首页 > 学术论文知识库 > 七上数学论文

七上数学论文

发布时间:

七上数学论文

呵呵不要说我教坏你给你两篇我用了N次的范文哈《容易忽略的答案》大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×=(千米),=(千米),×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×=(千米),=(千米),×2=189(千米)。所以正确答案应该是:45×=(千米),=(千米),×2=261(千米)和45×=(千米),=(千米),×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。关于“0”0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。”“任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。

初中学生的七年级数学学习随着我国新课程标准的实施以及素质教育的不断深入,初中七年级数学处于数学学习的过渡阶段,培养学生的自主学习能力对其未来的学习与发展具有重要意义。下面是我为大家整理的,供大家参考。

摘要:对刚进入七年级的学生来说,这个时段是适应中学数学教学、缩短小学学习与中学学习距离的过渡期。如果一开始学生就对数学不感兴趣,甚至害怕数学,那么会直接影响到今后的学习。要让七年级新生爱上数学课,就要求教师做学生喜欢的教师,要教给学生正确的学习方法,课堂教学要有更高的艺术性,在课堂上能吸引学生,让学生产生浓厚的兴趣,才能达到预期的教学效果。

关键词:生活教育;喜欢;第一节数学课;学习乐园

中图分类号: 文献标识码:A 文章编号:1992-7711***2014***01-0007

著名的人民教育家陶行知说:“治学以兴趣为主,兴趣愈多,则从事弥力,从事弥力则成效愈著。”《数学课程标准》也明确指出,数学教学要重视激发和培养学生学习数学的兴趣,学生一旦对数学产生浓厚的兴趣,就乐于接触它,变“苦学”为“乐学”。下面,结合工作实践,笔者就如何让七年级新生喜欢上数学课问题谈点浅见。

一、做一名学生喜欢的数学教师

陶行知先生说:“真教育是心心相印的活动,唯独从心里发出来,才能打动心灵的深处。”只有师生情感融洽,学生才会敢想、敢问、敢说,才会愿学,才会学有所成。在课堂教学中,笔者总是微笑地面对学生,从不板著脸上课,更不对学生大声训斥,把他们当成自己的朋友或孩子来看待,力求做到尊重每一位学生。

在数学教学中,笔者十分强调理论联络实际。例如,学习有理数加减混合运算,笔者举这样的例子:现在老师存摺上有100元,下午存入300元,明天取出50元,后天取出100元后,存摺上还有多少元?通过这道题的计算,你知道存摺上的余额是如何计算吗?若余额为负数说明什么?让学生去计算、去思考,培养他们的数学学习兴趣,激发他们的数学学习热情,让他们感受到生活中处处有数学知识,学习数学知识充满著无穷的乐趣。

陶行知先生说:“待学生如亲子弟”。教师要得到学生的爱,她必须爱她所教的每一位学生,将其当作自己的孩子;教师要有宽广的胸怀、积极的情绪、平易近人的态度、笑容可掬的表情,要善于营造一种和谐、愉快、亲切、友好的气氛;要爱学生成长过程中的每一微小“闪光点”,要爱他们具有极大的可塑性,要爱他们在教育过程中的主体能动性,要爱他们成长过程中孕育出来的一串串教育劳动成果。教师的爱要一视同仁,持之以恒;爱要以爱动其心,以严导其行;爱要以理解、尊重、信任为基础。只有这样的爱,才能爱出师生间的“师生谊”,才真正得到学生的喜爱。

二、上好开学的第一节数学课

俗话说:“良好的开端是成功的一半。”小学生进入中学后,数学不再是单纯的计算,而是数学进一步内容拓宽、知识更一步深化,加上部分学生还未脱离教师的“哺乳”时期,没有自觉“摄取”的能力,致使有些学生因不会学习或学不得法而成绩逐渐下降,久而久之失去学习信心和兴趣,开始陷入厌学的困境,因此设计好开学第一节数学课非常重要。

第一,课前,教师最好是修饰一下自己,着装大方得体,有亲和力。第一节课最好不要多讲正课,可以讲一些和正课相关联的知识及其生活实用性,让学生产生一种急切求知的欲望。若教师进入课堂就讲课,因为学生还不熟悉教师,对教师还有很多的神秘感,上来就讲课,学生也会因为对教师感兴趣的程度大于对教学内容的程度,导致教学效果不佳。上第一节课要做自我介绍,要有一个漂亮的出彩的亮相,可以介绍自己的过人之处和自认为是闪光点和值得骄傲的地方。这个开场白是最吸引学生的,有助于学生了解教师的过去、教师的长处,促进师生友谊的建立。让学生在你的自我介绍里,感受智慧之美,拼搏之美,进取之美。要让学生感觉教师是一个博学的教师,聪慧的教师,从心里敬佩的教师。

第二,要让学生掌握初中数学学习方法,首先,七年级学生往往不善于预习,也不知道预习起什么作用,预习仅是流于形式,粗略地看一遍,看不出问题和疑点。笔者要求学生预习时应做到:一粗读,先粗略浏览教材的有关内容,知道本节所要讲的内容。二细读,对重要概念、公式、法则、定理反复阅读、体会、思考,注意知识的形成过程,对难以理解的概念作标记,以便带着问题去听课。三做练习,通过练习检验预习效果。

其次,在小学,教师一般采用直观形象到抽象概括的教学方法,通过讲解、演示、操作等过程建构新知,节奏慢、坡度小。很多学生认为学数学就是做作业,多做练习,课本成了“习题集”。到初中后,由于学科的增加和学习内容的抽象,课堂知识容量增大,教学进度较快,演示、操作减少,抽象的思维活动增加,很多学生深感不适应。因此,要教会学生处理好课堂“听”、“思”、“记”的关系。“听”每节重点、难点剖析***尤其是预习中的问题***,“听”例题解法的思路和数学思想方法的体现。“思”是指多思、勤思,随听随思,并善于大胆提出问题。“记”就是记要点、记疑问、记解题思路和方法;记小结、记课后思考题。可以说“听”是“思”的基础,“思”是“听”的深层次掌握,是学习方法的核心和本质的内容,会思考才会学习,“记”是为“听”和“思”服务的。掌握好这三者的关系,就能使课堂这一数学学习主要环节达到较完美的境界。

三、让数学课堂变成学生学习的乐园

陶行知曾以《假如我重新做一个小孩》为题,阐明儿童教育应该包括的内容,其中有句发人深思的话,“我要多玩玩”。七年级学生活泼好动,不喜欢单调的重复和机械的练习。我们要传承陶行知先生的教育思想,尊重学生的年龄特点、心理特点,灵活地运用教法,把枯燥的数学学习变成了学生学习的乐园。

1. 在“做数学”中体验数学学习的乐趣。练习是使学生掌握知识,形成技能、发展智力的重要手段。课堂练习设计得好,不仅巩固新知识而且可以增添学生学习数学的兴趣。因此,在设计练习时,笔者力求设计各种情节有趣、形式新颖的练习形式。例如:引入负数后,七年级新生的计算出错,很多是符号出错,笔者就设计了如下快速抢答题,1×***-5***= ;1÷***-5***= ;1+***-5***= ;1-***-5*** = ;-1+***-5*** = ;-1-***-5*** = ;-1×***-5*** = ;-1÷***-5*** = ;***-3***= ;***-2***= -2= -2= 。要求回答对的,就通过。回答错的,教师点拨后,出题再做,对了,就编题给同学做,大受学生喜欢,学习的热情非常高涨。平时笔者还根据不同的教学内容设计不同型别、不同层次的练习题,满足学生不同层次的需求,照顾不同层次的学生,使学生始终保持高昂的学习热情。 2. 在合作交流中体验数学学习的乐趣。充满活力的数学课堂,应该是对学生具有吸引力、亲和力的“磁性”课堂。合作学习的情景来源于教师有目的地创造,在数学课堂教学中教师若能自然地创设合作学习的情境,不仅能让学生产生合作的冲动和交流的愿望,还能激发学生的学习兴趣。例如:在教学“数轴”时,让学生以小组为单位,讨论学校要在校门公路旁植树,每隔3米植一棵树,问在21米长的公路旁植树最多可植几棵树?有学生可能会得出:21÷3=7,可植树7棵;有学生结合数轴就很直观了,可植树8棵。经过大家讨论得到结论为:这类题要结合数轴,要注意考虑线段的端点,否则容易出错。再如,为让学生能找到正方体展开图的相对面,笔者让同桌合作将展开图折起来。在这个过程中,学生始终处于积极的探究性活动中,让同学们感到合作的力量,得到成功体验的机会。感受到学习过程的快乐,同时获得了数学思想和方法,产生学习数学的兴趣,树立学好数学的自信心。

3. 合理评价,让学生体验成功的乐趣。苏霍姆林斯基说过“你在任何时候也不要给学生打不及格的分数,请记住:成功的欢乐是一种巨大的情绪力量。”这启示我们教师在教学中应改变以往的评价方式,以鼓励性评价为主,让每一个学生都能抬起头来学习。例如,有一次笔者出示口算“3+***-6***”,一个学生,回答说:3+***-6***=3。笔者没有直接“宣判”对或错,而是说:“非常接近标准答案,你能再想一想吗?”这位学生放松地想了想,答:“3+***-6***=-3。”“你再编一编类似的题目,考考其他同学。”该生自己改正了自己的错误,体面地坐下了,自尊心得到了保护。每个孩子都有被人赏识的渴望,都希望得到别人的赞扬,宽容和鼓励。在教学中,要多鼓励表扬,让学生尝到成功的喜悦。教师的眼神、笑容、一个手势等对学生都是一种鼓励,让学生感受到自己被尊重,被信任。所以,每次学生回答后,笔者常用“你很聪明,你的回答对了!”“你真了不起,发现了同学出错的地方!”等这些充满 *** 、充满鼓励的语言来评价学生,保护了学生学习的积极性,使他们觉得学数学是快乐的,从而喜爱上数学课。

此外,教师还可以运用故事、比赛、表演等活动形式,保持学生学习数学的兴趣,陶冶学生情操,使学生愉快学习,从而形成稳定而持久的学习乐趣。

七年级数学是中学数学的基础,如果七年级新生能爱上数学课,就可以提高中学数学教学质量。为了使七年级学生尽快适应中学数学教学、顺利完成学习任务,必须从七年级学生的特点出发,让七年级学生对数学感兴趣,为以后学习奠定基础。

参考文献:

[1] 普天明,黄永明.数学教学方法的更新探索[J].课程教材教学研究***中教研究***,2005***Z1***.

[2] 陈芝红.初中数学教学方法新探[J].浙江教育科学,2007***6***.

【摘 要】常听家长说我的小孩小学数学都要考八十几分九十几分,现在上了初中孩子连及格都成问题。究其原因,学生没能适应初中阶段的学习.有些知识在成人看来很简单,在学生眼里却很难理解,所以我们做教师的,走进孩子的内心,从学生的角度思考问题,帮助孩子们搞好六七年级的衔接,以适应初中阶段的学习

【关键词】适应;衔接;策略

有关策略的含义,目前在学界有着多种不同的表述,其中“策略是旨在达到某种目的而对步骤与方法、技巧等所作的优化组合、精巧安排”。它点出了策略的本质属性,为帮助孩子们顺利度过六七年级的过渡期,根据个人经验,以生为本从孩子的角度出发展开教学,有利于帮助孩子们尽快适应初中阶段的学习.

