副作用可能也小了很多。而在美容方面的功效,目前被认为和EGF 差不多 (可以理解为就是这部分功效的片段)。

最早靠EGF起家,主打生物科技概念的美国奢侈护肤品牌ReVive(美羊羊以前推荐过,最近12亿美元出售给资生堂的那家),早已悄悄把全线产品里原来添加的EGF换成寡肽24了。 EGF如今应该已经算传统成分,而不是未来科技了。

EGF虽好,但不要贪杯哟

有这样一个人体内的信号蛋白质, 是造成脂溢性脱发、导致各种细胞衰老凋亡的重要因素, 除此之外没有其他功能。总之看起来坏事干尽,所到之处,尽是凋敝。

那么你是不是希望最好消灭掉这种信号蛋白质呢?

这个成分叫DKK1 , 还真有研究人员做过实验,敲掉了老鼠胚胎的这种蛋白产生基因,想看看这样的老鼠是不是就不容易衰老了,结果却是全部胚胎直接畸形成死胎了。

因为DKK1在人体内的职责是: 让发育到位的器官等组织停止增生,是维持生命体各部分正常形态的重要信号蛋白。

而脂溢性脱发也是由于过多的DHT(双氢睾酮,一种雄激素,一般被认为会导致脱发)导致头发过度增生(你没看错,它其实是促进毛发增长的),DKK1赶紧来压制,结果不慎超过平衡造成的。

举这个例子是想说, 人体内的系统是一个复杂的平衡体系,这类信号蛋白的使用和抑制最好要格外谨慎。 EGF相比之下,算是相当安全的信号蛋白了, 但它在美容修复之外,同时具备的激发免疫系统活跃度、令肌肤细胞活跃度提升等能力也是双刃剑。

常见的情况就是, 长时间持续使用高浓度EGF后,有些童鞋会出现皮肤状态不稳定,容易长小油脂粒等问题。 即使是寡肽24,在此类作用小了很多的情况下,用的太多也会出现类似问题。

对此,ReVive的做法是,嘱咐购买了寡肽24含量最多的极致精华(1500美元20毫升)的用户,用完一套不要持续使用,过几个月再买下一套。

终极建议

我们对喜爱使用EGF的童鞋的建议也是这样:

1, 不要长时间持续使用高浓度产品, 效果反而更好。

2,在日常护肤中的使用浓度,也应该尽量保守一些。

一方面, 相当比例的人会对过多的EGF或EGF生产中带入的少量蛋白质杂质过敏; 另一方面, 绝大多数活性成分,都有通过实践获得的最佳浓度范围, 并非是浓度越高越好,也不是吸收得越多越快就更好。只不过一般护肤品里的活性成分,浓度普遍太低,才会让童鞋们产生浓度越高、吸收越快,效果就越好的这种错觉。

EGF的八卦

大部分EGF厂家总是只说Cohen为此获得诺贝尔奖。 可这些生长因子的发现者,也是主要研究者, 那次和Cohen共同获奖的传奇级别的著名美女(年轻时)—— 科学家Rita Levi Montalcini, 总是会被故意省略掉,为什么呢?

因为她在欧美实在太有名、太频繁出现了, 而她老年的样子大家都知道是这样的:

年轻时是这样哒:

有没有觉得EGF厂商们的宣传团队实在太颜(fu)控(qian)了。

其实从我们找到的报道来看, 她本人是从来没用EGF来抗面部衰老的。 因为从她发现动物舔舐伤口能够加速愈合开始,她和Cohen就针对EGF的愈伤方向进行研究。

另一方面, 她一直在使用自己发现的NGF(神经细胞生长因子)维持头脑健康, 生 前保持每天持续高强度工作,直到2012年,103岁的她忽然去世前,还一直如年轻人一样,思路敏捷、口齿伶俐、精力充沛得毫无衰退迹象—— 不过NGF的抗脑部衰老效果未得到大范围临床测试的明确证明, 单个案例暂时不能证明效果。

  • 索引序列
  • 肽论文文献
  • 小分子肽研究论文
  • 抗菌肽研究的论文
  • 多肽合成毕业论文
  • 寡肽的研究现状论文
  • 返回顶部