一、上课适当放慢速度,帮助孩子们适应“课堂容量小到课堂容量大”的过渡

小学阶段教学内容较少,初中阶段教学内容较多,课堂容量显然加大.一般来说,小学老师教态较亲切,课内提问次数较多,有时一堂课内每位学生都可能有被问一次的机会,问题多半讲得较细,有时还可反复讲,反复练.,所以大部分的小学生在老师的帮助下是基本可以掌握好小学的有关知识的.,而初中阶段学习科目和每节课的授课内容都比小学多,课内外的时间都比较紧,课内提问,练习,辅导,讲解都不可能像小学那样频繁,那么细,初一新生基本上还具有小学生的学习心理,跟不上老师的步伐,导致学习掉队,所以我们初一教师开始一段时间不能操之过急,应顺应小学教师的教法,教学的内容少一些,进度慢一些,在具体讲授每节课知识时,做到形象、直观、对比、有趣等,课堂上尽可能多提问,但要提到要害处,,多启发、多表扬、多练习,引导学生逐步进入初中学习轨道。

二、做好翻译工作,帮助孩子们“学会对符号语言的理解认识”

由小学具体的数到初中用字母表示数这一飞跃,也是学生感到困难的地方。学生对表示数的字母作用产生片面认识,老师在教学中必须设法使学生真正理解用字母表示数的意义及目的,让学生知道字母表示数最本质的东西。由于负数的引入引出了绝对值等概念,数的运算出现了符号法则。成为学生学习的又一难点,如何让学生很自然地把有理数的运算与非负有理数的运算统一起来,是老师在教学中必须着力解决的。比如a>0,对七年级的学生不明白是什么意思,老师要具体翻译为字母a表示的是正数,a=a这个式子在七年级学生眼里有些茫然,老师要具体翻译为一个数的绝对值等于它的相反数,这样学生才明确原来这个数可以是0也可以是负数,诸如这样的符号语言式子较多,老师要不厌其烦的将他们翻译成中文语言让学生逐步学会认识理解,从而学会数学符号语言的认识与表述。

三、用数形结合思想帮助孩子适应“形象思维到抽象思维的过渡”

小学几何中对图形的性质和位置关系没有深入的研究,而初中几何就是通过研究几何图形的性质来研究物体的形状、大小和位置的,几何图形是研究几何命题的必需的直观工具,对于初中生来说,图形的形象思维比抽象思维更容易接受。因此,在几何教学中,要充分利用图形帮助学生克服抽象思维的困难。例如:已知a>0,b<0,a>b,比较a,-a,b. -b的大小。学生认为没告诉具体数值无法比较,聪明一点的孩子可以用特值法,但对结论的正确与否自己没把握,这是一个代数问题,数形结合仍然适用。教师指导学生画出数轴,在数轴上根据a、b的位置标出-a、-b的位置,再根据“数轴上的数从左往右越来越大”进行比较,在直观图形下,学生一目了然,进一步加深了对相反数和有理数比较大小的理解,同时通过具体的例子感受数形结合思想可以转化问题的难度。

刚进入七年级学习的学生,对知识的理解更多地停留在感性认识的层面上,因此,更要重视学生由感性认识向理性认识的过渡。在数学知识的形成与应用上,不要对学生的理解持较高的要求,要尽可能地让学生经历整个知识的发生过程,理解知识的形成过程。有时要动手画图,有时还要让孩子们动手操作拼图,苏霍姆林斯基说“儿童的智慧在他们的手指尖上。”通过动手操作把抽象的东西转化为具体的,学生就理解了,这样就能使学生学习变得自然、轻松、高效。

四、教师规范书写的展示帮助孩子们适应“单纯的数字运算到规范书写”要求的过渡.

小学数学多是单纯的数字运算,对学生的书写格式要求不高,而重庆市近些年的数学中考150分的题目,有80分需要过程表述,可见随着年级的增高对书写格式的要求也在不断增加。初一学生很多时候做解答题只写答案,要么就是几个数字摆在那儿,没有必要的叙述和步骤,只满足于写对答案,而不苛求于解题过程的合理性与逻辑性。所以教师要一步一步把过程详细的展示给学生看,让学生在观摩中逐步学会规范的过程书写。从学生的实际出发,加强对学习困难生的个别辅导,作业的检查和批改做到及时评价,及时矫正。讲课时要有意放慢进度,概念应从学生的生活实际引入,深入浅出地讲,同时,针对七年级学生的注意力不能长时间集中,不适应单一的教学法的特点,方法上要讲练结合,严格统一书写格式。让学生通过感知―---概括―---应用的思维过程加强对知识的理解,从而引导学生发现真理,掌握规律,学会运用,学会书写。

五、进行学法指导,引导学生逐步学会自主学习,帮助孩子们适应“知识难度加大”的过渡

初中生活对七年级新生具有新鲜感,在心理上普遍存在着一种上进的愿望,教师应抓住这个契机,激发学生的学习热情。在学习能力方面,他们的记忆力较强,但理解力较差,习惯于具体思维而不习惯于抽象思维,不善于独立思考,对老师有依赖心理。教师要根据学生的实际认识水平,尽量做到按基本知识、基本技能和基本思想方法三个方面考察学生,使大多数学生学习数学能变被动为主动。首先要指导学生如何听课做笔记,如何搞知识小结,习题归类,以及作业的书写格式,做题规范等等。其次要引导学生学会读数学书,课前读书能使学生找出疑点,抓注重点;课后读书能弥补课堂上探索知识时的不足,还能深化所学知识。再次要教会学生如何订正错题,逐步在较高的层次上学会知识概括等等。通过实际例子的思维过程引导,让学生感悟转化思想。让学生感悟在研究数学问题时,将未解决的问题转化成已解决的问题,将复杂的问题转化成简单的问题,将数量问题转化成图形问题或将图形问题转化成数量问题等等。

作为教师从学生实际出发,了解每个学生的基础知识、学习方法、性格特点和心理活动等多方面的情况,在中、小学数学知识间架起衔接的桥梁,以生为本从学生的角度展开教学,帮助学生顺利过渡。

绝对值是初中数学的一个重点,也是一个比较难的内容.学好绝对值的概念,对有理数的加减法定义的理解和其在二次根式中的应用都非常重要。下文是我为大家搜集整理的关于七年级数学绝对值论文的内容,欢迎大家阅读参考!

浅析初中数学中的绝对值

初中数学从一开始学习,就对小学学过的数域进行了一次扩展,此时一个非常重要的数学概念的出现就成为必然,它就是绝对值。绝对值无论对初中数学的学习,还是高中数学学习而言,既是重点又是难点。尤其对初中生而言,对绝对值概念的理解和运用过于表面化,对此概念的理解不够深刻,造成解题失误.因而,在数学教学中要引起教师的高度重视,促进学生对绝对值概念深刻理解。

一、绝对值概念与有理数大小比较之间的关系

首先要理解绝对值的几何意义,它是距离,是一个非负的量,具有非负性,即|a|≥0;其次要理解绝对值的性质,它从数的性质的三个方面揭示了绝对值的意义:正数的绝对值是它本身,零的绝对值是零,负数的绝对值是它的相反数.

例如,a、b、c三点在数轴上的位置如下图所示, 试求:|a+b|+|b+c|+|a-c|.

解:由数轴可知:c>0,a |c|>|b|,

∴a+b<0,b+c>0,a-c<0

∴原式=-(a+b)+(b+c)-(a-c)=-a-b+b+c-a+c=2c-2a

正因为有了绝对值的概念,两个负数的比较才能通过绝对值的关系,转化成学生熟悉的正数大小的比较,而不用逐个数在数轴上表示出来,化归成学生已经掌握的知识.

二、绝对值与有理数加减运算之间的关系

对于有理数的加减法而言,正是有了绝对值这一利器,把它最终统一成小学学过的加减法,同号两数相加,取本身的符号,并把它们的绝对值相加;绝对值不相等的异号两数相加,取绝对值较大数的符号,并用较大的绝对值减去较小的绝对值.

例如,求一个数x,使它到-3的距离等于7.

解:由同一数轴上两点间的距离公式可知:

|x-(-3)|=7 ∴|x+3|=7 ∴x+3=±7 ∴x=4或x=-10

有了这个结论,在今后函数的学习中求线段长、求面积、求周长等的运用非常广泛,同时对平面内两点间的距离公式的理解也更加容易.

三、绝对值与二次根式的关系

二次根式中=|a|,因为a2具有非负性,而a的有意义范围是全体实数,问题的本质又回到了绝对值的运算,这种运算在二次根式的相关运算中出现频率比较高,又是学生解题的易错点,仍然强调的是数的正负性的判断.由此可见,绝对值的应用绝非一般,需要教师在日常教学中不断地强化、深化,抓住联系,深入理解,才能够顺利地解决相关问题。同时,绝对值非负性和平方关系的非负性,二次根式非负性的有机结合,也是经常性出现的,多数情况下是以非负数的和为零的形式出现.此时是充分运用了几个非负性数和为零,不可能出现互相抵消的情况,而零的相反数是零,从而每一个非负数分别是零.在此前提下进行求解,解决问题。

例如, a、b、c为三角形的三边,且+|b-4|+(c-5)2=0,试求三角形的周长.

因为=|a-6|,所以有|a-6|+|b-4|+(c-5)2=0,而|a-6|≥0,|b-4|≥0,(c-5)2≥0,故a-6=0,b-4=0,c-5=0, 所以a=6,b=4,c=5,三角形的周长为a+b+c=6+4+5=15.

四、绝对值与不等式的关系

对于绝对值几何意义的认识和理解,解决不等式|x|≥a和|x|≤a(a>0)的解集,理解起来就要相对容易一些;对|x|≥a而言,可理解为到原点的距离大于a的点,那么,一定是在数a的右边的点,或数-a左边的点,故解集为x>a或x<-a;对|x|≤a而言,可理解为到原点的距离小于a的点,那必然是在-a以右和a以左,故解集为-a 编辑:谢颖丽

浅析初中数学绝对值

摘 要: 绝对值问题是学生进入初中阶段学习后在数学上遇到的第一个拦路虎,许多学生学习存在不少疑惑.本文从绝对值的概念入手,从四个方面分析了绝对值学习中存在的障碍,并提出相应的教学建议.

关键词: 绝对值 数轴 运算 初中数学教学

绝对值是初中数学的一个重点,也是一个比较难的内容.学好绝对值的概念,对有理数的加减法定义的理解和其在二次根式中的应用都非常重要,对高中继续学习绝对值方程,绝对值不等式,体会绝对值中蕴含的分类和数形结合思想具有重要意义.下面从绝对值的概念教学、常见的有关绝对值的错题及错因分析等方面进行论述,进而提出中学绝对值内容的几点教学建议,希望能对一线教师有所帮助.

一、对绝对值概念教学的思考

在中学数学中,许多数学概念或命题看似简单,课本上也给出了标准定义,但其真正蕴涵的数学本质到底是什么却令人难以捉摸,甚至在定义中也未能表现出来,绝对值的概念就是如此.若只抓住绝对值概念的表层意义,而未能领悟其实质进行教学,则可能出现的结果:一方面,学生在学习过程中容易出现理解上的困难,另一方面,由于未抓住该知识点的数学核心,在解决相关问题时只能处理较低水平的问题,解决高水平的问题则很容易出错.此外,这种表层意义上的绝对值概念的学习不利于学生领悟数学思想,汲取数学精髓,从而举一反三.那绝对值的概念到底应该如何理解呢?我们不妨来看看.

这种运算与加减乘除等运算的区别在于,后者在两个数之间进行,是二元运算;而前者是对一个数自身的运算,为一元运算.学生在此前接触的绝大多数运算均为二元运算,但中小学数学中出现的一元运算并不少,如倒数,相反数,乘方,开方,对数,阶乘等,因此,在此处讲课时渗透一元运算的思想,既可加深理解前面所学(倒数,相反数),又可为今后的学习(乘方,开方,对数,阶乘)奠定基础.

二、有关绝对值的易错题及错因分析

1.对有理数集的分类不清.绝对值概念中涉及对有理数域这个无限集的一个本质分类,正确掌握这个分类是掌握绝对值概念的关键.但学生过去仅仅是根据事物的外部特征或外部联系进行分类的,即对接触到现象分类,因而在此感到手足无措.这时需要教师的帮助和引导,使之完成从现象分类到本质分类的转化.倘若这种转化不成功,学生在解题时就很容易混乱.

3.用字母代替数未能掌握好.初中一年级学生刚接触代数时,经历了由算术到代数的过渡,这其中的一个重要标志就是字母代替数.绝对值这个概念,对于一个具体的有理数的绝对值一般容易理解,而对于一个字母或含字母的式子的绝对值,有的同学就弄不清楚了.不少同学认为|a|=a,|-a|=a.这是错误的认识,这是将看成了一个具体的数,而不是可以代表任何数的抽象的字母符号.要想正确解这道题,首先,学生就得理解字母符号a可以是正数、负数、零等任意实数,-a也可以是任意实数,甚至于1-a,2+3a等这样一些含有字母的式子都可以表示任意实数,也即任意实数这个概念有多种表现形式,这种意义单一形式多样的不对称性加大了理解难度.若将实数更具体地分为正数、负数和零,则意义与其形式多得多,更难以理解.

4.数形结合的意识较淡薄.课本引入绝对值概念时是这样定义的:一般的,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|.什么是距离呢?就是点与点之间的长度.这也可以说明为什么a≥0.此外,为了理解数轴的实质,必须在教学中运用分类思想,让学生明白:在数轴上0是分界点,将有理数分成两部分,负有理数在0的左边,正有理数在0的右边.在此基础上着重强调:所有有理数都可用数轴上的点表示.这样学生能初步在脑子里建立数形对应,了解新扩充的数(负有理数)与以前学过的数(正有理数)之间的联系,较好地克服对旧有概念的思维倾向.但是,有些教师在教学中没有运用分类思想,学生仍然保留对旧有概念的思维倾向,不能较好地把数形结合起来,这导致学生对数轴概念掌握不好,从而影响对绝对值概念的理解.

三、教学建议

1.对绝对值概念要从多个不同角度理解深化,可结合之前学过的倒数、相反数等概念,透过对比与分析,渗透绝对值作为一种运算的思想,帮助学生更好地理解和运用绝对值.

2.在扩充数域的学习中加强对负数概念的认识,巩固分类讨论思想.例如可在讲相反数时补充双重符号化简-(-a)=a,这样可以及时纠正学生对负数概念的错误认识.在学习数轴概念时,应使学生对有理数的分类有一个几何直观上的初步理解,并着重强调每一个有理数都确定数轴上一个点,帮助学生在头脑中初步建立数形对应.

3.从具体的数字到抽象的字母这一认识上的飞跃需要反复用字母取值训练,因为正确的认识不是一次两次通过分析和综合就可以形成的,它需要不断反复地进行分析、综合.每一次重复都会使我们对问题的认识更深一步,从而使问题得到解决.绝对值定义是通过字母和数轴提炼出来的,刚进入初中的学生对这些抽象的概念是很难适应的,我们必须通过像2,-6,π这些具体的数字来体现,然后过渡到具体的字母.特别是a作为一个正数形式出现而可以表示任意的数表示疑惑比如:若a<0,那么-a=?摇?摇 ?摇?摇.对于刚接触这类题目,特别是对理解力稍差的学生可以通过具体的数字帮其解惑,再通过强化训练使其以后不再错.

4.在绝对值教学中紧紧抓住绝对值的几何意义,注意加深对距离、数轴等涉及形的概念的认识,强化数形结合的观点.例如可让两学生沿讲台相反的方向走任意的长度体会距离的非负性,也即绝对值的非负性。数形结合是中学阶段重要的数学思想,贯穿整个初中数学始终,在初一刚刚出现这种思想要充分应用多种教学手段,促进学生对这种思想的适应和理解.“数无形时少直观,形无数时难入微”,利用数形结合的数学思维可以密切知识间的纵横联系,培养类比联想的能力,这对加深概念理解、开拓解决问题的思路有着非常重要的作用.

参考文献:

[1]杨军华.漫谈初中数学绝对值[J].新课程学习,.

“写什么?怎样写?”这是每个学写小论文的同学都会碰到的问题。一篇好论文的产生,对于它的作者来说是一次创造性的劳动。创造性的劳动对劳动者的要求是很高的。其创作的素材、水平,乃至创作的灵感……,绝不是轻易可以得到的,它们需要作者在自己的学习与生活实践中,去进行长期的积累与思考。从我校征集的论文来看,作者中有的是在平时十分注意对课本知识进行归纳整理、拓展延伸,学习中有许多意想不到的收获;有的是从课外阅读中得到收获与启发后,获得灵感、得以选题;……更有甚者是,有的作者在生活中发现问题注意观察、探究,并与自己的数学学习相联系,对观察、探究的结果进行思考、归纳、总结,升华为理论,写出了令人叫绝的好论文。综观获奖论文的小作者们,他们大多是数学学习的有心人。好论文的作者不仅要有较好的数学感悟,还要有良好的文学修养、综合素养。写小论文的关键,首先就是选题,大家的选题要从自己最熟悉的、最想写的内容入手。下面我结合我校同学部分获奖论文的选题,进行一点简单的选题分析。论文按内容分类,大概有以下几种:①勤于实践,学以致用,对实际问题建立数学模型,再利用模型对问题进行分析、预测;如:探究大桥的热胀冷缩度②对生活中普遍存在而又扰人心烦的小事,提出了巧妙的数学方法来解决它;如: 一台饮水机创造的意想不到的实惠③对数学问题本身进行研究,探索规律,得出了解决问题的一般方法如: 分式“家族”中的亲缘探究如: 纸飞机里的数学④对自己数学学习的某个章节、或某个内容的体会与反思如: “没有条件”的推理如: 小议“黄金分割”如: 奇妙的正五角星① 课题要小而集中,要有针对性;② 见解要真实、独特,有感而发,富有新意;③ 要用自己的语言表述自己要表达的内容(四) 评价数学小论文的标准什么样的数学小论文算是好的论文呢?标准很多,但我以为一篇好的数学小论文必须有以下三个特征——新、真、美。“新”,指的就是选题要有独特的视角,写的内容不是简单地重复别人的东西、不是单纯地下载一段。文字,最好是自己原创的,至少要有自己的创造、自己的观点,属于自己的思想;“真”,指的就是内容要实在、言之有理,既不能空洞无味、也不能冗长拖沓,文章要紧扣主题,力求做到准确、精练,尽量地体现数学的严谨性与科学性;“美”,指的就是语言通顺、文笔流畅,文章要给人以美的享受。当然,从第二届时代数学学习“时代之星”实践与创新论文大赛的名称来看,既有实践又有创新的论文肯定更容易受到评委们的亲睐,所以,我希望同学们更加贴近生活、注意观察、去寻找、去发现,把生活与数学联系起来,把学习撰写论文、争取写出好的论文,作为对自己数学学习的一种评价、一种补充、一种提高,这样你学写小论文的目的就对了,你就会将数学小论文越写越好。“梅花香自苦寒来”,只要肯下大工夫、只要肯吃的起苦,不断地去思考、去揣摸,去学习,好的数学论文就一定会在你的手中诞生。总之,学习撰写论文、争取写出好的论文,对于我们每一位同学来说,始终是一个锻炼自己、提高能力的极好的方式。我相信我校初一、初二的同学们一定会在老师的组织与指导下积极参与第二届《时代数学学习》“时代之星”实践与

七年级上学期数学论文

学数学就是为了能在实际生活中应用,数学是人们用来解决实际问题的,其实数学问题就产生在生活中。比如说,上街买东西自然要用到加减法,修房造屋总要画图纸。类似这样的问题数不胜数,这些知识就从生活中产生,最后被人们归纳成数学知识,解决了更多的实际问题。我曾看见过这样的一个报道:一个教授问一群外国学生:“12点到1点之间,分针和时针会重合几次?”那些学生都从手腕上拿下手表,开始拨表针;而这位教授在给中国学生讲到同样一个问题时,学生们就会套用数学公式来计算。评论说,由此可见,中国学生的数学知识都是从书本上搬到脑子中,不能灵活运用,很少想到在实际生活中学习、掌握数学知识。从这以后,我开始有意识的把数学和日常生活联系起来。有一次,妈妈烙饼,锅里能放两张饼。我就想,这不是一个数学问题吗?烙一张饼用两分钟,烙正、反面各用一分钟,锅里最多同时放两张饼,那么烙三张饼最多用几分钟呢?我想了想,得出结论:要用3分钟:先把第一、第二张饼同时放进锅内,1分钟后,取出第二张饼,放入第三张饼,把第一张饼翻面;再烙1分钟,这样第一张饼就好了,取出来。然后放第二张饼的反面,同时把第三张饼翻过来,这样3分钟就全部搞定。我把这个想法告诉了妈妈,她说,实际上不会这么巧,总得有一些误差,不过算法是正确的。看来,我们必须学以致用,才能更好的让数学服务于我们的生活。数学就应该在生活中学习。有人说,现在书本上的知识都和实际联系不大。这说明他们的知识迁移能力还没有得到充分的锻炼。正因为学了不能够很好的理解、运用于日常生活中,才使得很多人对数学不重视。希望同学们到生活中学数学,在生活中用数学,数学与生活密不可分,学深了,学透了,自然会发现,其实数学很有用处。

培养数学应用意识发展学生智慧。 注重发展学生的智慧,使教学过程从教师的指导内化为学生智慧的发展,是小学数学教学中人们关注的一个问题。笔者谈谈如何通过培养学生数学应用意识的渠道来发展学生智慧。 小学生的心理发展表明,他们的认识能力还不成熟,还离不开教师的引领,其智慧的发展需要介入教师的媒介而产生。但是教师并非能直接规定学生智慧的发展,学生终究要用自身的力量把所学的东西内化为自己的智慧。我们知道数学应用意识是指学生能认识到现实生活中蕴含着大量的数字信息,数学在现实世界中有着广泛的应用;面对实际问题时,能主动尝试着从数学角度运用所学知识和方法寻求解决问题的策略;面对新的数学知识时,能主动地寻找其实际背景,探索其应用价值,达到用数学的视角观察世界、用数学思维思考世界,在处理与数学有关的问题时表现出较灵活的思维、较开阔的思路、较好的数学素养等,这样对促进学生知识的内化无疑是很有作用的。在数学教学中,给学生以实践活动的机会,启迪学生学会用数学的眼光去观察周围的事物发现生活中的数学问题,引领学生自觉运用数学的基础知识、基本方法去分析与解决生活中的实际问题,让学生更深刻地体会到数学的应用价值,逐步培养学生的数学应用意识,促进知识内化,达到发展学生智慧的目的。 笔者在教学实践中采取以下举措来培养学生的数学应用意识。 1,引导发现生活中的数学问题,培养应用意识。学生数学应用意识的培养要强调教学过程的开放性,引导学生发现问题,改变学生在学习过程中的被动状态,促使其更为积极、主动地进行探索。例如“分数的初步认识”这节课,考虑到教学的起点是“1/2”的认识,让学生们结合自己的生活经验,表示出自己所发现的生活中的一半。有的用画图的方法,一圆分成两半;有的学生用三点水表示姓江的一半;有的学生画了一个桃子,一把刀切成两半。这时教师出示“1/2”这个分数,告诉学生所有这些都可以用1/2来表示,这就是生活中的一半,你们心目中的一半。随着教学的进一步深入,孩子们已理解了什么是1/3、1/4……但在表示上老师并没有强求学生一定要用分数来表示,有的学生还是用画图的方法来表示。这时老师出示了1/100,让学生们来表示,结果绝大部分学生都采用分数来表示,但乃有几个学生坚持用他们喜欢的图形来表示,老师没有阻止他们,耐心地等待他们自己的发现。画了一会儿,觉得“画图实在太麻烦”,终于接受了分数。这节课,孩子们对分数的认识是真实的,是自然的,学习数学的动力逐步从“有趣”转向“有意义”,并逐步建立学习数学的稳定心理定向,他们从内心深处接受了这一看似抽象却简洁明了的数学语言,感受到了数学的美和力量。 2,动手操作,强化应用意识。学生能否发现和提出有价值的数学问题是其数学应用意识强弱的重要标志。例如,当学生推导出“圆柱的体积”公式后,可创设一个实践的机会,让学生以小组为单位,应用所学知识,解决日常生活中用过的圆柱形饮料瓶、茶叶筒、饼干盒等物体的体积问题。要求体积,必须知道圆柱体的底面半径和高。高比较好测量,如何测量底面半径呢?学生根据自己的思维方式寻求解决问题的策略,展示了各自的智慧:有的直接用直尺量出圆柱体的底面直径,再求出半径;有的把圆柱形物体用力往作业纸上一压拿开后,测量出印在本子上圆的直径,再求出半径;有的用小绳围绕圆柱体一周,用尺子量出绳子周长,再求出半径;有的直接在圆柱体上画一点,再把圆柱体在作业本上滚动一周,量出作业本上两点间的距离(也是周长),再求出半径。通过这类实践性活动,让生活问题数学化,学生不仅感受到生活中处处有数学,强化了数学应用意识。 3,通过社会调查,提高应用意识。我们组织学生以小组为单位,自己设计、开展社会调查活动。他们走上街头、走进邮政所、派出所,走访叔叔、阿姨,了解发现数学编码的广泛应用性:如号码“122”表示交通事故报警、“12315”表示消费者投诉热线;身份证号码的前面1至6位都是表示出生地,第7到14位表达的信息都是出生日期;邮政编码反映了收件人居住地的相关信息;手机号120到133指联通用户,134到139指移动用户;公交车是按照线路进行编号简单好记;自己学籍号表示的信息等等。学生经过调查实践,内化了现代化社会数字中所蕴含的信息、数学编码的实际应用价值,还切实地感受到数学与生活的联系,学到了多方位的综合性知识,获得知识层面和智慧层面的“双赢”。

由于 七年级数学 是重要的教学工作,教师要注重激发学生学习数学的兴趣。下面是我为大家整理的七年级数学教学论文,供大家参考。

【关键词】七年级新生 数学教学解决 方法

学生刚从小学升入中学时,心理和生理都发生着巨大的变化,而数学教学也发生着重大的转变,初中数学在小学数学的基础上增加了复杂的平面几何、代数、有理数、实数、一次函数与二次函数等,内容多,难度大,学生感到吃不消,因此对数学产生畏惧感。以下针对七年级学生学习初中数学时出现的问题,谈谈具体的解决方法。

一、提升学生的数学学习能力

初中数学较之小学数学更为复杂、抽象,特别是数字到字母的转变、具象到抽象的转变等,一些逻辑推理能力稍差的学生学习起来感到十分吃力,学生在七年级阶段学不好,会影响到今后对数学的深入学习。因此,提升学生的数学学习能力尤为重要。逻辑推理能力是学生学习初中数学的首要必备能力,在具体教学中,教师要注重对学生逻辑推理能力的培养。

例如,在几何教学中,培养学生将文字语言转化为数学语言的 逻辑思维 。

师:已知:HC是∠ACB的角平分线,同学们从已知条件可以知道什么?

生:因为HC是角平分线,所以∠HCA和∠HCB两个角相等。

师:没错,不仅∠HCA=∠HCB,而且别忘记∠HCA=∠HCB=∠ACB。

师:已知AB//CD,直线EF分别与直线AB和CD交于点G和H,请同学把图画出来。

学生根据对条件的理解画出图形,如图1。

师:∠AGH和∠GHD是内错角,所以∠AGH=∠GHD,同学们根据老师的思路,还能推理出什么?

生:因为AB//CD,所以∠FHD=∠FGB,并且∠AGH+∠CHG=180°。

教师先举例说明,再让学生自己进行观察推理,使学生不至于因为知识点理解有困难而走偏路。通过步步引导,逐渐提高学生的理解能力和逻辑推理能力。

二、把握教学内容的衔接

与小学数学相比,初中数学的内容更加系统丰富,如果教师处理不好中小学数学教学内容衔接的问题,会直接导致学生在初中数学的学习中脱轨。因此,在教学过程中,教师必须注意初中数学和小学数学的衔接,在接触一个新的知识点时,先分析小学数学与初中数学的差异,让学生意识到数学在初中阶段的系统化,同时,又要给予学生充分的信心,使学生不会因为初中数学与小学数学的巨大差异而产生恐惧心理。

例如,在“有理数”的教学中,我的教学过程如下:

师:小学数学是在算术数中研究问题的,我们现在开始学习一个新的知识――有理数。

学生从书上找到有理数的概念,师引入负数,并举例说明其用法。

师:同学们,我们怎样区别山峰的海拔高度与盆地的海拔高度这两个具有相反意义的量呢?

生:用负数,就像零上几度和零下几度一样。

师:没错。事实上,有理数与算术数的根本区别在于有理数由两部分组成:符号部分和数字部分,数字部分也就是算术数。

生:也就是说,有理数相比小学的算术数只是多了符号的变化。

师:对,例如:(-5)+(-3),同学们可以先确定符号是“-”,再把数字的部分相加。

生:答案是(-5)+(-3)=-(5+3)=-8。

在算术数到有理数这一重大转变中,教师明确了切入的方向和步骤,使教学内容与小学数学的内容很好地衔接,同时,又能帮助学生在小学的基础上理解有理数,使学生感受到初中数学与小学数学内容上的一脉相承,从而适应初中数学的学习。教师在教学中要注意由小学数学内容或生活中的实例引入教学,拉近学生与新知识的距离,加深对知识的理解,再实战练习,让学生不再对初中数学望而生畏。

三、培养学生良好的学习习惯

良好的学习习惯对于初中阶段的数学学习极其重要,在小学阶段,学生大多没有形成特定的学习习惯,往往以完成教师布置的作业为主要目标,临近考试才看书“临时抱佛脚”。大多数学生在进入初中后,面对快节奏的学习显得十分不适应。因此,教师要致力于培养学生良好的学习习惯,让学生面对高强度的学习任务也能游刃有余。在初中数学的学习习惯中,预习和复习尤显重要。

1.重视预习

进入初中阶段,数学教学进度陡然加快,学习难度也逐步加深,学生一时难以适应,在听课过程中,学生由于没有预览新知识,对教师所讲内容十分茫然,从而产生焦虑急躁的情绪,影响继续听讲。久而久之,不仅听课效率下降,更打击了学生学习初中数学的信心和兴趣。因此,教师应在布置当天学习内容的作业时,将预习次日学习内容作为一项作业布置给学生,并提出预习的具体要求,指导学生预习的方法,让学生逐渐养成预习的习惯。

2.正确把握复习的节奏和掌握复习的方法

复习也是一个极其重要的学习习惯。根据艾宾浩斯遗忘规律曲线,在识记的最初阶段遗忘速度很快,以后逐步减缓。因此,在学习新知后若不及时加以巩固复习,学习效果将大打折扣。教师应向学生强调复习的重要性,明确要求学生在做作业之前先复习当天所学内容,并阶段性回顾单元章节知识,以强化学习效果。

复习主要包括两部分,一部分是新授课后对已学知识点的回顾和巩固,另一部分是考试前对知识的回忆和温习。首先是新授课后对已学知识点的回顾和巩固,在这一环节,学生总感觉学习时间不够,光是完成教师布置的作业就已经很吃力了,更别说复习,这就要求学生学会把握复习的节奏。教师应该适时在课堂上复习已学知识或点评新旧知识点的联系,用课堂讲习题的方式间接提醒学生复习的重要性,使学生在潜移默化中适应教师的复习节奏和方法,最终化为自己的习惯和方法。其次是考试前对知识的回忆和温习。教师应提醒学生,复习要以教材为本,深入理解知识点,把握重点内容。另外,考过的测试卷也是复习的好资料,考试中暴露的问题正是学生应该重视的复习内容,尤其是七年级新生,不知复习从哪儿下手时,更应该珍惜每一份试卷,认真分析,找出自身知识点的薄弱环节, 总结 失败的教训,从中得到成长与进步。

以上观点均是结合自身的教学 经验 所谈,教师应根据所教班级学生的特点因材施教,切勿生搬硬套。

摘要:学习数学对七年级的学生来说,首先是获得适应初中数学学习的能力,以缩短小学学习向初中学习的过渡期。要使数学教学更有效地帮助学生获取数学知识和适应能力,有些问题应在我们的数学教学中应予以重视。

关键词:七年级;数学;重视

1.重视“小练习”,以体现数学思想 教育

进行数学思想方法教学应遵循的几个原则:一是化隐为现原则。就是有意识地让学生将数学思想方法作为明确的学习对象,教学应当以知识为载体,把隐藏在知识中的思想方法揭露出来。二是循序渐进原则。必须结合教学内容和学生认知水平,反复孕育结论发展形成的过程,采用“小步走”、“多层次”的方式,以体现数学思想方法的教学。三是学生参与原则。应当认识到学生参与教学,是数学活动过程的教学,具有动态性、重思辨的特点,要求有学生积极参与其中,使学生逐步领悟、形成和掌握数学思想方法。

我们应当按照这些原则教学。例如,应用题对七年级学生来说是一个数学学习的难点。这个阶段的应用题,尽管在很大程度上还没有真正涉及到实际的应用题,即使这样,也有一些学生对此感到头痛。为了处理好这个问题,我们应按上述原则,在教学中重视设置一些与讲授问题相关、简单且有层次的小练习,让学生通过这些小练习,逐渐体会如何分析问题以及解决问题的方法或思路。例如:

甲、乙两站相距450km,一列慢车从甲站开出,每小时行驶65km ,一列快车从乙站开出,每小时行驶85km。(1)两车同时开出,相向而行,多少小时相遇?(2)快车先开出30分钟后慢车开出,两车相向而行,慢车行驶了多少小时与快车相遇?

讲解该问题前,我们可按解题思路先让学生想想两种车在具体时间内各走了多少路程,并推出x小时内所走路程的表达式;再让学生想想两车“相遇”在时间上有何特点,各自所走路程与两站间距离有何关系;然后让学生想想“快车先开出30分钟”对各自所走路程以及与两站间距离的关系会产生的影响等问题。通过这类小练习让学生沿着正确的解题方法做一遍,以理解解题的思想。

这类小练习应具有由浅入深、由简单到复杂、每步过渡都有铺垫等特点,若再加上适当的图示,学生做起来就不会感觉有太大困难。显然,小练习是在教师引导下由学生自己完成,符合“学生参与原则”;围绕原问题,小练习按“小步走”的方式依次提问题,难度由浅入深,符合“循序渐进原则”;小练习将原问题的基本面目逐步展现出来,让学生看到解决原问题的方法与自己熟悉的方法之间的关系,符合“化隐为显原则”。

2.要关注学生的个体差别

在曾经的教学中,学生常常是被动地学习,没有机会主动地学习和自主地选择决策,这样学生就失去了作为学习主人的创造力创新精神。新一轮基础教育课程改革十分重视尊重学生的个体差别,尊重学生的各式性,激发勉励学生各个方面进行发展,采用不一样的教育方法和评估标准,为每个学生的发展创造条件。作为初中数学老师需要在教育思想、教育观念上创新,要树立适应时代发展必要的新的教育观、人才观和质量观,在全面落实素质教育的基础上,不停改革 教学方法 ,提升教育教学质量,创建符合学生身心发展规律的班级课程授教体系,刺激引发学生学习的主动性和创造性,应对学生有充实的信心和支持带领学生在各个方面进行发展的基础上寻找本性突破(意为打开缺口突破难关)。值得注意的是,个性化(就是非一般大众化的东西。在大众化的基础上增加独特、另类、拥有自己特质的需要,独具一格,别开生面的一种说法。打造一种与众不同的效果。)的课程和教学条件正在逐步形成。信息技术的发展,多媒体计算机和网络(网络就是用物理链路将各个孤立的工作站或主机相连在一起,组成数据链路,从而达到资源共享和通信的目的)技术在学校教学整个过程中应用范围日益扩大,给个性化(就是非一般大众化的东西。在大众化的基础上增加独特、另类、拥有自己特质的需要,独具一格,别开生面的一种说法。打造一种与众不同的效果。)教学和对学习的人的志趣、能力等具体情况进行不同教育带来新的机遇,也给初中数学老师带来了新的挑战。

3.数学教师应正确认识数学教学的本质

树立正确的数学教学观教学曾被简述为“教师教、学生学的活动”。但这样说过于简单,不利于对数学教学的全面理解。苏联教育学家斯卡特金认为:教学是一种传授社会经验的手段,通过教学传授的是社会活动中各种关系的模式、图式、总的原则和标准。这是一种侧重于传授内容的总体叙述。美国心理学家布鲁纳认为:教学是通过引导学生对问题或知识体系循序渐进的学习来提高学生正在学习中的理解、转换和迁移能力。这是侧重于学生获得发展的叙述。不论是从认识心理学的角度构筑的数学教学理论,还是着眼于未来,注重 学习方法 的掌握与创造精神发挥的数学教学理论,都必须研究数学教学过程的本质、数学教学的原则和教学方式及方法的开拓,探讨数学教学的科学性与艺术性及其统一。特别地,要与信息社会发展的总体趋势相适应,着眼于促进学生全面、持续、和谐地发展。“义务教育阶段国家数学课程标准(实验稿)”第四部分“课程实施建议”中指出:“数学教学是数学活动的教学,是师生之间、学生之间交往互动与共同发展的过程”。这里,强调了数学教学是一种活动,是教师和学生的共同活动,这对广大教师树立正确的数学教学观具有重大的意义。在新课程中,教师将由传统的知识传授者转变为课堂教学的组织者、引导者和合作者。教学工作越来越找不到一套放之四海而皆准的模式。因此,教师必须在教学工作中随时进行 反思 和研究,在实践中学习和创造,这样才能得到发展。另外,数学教学过程不再是机械地执行教材的过程,而是师生从实际出发,利用更广泛的课程资源,共同开发课程和丰富课程的过程,教学真正成为师生富有个性化的创造过程。新的课程呼唤着创造型的教师,新的时代也将造就优秀的教师。

摘 要: 新世纪需要的是高素质人才,兴趣是各种素质培养的前提条件,培养学生的兴趣是数学教学的关键。数学兴趣的培养要从入门抓起,要从课堂教学抓起,要从学习习惯抓起。教师要以数学的趣味性、教学的艺术性感染学生,引起学生学数学的兴趣,同时培养学生各方面能力,真正实现素质教育。

关键词: 学习兴趣 课堂导入 实践操作 学习习惯

学生升入七年级伊始,对数学有着浓厚的兴趣,可是没多久,兴趣就慢慢消失了,这几乎成了七年级数学教学的普遍性问题。长期以来,教师为保持学生的学习兴趣一直进行着不懈努力。那么,如何提高七年级学生的学习兴趣呢?经过不断探索和实践,我认为应该从以下几个方面入手。

一、要充分把握入门阶段的教学

“良好的开端是成功的一半”,这是义务教育课程标准试验教科书编写者的指导思想。七年级学生翻开刚拿到的数学课本后,一般都感觉新奇、有趣,想学好数学的求知欲较为迫切。因此,教师要不惜花费时间,深下功夫,让学生在学习的入门阶段留下深刻的印象,产生浓厚的兴趣。为此教师在教学七年级数学上册第一章“几何图形的初步认识”时,可多运用几何体教具进行教学,还有多让学生观察日常生活中的几何体,课上多动手操作,来引发学生的学习兴趣。如在教学第三节“几何体表面展开图”时,让学生以组为单位,剪、展纸盒,通过动手实际操作激起学生的学习兴趣。这样通过第一章的学习,一点点诱发学生的学习兴趣,消除学生害怕学数学的心理,以数学的趣味性、教学的艺术性给学生以感染,使其像磁铁上的铁屑离不开磁铁一样。

二、要保持课堂教学的生动性、趣味性

学生对数学学习有了初步兴趣后,要保持七年级学生学数学的永久兴趣,教师还应抓住七年级学生情绪易变、起伏较大的心理、生理特点,要求以“活的东西去教活的学生”,来培养学生持久的学习兴趣。对此,我的具体做法:

(一)注重课堂教学中的导入环节

一个好的导入设计,能使这堂课先声夺人,引人入胜,更为重要的是,好的导入能激发学生的学习兴趣和旺盛的求知欲,并创造良好的学习氛围,为授课的成功奠定良好的基础。以下是我教学实践过程中总结的几种课堂导入的方法。

1.设置情境,激发兴趣。

创设良好的导入情境,激发探索动机是引导学生探索学习的前提。因而,在导入阶段教师应注重情境的创设,创设好奇、疑惑、生动、有趣的情境,让学生对学习产生兴趣,进而产生主动探索的强烈欲望。如在教学“用平面截几何体”时教师可用实际切豆腐演示的方法导入,从而激发学生的学习兴趣。

2.设置疑点,引起兴趣。

“学贵有疑”,这是常理。学生在学习数学的过程中不断发现问题,学习数学才有兴趣,才会主动。亚里士多德曾说过:“思维是从疑问和惊奇开始的。”因此教师在导入教学过程中,还可以设置障碍,故意制造疑团和悬念,提出一些必须学习了新知识才能解答的问题,点燃学生的好奇之火,激发学生的求知欲,从而形成一种学习的动力。

3.联系生活,灵活应用。

生活中处处有数学的存在。要培养学生数学的应用意识,教会学生去观察生活,领悟生活的数学因素,教师就应注意课堂中实际生活的渗透,巧妙设置情境;启发学生从生活实际中发现某些规律,从而导入新课,这种方法可使学生在发现的喜悦中提高学习的兴趣,同时有利于学生对新知识的理解和记忆。

(二)课堂教学中充分让学生参与实践操作

教材针对七年级学生喜欢观看、喜欢动手的性格特征,安排了大量的实践性内容,以激发学生的学习兴趣。教师要抓住教材这一编排特点在教学中让学生参与实践操作,如在教学“有理数的混合运算”一节时,教师可把学生分成几个小组,每组一副扑克牌(去掉大、小王牌),让学生任意抽取四张牌,然后根据牌面上的数字进行加、减、乘、除、乘方混合运算,使运算结果为24或-24,来激发学生的学习兴趣和求知欲。

此外,教师可讲与数学知识有关的小 故事 ,做小游戏等,适当增加趣味成分,使看似枯燥的数学变得形象具体,这样也可以使课堂教学变得生动有趣。

三、教学中要注重培养学生学习习惯

七年级数学在每章节内容的编排上安排了“观察与思考”、“一起探究”、“做一做”、“大家谈谈”等栏目,独具匠心、面目一新。其宗旨是设法使学生学有趣、学有法、学有得。为此我在教学实践中从培养学生学习兴趣入手,逐渐使学生养成良好的学习习惯,使数学兴趣真正变成永久兴趣。具体做法:

(一)培养观察习惯

学生对图形、对实验的观察特别感兴趣,教师就可以引导他们有的放矢、积极主动去观察,边观察、边提问、边引导学生进行讨论。根据他们观察、分析的情况逐步引导出知识点。这样能使学生体会观察的收获与兴奋,自觉养成观察的习惯。

(二)培养思考习惯

具体方法是课前或课中出示思考题,如教学“用一元一次方程解决实际问题”时,可出示思考题:你还能想出另外的方法解这道应用题吗?鼓励学生思考多种方法,表扬回答正确的学生,使学生有获得成功之喜悦,从而产生兴趣,养成爱思考的习惯。

(三)培养探究的习惯

教师通过提问,引发学生积极探讨数学知识,逐步培养学生合作探究的习惯。特别是一题多解的题目或需要分类讨论的问题,如在教学“平行线的特征”时,可以让学生进行分组探究。通过探讨,归纳出平行线的性质。

以上只是我个人在七年级数学教学过程中对如何培养学生学习兴趣方面一点粗浅的看法,还望各位同仁给予指教。教师在实际教学中,其方法、 措施 是多种多样的,体会也各不相同,对于数学教学还有待于我们共同的研究和探讨。

参考文献:

[1]尹安群编著.有效教学――初中数学教学中的问题与对策.东北师范大学出版社.

1. 浅谈七年级数学相关论文

2. 初中数学的教学论文

3. 关于初中数学教学论文

4. 初中数学教学论文范文

5. 初中数学教育教学论文

第一步:确定你准备写的论文范围。例如:准备写关于数轴的论文。第二步:选择一个吸引眼球的标题。例如:《数轴上的点是精确值还是约值的探讨》(我准备写的,你不要先抄袭了哈,呵呵)第三步:查找一些相关的知识。例如:数轴的作用,数轴的含义,数轴上点的表示法,数轴的相关定义等等。第四步:如果发现你准备的内容不够,就写一个你和同学在关于此论文里包含的内容的做题中发生的有趣的故事。例如:在画数轴时出现的小错误,同学或者自己是怎么想的,怎么改的等等。最后:写上你的姓名、学校、班级、日期等。OK了,你的数学论文完成了,可以交给老师了。呵呵,预祝你成功。

七年级上册数学论文300字

无………………

(1). 因为方程x^2-4x+m=0有两个正整数解所以 m 可分解为:-2、-2和-1、-3这两种情况由三角形三边关系得:b=3 ,如图:作BD⊥AC于D ,设AD=x ,则CD=3-x ,由勾股定理得:25-x^2 = 9-(3-x)^2 解得:x= 25/6 ,所以sinA=x/5 = 5/6(2).设售价为(50+x)元,则可卖出(500-10x)个所以 (50+x-40)*(500-10x)=8000解得:x=10或x=30 即50+x=60或80所以售价为60元时,进货400个或售价为80时,进货为200个。(3).设甲种商品投入x元,则乙种商品投入为(3-x)元,再商最大利润为y=(1/5)*x + (3/5)*√(3-x) ,所以5y-x= 3*√(3-x) ,两边平方得:x^2 -(10y-9)*x +(25y^2 -27)=0所以△=(10y-9)^2-4*(25y^2-27)≥0 ,解得:y≤ 21/20y取最大值21/20时 ,x=3/4 所以甲、乙两种商品的投入分别为:(3/4)万元和(9/4)万元

数学小论文一 关于“0” 0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。 “105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示…… 爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。 数学小论文二 各门科学的数学化 数学究竟是什么呢?我们说,数学是研究现实世界空间形式和数量关系的一门科学.它在现代生活和现代生产中的应用非常广泛,是学习和研究现代科学技术必不可少的基本工具. 同其他科学一样,数学有着它的过去、现在和未来.我们认识它的过去,就是为了了解它的现在和未来.近代数学的发展异常迅速,近30多年来,数学新的理论已经超过了18、19世纪的理论的总和.预计未来的数学成就每“翻一番”要不了10年.所以在认识了数学的过去以后,大致领略一下数学的现在和未来,是很有好处的. 现代数学发展的一个明显趋势,就是各门科学都在经历着数学化的过程. 例如物理学,人们早就知道它与数学密不可分.在高等学校里,数学系的学生要学普通物理,物理系的学生要学高等数学,这也是尽人皆知的事实了. 又如化学,要用数学来定量研究化学反应.把参加反应的物质的浓度、温度等作为变量,用方程表示它们的变化规律,通过方程的“稳定解”来研究化学反应.这里不仅要应用基础数学,而且要应用“前沿上的”、“发展中的”数学. 再如生物学方面,要研究心脏跳动、血液循环、脉搏等周期性的运动.这种运动可以用方程组表示出来,通过寻求方程组的“周期解”,研究这种解的出现和保持,来掌握上述生物界的现象.这说明近年来生物学已经从定性研究发展到定量研究,也是要应用“发展中的”数学.这使得生物学获得了重大的成就. 谈到人口学,只用加减乘除是不够的.我们谈到人口增长,常说每年出生率多少,死亡率多少,那么是否从出生率减去死亡率,就是每年的人口增长率呢?不是的.事实上,人是不断地出生的,出生的多少又跟原来的基数有关系;死亡也是这样.这种情况在现代数学中叫做“动态”的,它不能只用简单的加减乘除来处理,而要用复杂的“微分方程”来描述.研究这样的问题,离不开方程、数据、函数曲线、计算机等,最后才能说清楚每家只生一个孩子如何,只生两个孩子又如何等等. 还有水利方面,要考虑海上风暴、水源污染、港口设计等,也是用方程描述这些问题再把数据放进计算机,求出它们的解来,然后与实际观察的结果对比验证,进而为实际服务.这里要用到很高深的数学. 谈到考试,同学们往往认为这是用来检查学生的学习质量的.其实考试手段(口试、笔试等等)以及试卷本身也是有质量高低之分的.现代的教育统计学、教育测量学,就是通过效度、难度、区分度、信度等数量指标来检测考试的质量.只有质量合格的考试才能有效地检测学生的学习质量. 至于文艺、体育,也无一不用到数学.我们从中央电视台的文艺大奖赛节目中看到,给一位演员计分时,往往先“去掉一个最高分”,再“去掉一个最低分”.然后就剩下的分数计算平均分,作为这位演员的得分.从统计学来说,“最高分”、“最低分”的可信度最低,因此把它们去掉.这一切都包含着数学道理. 我国著名的数学家关肇直先生说:“数学的发明创造有种种,我认为至少有三种:一种是解决了经典的难题,这是一种很了不起的工作;一种是提出新概念、新方法、新理论,其实在历史上起更大作用的、历史上著名的正是这种人;还有一种就是把原来的理论用在崭新的领域,这是从应用的角度有一个很大的发明创造.”我们在这里所说的,正是第三种发明创造.“这里繁花似锦,美不胜收,把数学和其他各门科学发展成综合科学的前程无限灿烂.” 正如华罗庚先生在1959年5月所说的,近100年来,数学发展突飞猛进,我们可以毫不夸张地用“宇宙之大、粒子之微、火箭之速、化工之巧、地球之变、生物之谜、日用之繁等各个方面,无处不有数学”来概括数学的广泛应用.可以预见,科学越进步,应用数学的范围也就越大.一切科学研究在原则上都可以用数学来解决有关的问题.可以断言:只有现在还不会应用数学的部门,却绝对找不到原则上不能应用数学的领域. 数学小论文三 数学是什么 什么是数学?有人说:“数学,不就是数的学问吗?” 这样的说法可不对。因为数学不光研究“数”,也研究“形”,大家都很熟悉的三角形、正方形,也都是数学研究的对象。 历史上,关于什么是数学的说法更是五花八门。有人说,数学就是关联;也有人说,数学就是逻辑,“逻辑是数学的青年时代,数学是逻辑的壮年时代。” 那么,究竟什么是数学呢? 伟大的革命导师恩格斯,站在辩证唯物主义的理论高度,通过深刻分析数学的起源和本质,精辟地作出了一系列科学的论断。恩格斯指出:“数学是数量的科学”,“纯数学的对象是现实世界的空间形式和数量关系”。根据恩格斯的观点,较确切的说法就是:数学——研究现实世界的数量关系和空间形式的科学。 数学可以分成两大类,一类叫纯粹数学,一类叫应用 数学。 纯粹数学也叫基础数学,专门研究数学本身的内部规律。中小学课本里介绍的代数、几何、微积分、概率论知识,都属于纯粹数学。纯粹数学的一个显著特点,就是暂时撇开具体内容,以纯粹形式研究事物的数量关系和空间形式。例如研究梯形的面积计算公式,至于它是梯形稻田的面积,还是梯形机械零件的面积,都无关紧要,大家关心的只是蕴含在这种几何图形中的数量关系。 应用数学则是一个庞大的系统,有人说,它是我们的全部知识中,凡是能用数学语言来表示的那一部分。应用数学着限于说明自然现象,解决实际问题,是纯粹数学与科学技术之间的桥梁。大家常说现在是信息社会,专门研究信息的“信息论”,就是应用数学中一门重要的分支学科, 数学有3个最显著的特征。 高度的抽象性是数学的显著特征之一。数学理论都算有非常抽象的形式,这种抽象是经过一系列的阶段形成的,所以大大超过了自然科学中的一般抽象,而且不仅概念是抽象的,连数学方法本身也是抽象的。例如,物理学家可以通过实验来证明自己的理论,而数学家则不能用实验的方法来证明定理,非得用逻辑推理和计算不可。现在,连数学中过去被认为是比较“直观”的几何学,也在朝着抽象的方向发展。根据公理化思想,几何图形不再是必须知道的内容,它是圆的也好,方的也好,都无关紧要,甚至用桌子、椅子和啤酒杯去代替点、线、面也未尝不可,只要它们满足结合关系、顺序关系、合同关系,具备有相容性、独立性和完备性,就能够构成一门几何学。 体系的严谨性是数学的另一个显著特征。数学思维的正确性表现在逻辑的严谨性上。早在2000多年前,数学家就从几个最基本的结论出发,运用逻辑推理的方法,将丰富的几何学知识整理成一门严密系统的理论,它像一根精美的逻辑链条,每一个环节都衔接得丝丝入扣。所以,数学一直被誉为是“精确科学的典范”。 广泛的应用性也是数学的一个显著特征。宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日用之繁,无处不用数学。20世纪里,随着应用数学分支的大量涌现,数学已经渗透到几乎所有的科学部门。不仅物理学、化学等学科仍在广泛地享用数学的成果,连过去很少使用数学的生物学、语言学、历史学等等,也与数学结合形成了内容丰富的生物数学、数理经济学、数学心理学、数理语言学、数学历史学等边缘学科。 各门科学的“数学化”,是现代科学发展的一大趋势。

只含有一个未知数,即“元”,并且含有未知数的式子都是整式,是整式方程(即分子中含未知数的不是一元一次方程)。未知数的次数是1,这样的方程叫做一元一次方程,一元一次方程的标准形式(即所有一元一次方程经化简都能化成的形式)是ax+b=0(a,b为常数,x为未知数,且a≠0)。一元一次方程(英文名:linear equation with one unknown)一元一次方程所具备的条件:等号两边必须是整式,必须只有一个字母,而且字母的指数必须是1.列如:2a=4a-6 通过化简,只含有一个未知数,且含有未知数的最高次项的次数是一的等式,叫一元一次方程。通常形式是ax+b=0(其中x是未知数,a,b为常数,且a≠0)。一元一次方程属于整式方程,即方程两边都是整式。一元指方程仅含有一个未知数,一次指未知数的次数为1,且未知数的系数不为0(未知数常设为x、y、z)。我们将ax+b=0(其中x是未知数,a、b是已知数,并且a≠0)叫一元一次方程的标准形式。这里a是未知数的系数,b是常数,x的次数必须是1。即一元一次方程必须同时满足4个条件:⑴它是等式;⑵分母中不含有未知数;⑶未知数最高次项为1; ⑷含未知数的项的系数不为0。解方程的通常步骤:去分母→去括号→移项→合并同类项→系数化为一。“方程”一词来源于中国古算术书《九章算术》。在这本著作中,已经会列一元一次方程。法国数学家笛卡尔把未知数和常数通过代数运算所组成的方程称为代数方程。在19世纪以前,方程一直是代数的核心内容。合并同类项⒈依据:乘法分配律⒉把未知数相同且其次数也相同的项合并成一项;常数计算后合并成一项 ⒊合并时次数不变,只是系数相加减。移项⒈依据:等式的性质一⒉含有未知数的项变号后都移到方程左边,把不含未知数的项移到右边。 ⒊把方程一边某项移到另一边时,一定要变号{例如:移项时将+改为-,×改为÷}。性质等式的性质一:等式两边同时加一个数或减去同一个数或同一个整式,等式仍然成立。等式的性质二:等式两边同时扩大或缩小相同的倍数(0除外),等式仍然成立。等式的性质三:等式两边同时乘方(或开方),等式仍然成立。解方程都是依据等式的这三个性质等式的性质一:等式两边同时加一个数或减同一个数,等式仍然成立编辑本段解法步骤使方程左右两边相等的未知数的值叫做方程的解。一般解法:⒈去分母:在方程两边都乘以各分母的最小公倍数(不含分母的项也要乘);依据:等式的性质2 ⒉去括号:一般先去小括号,再去中括号,最后去大括号,可根据乘法分配律(记住如括号外有减号或除号的话一定要变号) 依据:乘法分配律⒊移项:把方程中含有未知数的项都移到方程的一边(一般是含有未知数的项移到方程左边,而把常数项移到右边)依据:等式的性质1⒋合并同类项:把方程化成ax=b(a≠0)的形式;依据:乘法分配律(逆用乘法分配律) ⒌系数化为1:在方程两边都除以未知数的系数a,得到方程的解x=b/a.依据:等式的性质2同解方程如果两个方程的解相同,那么这两个方程叫做同解方程。方程的同解原理:⒈方程的两边都加或减同一个数或同一个等式所得的方程与原方程是同解方程。⒉方程的两边同乘或同除同一个不为0的数所得的方程与原方程是同解方程。做一元一次方程应用题的重要方法:⒈认真审题(审题)⒉分析已知和未知量⒊找一个合适的等量关系⒋设一个恰当的未知数 ⒌列出合理的方程 (列式)⒍解出方程(解题) ⒎检验⒏写出答案(作答)ax=b(a、b为常数)[3]解:当a≠0,b=0时,ax=0x=0(此种情况与下一种一样)当a≠0时,x=b/a。当a=0,b=0时,方程有无数个解(注意:这种情况不属于一元一次方程,而属于恒等方程)当a=0,b≠0时,方程无解(此种情况也不属于一元一次方程)例:(3x+1)/2-2=(3x-2)/10-(2x+3)/5去分母(方程两边同乘各分母的最小公倍数)得:5(3x+1)-10×2=(3x-2)-2(2x+3)去括号得:15x+5-20=3x-2-4x-6移项得:15x-3x+4x=-2-6-5+20合并同类项得:16x=7系数化为1得:x=7/16。字母公式(等式的性质)a=b a+c=b+c a-c=b-c (等式的性质1)a=b ac=bca=bc(c≠0)= a÷c=b÷c(等式的性质2)检验 算出后需检验的。求根公式由于一元一次方程是基本方程,故教科书上的解法只有上述的方法。但对于标准形式下的一元一次方程 aX+b=0可得出求根公式 X=-(b/a)

数学报七年级上册答案零五网

CBBCBCDCAB,(3,2),-2,8,11,48度,根号十一大于三次根号十一大于负根号十一,(4,2),五十度或一百三十度,20,(-3,1)。好啦,这些是选择题和填空题,人教版的第三十七期,老师说的,虽然回答晚了很久,但至少还有人会问。

【第 15 期】七年级上册第三章整章水平测试(A)参考答案一、 二、 12. - 3y,等式的性质 2 = 8214. - 4 15. - 1 ,23,25 三、19.(1)x = 6;(2)x = .(1)第一步开始出错,改正:移项,得 2x + x = 5 + 1.合并同类项,得 3x = 6.系数化为 1,得 x = 2.(2)第一步开始出错,改正:去分母,得 7y = 5y +5.移项,得 7y - 5y = 5.合并同类项,得 2y = 5.系数化为 1,得 y =.设有 x名同学搬砖.根据题意,得 2x + 6 = 4x.解得 x = 3.所以,有 3 名同学搬砖.22.设这件商品的成本价是 x元.根据题意,得 80% ×(1 + 40% )x = 224.解得 x = 200.所以这件商品的成本价是 200 元.四、23.设初中学生原计划捐赠 x册图书,则高中学生原计划捐赠(3 500 - x)册图书.根据题意,得 120% x + 115%(3 500 - x) = 4125.解得 x = 2 000.则 3 500 - x = 1 500.所以,初中学生原计划捐赠 2 000 册图书,高中学生原计划捐赠 1 500 册图书.24.设安排 x人加工甲种部件,则安排(85 - x)人加工乙种部件,才能使每天加工的甲、乙两种部件刚好配套.根据题意,得 3 ×16x = 2 × 10(85 - x).解得 x = 25.则 85 - x = 60.所以安排 25 人加工甲种部件,安排 60 人加工乙种部件,才能使每天加工的甲、乙两种部件刚好配套.七年级上册第三章整章水平测试(B)参考答案一、 二、11.加上 6 = 6 ; ,75,80 ,159三、19.(1)x = - 10;(2)y = - .依题意,有 x -x - 1= 7 -x + 3,解得 x = .设丙再单干用 x小时完成.根据题意,得 10 ×1+1(+x= 1.解得 x = )2012所以,丙再单干用 1 小时完成.22.设乙徒步的速度为 x千米 /时,则甲骑自行车的速度是3x千米 /时.根据题意,得3x·-1522〔2 +(456060)〕=(2 +4560)x+ 7.解得 x = 7.则3x = 所以甲骑自行车的速度是 千米 /时.四、23.(1)设(二)班代表队答对了 x道题.根据题意,得 3x -(50 - x) = 142.解得 x = 48.所以(二)班代表队答对了 48 道题.(2)不能.理由如下:设(一)班代表队答对了 x道题.根据题意,得 3x -(50 - x) = 145.解得 x = 483.因为题目个数必须是4自然数,因此 483不符合题意,即(一)班代表队的最后得分不能为 145 分.424.可提出问题:这个住处有几间房?这个旅行团有多少人?解:设这个住处有 x间房.依题意,得 3x + 15 = 4(x - 4).解得 x = 31.则 3x + 15 = 108.答:这个住处有 31 间房,这个旅行团有 108 人.(注:以上也可分别提出问题“这个住处有几间房”或“这个旅行团有多少人”解答)

【第 13 期】七年级上册第三章 水平测试参考答案一、 二、 = - 7 ,等式的性质 211. - 2 (x - 1)+ 3x = 13三、17.(1)x = - 17 ;(2)x = .由题意,得 2 m + 5 + 2m -()12 = 21.解得 m = .设火车长为 x米,根据题意,得x + 60030= x5 .解得 x = 120.所以,火车的长度为 120 米.四、20.(1)不正确;①;(2)① 去分母时不能漏乘项;② 当括号外的因数是负数时,去括号后括号内的每一项都要改变符号.(3)去分母,得 3(x + 1)- 2(2 - 3x) = 6.去括号,得 3x + 3 - 4 + 6x = 6.移项,得 3x + 6x = 6 - 3 + 4.合并同类项,得 9x = 7.系数化为 1,得 x = 79 .21.设水流速度为 x千米 /时,根据题意,得 8(20 + x) = 12(20 - x).解得 x = 4.则 8(20 + x) = 8 ×(20 + 4) = 192.所以,水流速度为 4 千米 /时,A、B 两码头之间的距离为 192 千米.选做题 22.由题意,得 3(x + 2)- 2〔3(x + 2)- 2〕= 4.解得 x = - 2.所以使等式成立的 x的值为 - .设马驮了 x个包裹,则骡子驮了(x + 2)个包裹.根据题意,得 2(x - 1) = x + 2 + 1.解得 x = 5.则 x + 2 = 7.所以马驮了 5 个包裹,骡子驮了 7 个包裹.

1-10: 1/  -4,于,小于,-1,-1/2,-6,-42,-6,-8/27,-124,128,-18

七下数学小论文

初一数学小论文今天,在我们数学俱乐部里,老师给我们研究了一道有趣的题目,其实也是一道有些复杂的找规律题目,题目是这样的“有一列数:1,2,3,2,1,2,3,4,3,2,3,4,5,4,3,4,5,……。这列数字中前240个数字的和是多少?”我一拿到题目,心里猛然想到,这题目必须得按照规律来做!!!想法一:开始我便先试着先3个一组来求和,6,5,10,9,12,15,14……。这样一看,这些数字各有特征,关键就是找不出合适的规律。于是,我又找4个一组来求和,8,10,12,16,20……。仔细一看,好像也没什么规律,我只好再试着找5个一组来求和,9,14,19,24……,这样一来就非常明显的看出它们是等数列,我非常高兴,再把240÷5=48(组),5个一组,(1、2、3、2、1),(2、3、4、3、2),(3、4、5、4、3),(4、5、6、5、4)……那么就可以求出末项的和,9+47×5=244,把首项加末项的和乘项数除以2,(9+244)×48÷2=6072。这样就完成了!想法二:我又发现每组开头第一个数字恰好分别是1,2,3,4……48,那么另一种方法就产生了,(1+48)×48÷2×2+(2+49)×48÷2×2+(3+50)×48÷2×2=6072。这样想也合乎情理,也是一个理得清楚而且又实用的方法!想法三:我又发现有N组时,他的和也是把(1+2+3+4+……+N)×5+4N=你要求那N组数的和,比如(1+2+3+4+……+48)×5+4×48=6072。这个规律也是要通过不断来细心观察与研究得来的,这个规律虽然有些抽象,但如果是自己弄明白了,那还要比其他两种方法更容易些。我做的只是其中的三种解法,其实方法还有很多,但是要靠自己来找其中的规律,解其中的奥秘!数学小论文:《容易忽略的答案》大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×=(千米),=(千米),×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×=(千米),=(千米),×2=189(千米)。所以正确答案应该是:45×=(千米),=(千米),×2=261(千米)和45×=(千米),=(千米),×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。

数学小论文一 关于“0” 0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。 “105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示…… 爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。 数学小论文二 各门科学的数学化 数学究竟是什么呢?我们说,数学是研究现实世界空间形式和数量关系的一门科学.它在现代生活和现代生产中的应用非常广泛,是学习和研究现代科学技术必不可少的基本工具. 同其他科学一样,数学有着它的过去、现在和未来.我们认识它的过去,就是为了了解它的现在和未来.近代数学的发展异常迅速,近30多年来,数学新的理论已经超过了18、19世纪的理论的总和.预计未来的数学成就每“翻一番”要不了10年.所以在认识了数学的过去以后,大致领略一下数学的现在和未来,是很有好处的. 现代数学发展的一个明显趋势,就是各门科学都在经历着数学化的过程. 例如物理学,人们早就知道它与数学密不可分.在高等学校里,数学系的学生要学普通物理,物理系的学生要学高等数学,这也是尽人皆知的事实了. 又如化学,要用数学来定量研究化学反应.把参加反应的物质的浓度、温度等作为变量,用方程表示它们的变化规律,通过方程的“稳定解”来研究化学反应.这里不仅要应用基础数学,而且要应用“前沿上的”、“发展中的”数学. 再如生物学方面,要研究心脏跳动、血液循环、脉搏等周期性的运动.这种运动可以用方程组表示出来,通过寻求方程组的“周期解”,研究这种解的出现和保持,来掌握上述生物界的现象.这说明近年来生物学已经从定性研究发展到定量研究,也是要应用“发展中的”数学.这使得生物学获得了重大的成就. 谈到人口学,只用加减乘除是不够的.我们谈到人口增长,常说每年出生率多少,死亡率多少,那么是否从出生率减去死亡率,就是每年的人口增长率呢?不是的.事实上,人是不断地出生的,出生的多少又跟原来的基数有关系;死亡也是这样.这种情况在现代数学中叫做“动态”的,它不能只用简单的加减乘除来处理,而要用复杂的“微分方程”来描述.研究这样的问题,离不开方程、数据、函数曲线、计算机等,最后才能说清楚每家只生一个孩子如何,只生两个孩子又如何等等. 还有水利方面,要考虑海上风暴、水源污染、港口设计等,也是用方程描述这些问题再把数据放进计算机,求出它们的解来,然后与实际观察的结果对比验证,进而为实际服务.这里要用到很高深的数学. 谈到考试,同学们往往认为这是用来检查学生的学习质量的.其实考试手段(口试、笔试等等)以及试卷本身也是有质量高低之分的.现代的教育统计学、教育测量学,就是通过效度、难度、区分度、信度等数量指标来检测考试的质量.只有质量合格的考试才能有效地检测学生的学习质量. 至于文艺、体育,也无一不用到数学.我们从中央电视台的文艺大奖赛节目中看到,给一位演员计分时,往往先“去掉一个最高分”,再“去掉一个最低分”.然后就剩下的分数计算平均分,作为这位演员的得分.从统计学来说,“最高分”、“最低分”的可信度最低,因此把它们去掉.这一切都包含着数学道理. 我国著名的数学家关肇直先生说:“数学的发明创造有种种,我认为至少有三种:一种是解决了经典的难题,这是一种很了不起的工作;一种是提出新概念、新方法、新理论,其实在历史上起更大作用的、历史上著名的正是这种人;还有一种就是把原来的理论用在崭新的领域,这是从应用的角度有一个很大的发明创造.”我们在这里所说的,正是第三种发明创造.“这里繁花似锦,美不胜收,把数学和其他各门科学发展成综合科学的前程无限灿烂.” 正如华罗庚先生在1959年5月所说的,近100年来,数学发展突飞猛进,我们可以毫不夸张地用“宇宙之大、粒子之微、火箭之速、化工之巧、地球之变、生物之谜、日用之繁等各个方面,无处不有数学”来概括数学的广泛应用.可以预见,科学越进步,应用数学的范围也就越大.一切科学研究在原则上都可以用数学来解决有关的问题.可以断言:只有现在还不会应用数学的部门,却绝对找不到原则上不能应用数学的领域. 数学小论文三 数学是什么 什么是数学?有人说:“数学,不就是数的学问吗?” 这样的说法可不对。因为数学不光研究“数”,也研究“形”,大家都很熟悉的三角形、正方形,也都是数学研究的对象。 历史上,关于什么是数学的说法更是五花八门。有人说,数学就是关联;也有人说,数学就是逻辑,“逻辑是数学的青年时代,数学是逻辑的壮年时代。” 那么,究竟什么是数学呢? 伟大的革命导师恩格斯,站在辩证唯物主义的理论高度,通过深刻分析数学的起源和本质,精辟地作出了一系列科学的论断。恩格斯指出:“数学是数量的科学”,“纯数学的对象是现实世界的空间形式和数量关系”。根据恩格斯的观点,较确切的说法就是:数学——研究现实世界的数量关系和空间形式的科学。 数学可以分成两大类,一类叫纯粹数学,一类叫应用 数学。 纯粹数学也叫基础数学,专门研究数学本身的内部规律。中小学课本里介绍的代数、几何、微积分、概率论知识,都属于纯粹数学。纯粹数学的一个显著特点,就是暂时撇开具体内容,以纯粹形式研究事物的数量关系和空间形式。例如研究梯形的面积计算公式,至于它是梯形稻田的面积,还是梯形机械零件的面积,都无关紧要,大家关心的只是蕴含在这种几何图形中的数量关系。 应用数学则是一个庞大的系统,有人说,它是我们的全部知识中,凡是能用数学语言来表示的那一部分。应用数学着限于说明自然现象,解决实际问题,是纯粹数学与科学技术之间的桥梁。大家常说现在是信息社会,专门研究信息的“信息论”,就是应用数学中一门重要的分支学科, 数学有3个最显著的特征。 高度的抽象性是数学的显著特征之一。数学理论都算有非常抽象的形式,这种抽象是经过一系列的阶段形成的,所以大大超过了自然科学中的一般抽象,而且不仅概念是抽象的,连数学方法本身也是抽象的。例如,物理学家可以通过实验来证明自己的理论,而数学家则不能用实验的方法来证明定理,非得用逻辑推理和计算不可。现在,连数学中过去被认为是比较“直观”的几何学,也在朝着抽象的方向发展。根据公理化思想,几何图形不再是必须知道的内容,它是圆的也好,方的也好,都无关紧要,甚至用桌子、椅子和啤酒杯去代替点、线、面也未尝不可,只要它们满足结合关系、顺序关系、合同关系,具备有相容性、独立性和完备性,就能够构成一门几何学。 体系的严谨性是数学的另一个显著特征。数学思维的正确性表现在逻辑的严谨性上。早在2000多年前,数学家就从几个最基本的结论出发,运用逻辑推理的方法,将丰富的几何学知识整理成一门严密系统的理论,它像一根精美的逻辑链条,每一个环节都衔接得丝丝入扣。所以,数学一直被誉为是“精确科学的典范”。 广泛的应用性也是数学的一个显著特征。宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日用之繁,无处不用数学。20世纪里,随着应用数学分支的大量涌现,数学已经渗透到几乎所有的科学部门。不仅物理学、化学等学科仍在广泛地享用数学的成果,连过去很少使用数学的生物学、语言学、历史学等等,也与数学结合形成了内容丰富的生物数学、数理经济学、数学心理学、数理语言学、数学历史学等边缘学科。 各门科学的“数学化”,是现代科学发展的一大趋势。

初中学生的七年级数学学习随着我国新课程标准的实施以及素质教育的不断深入,初中七年级数学处于数学学习的过渡阶段,培养学生的自主学习能力对其未来的学习与发展具有重要意义。下面是我为大家整理的,供大家参考。

摘要:对刚进入七年级的学生来说,这个时段是适应中学数学教学、缩短小学学习与中学学习距离的过渡期。如果一开始学生就对数学不感兴趣,甚至害怕数学,那么会直接影响到今后的学习。要让七年级新生爱上数学课,就要求教师做学生喜欢的教师,要教给学生正确的学习方法,课堂教学要有更高的艺术性,在课堂上能吸引学生,让学生产生浓厚的兴趣,才能达到预期的教学效果。

关键词:生活教育;喜欢;第一节数学课;学习乐园

中图分类号: 文献标识码:A 文章编号:1992-7711***2014***01-0007

著名的人民教育家陶行知说:“治学以兴趣为主,兴趣愈多,则从事弥力,从事弥力则成效愈著。”《数学课程标准》也明确指出,数学教学要重视激发和培养学生学习数学的兴趣,学生一旦对数学产生浓厚的兴趣,就乐于接触它,变“苦学”为“乐学”。下面,结合工作实践,笔者就如何让七年级新生喜欢上数学课问题谈点浅见。

一、做一名学生喜欢的数学教师

陶行知先生说:“真教育是心心相印的活动,唯独从心里发出来,才能打动心灵的深处。”只有师生情感融洽,学生才会敢想、敢问、敢说,才会愿学,才会学有所成。在课堂教学中,笔者总是微笑地面对学生,从不板著脸上课,更不对学生大声训斥,把他们当成自己的朋友或孩子来看待,力求做到尊重每一位学生。

在数学教学中,笔者十分强调理论联络实际。例如,学习有理数加减混合运算,笔者举这样的例子:现在老师存摺上有100元,下午存入300元,明天取出50元,后天取出100元后,存摺上还有多少元?通过这道题的计算,你知道存摺上的余额是如何计算吗?若余额为负数说明什么?让学生去计算、去思考,培养他们的数学学习兴趣,激发他们的数学学习热情,让他们感受到生活中处处有数学知识,学习数学知识充满著无穷的乐趣。

陶行知先生说:“待学生如亲子弟”。教师要得到学生的爱,她必须爱她所教的每一位学生,将其当作自己的孩子;教师要有宽广的胸怀、积极的情绪、平易近人的态度、笑容可掬的表情,要善于营造一种和谐、愉快、亲切、友好的气氛;要爱学生成长过程中的每一微小“闪光点”,要爱他们具有极大的可塑性,要爱他们在教育过程中的主体能动性,要爱他们成长过程中孕育出来的一串串教育劳动成果。教师的爱要一视同仁,持之以恒;爱要以爱动其心,以严导其行;爱要以理解、尊重、信任为基础。只有这样的爱,才能爱出师生间的“师生谊”,才真正得到学生的喜爱。

二、上好开学的第一节数学课

俗话说:“良好的开端是成功的一半。”小学生进入中学后,数学不再是单纯的计算,而是数学进一步内容拓宽、知识更一步深化,加上部分学生还未脱离教师的“哺乳”时期,没有自觉“摄取”的能力,致使有些学生因不会学习或学不得法而成绩逐渐下降,久而久之失去学习信心和兴趣,开始陷入厌学的困境,因此设计好开学第一节数学课非常重要。

第一,课前,教师最好是修饰一下自己,着装大方得体,有亲和力。第一节课最好不要多讲正课,可以讲一些和正课相关联的知识及其生活实用性,让学生产生一种急切求知的欲望。若教师进入课堂就讲课,因为学生还不熟悉教师,对教师还有很多的神秘感,上来就讲课,学生也会因为对教师感兴趣的程度大于对教学内容的程度,导致教学效果不佳。上第一节课要做自我介绍,要有一个漂亮的出彩的亮相,可以介绍自己的过人之处和自认为是闪光点和值得骄傲的地方。这个开场白是最吸引学生的,有助于学生了解教师的过去、教师的长处,促进师生友谊的建立。让学生在你的自我介绍里,感受智慧之美,拼搏之美,进取之美。要让学生感觉教师是一个博学的教师,聪慧的教师,从心里敬佩的教师。

第二,要让学生掌握初中数学学习方法,首先,七年级学生往往不善于预习,也不知道预习起什么作用,预习仅是流于形式,粗略地看一遍,看不出问题和疑点。笔者要求学生预习时应做到:一粗读,先粗略浏览教材的有关内容,知道本节所要讲的内容。二细读,对重要概念、公式、法则、定理反复阅读、体会、思考,注意知识的形成过程,对难以理解的概念作标记,以便带着问题去听课。三做练习,通过练习检验预习效果。

其次,在小学,教师一般采用直观形象到抽象概括的教学方法,通过讲解、演示、操作等过程建构新知,节奏慢、坡度小。很多学生认为学数学就是做作业,多做练习,课本成了“习题集”。到初中后,由于学科的增加和学习内容的抽象,课堂知识容量增大,教学进度较快,演示、操作减少,抽象的思维活动增加,很多学生深感不适应。因此,要教会学生处理好课堂“听”、“思”、“记”的关系。“听”每节重点、难点剖析***尤其是预习中的问题***,“听”例题解法的思路和数学思想方法的体现。“思”是指多思、勤思,随听随思,并善于大胆提出问题。“记”就是记要点、记疑问、记解题思路和方法;记小结、记课后思考题。可以说“听”是“思”的基础,“思”是“听”的深层次掌握,是学习方法的核心和本质的内容,会思考才会学习,“记”是为“听”和“思”服务的。掌握好这三者的关系,就能使课堂这一数学学习主要环节达到较完美的境界。

三、让数学课堂变成学生学习的乐园

陶行知曾以《假如我重新做一个小孩》为题,阐明儿童教育应该包括的内容,其中有句发人深思的话,“我要多玩玩”。七年级学生活泼好动,不喜欢单调的重复和机械的练习。我们要传承陶行知先生的教育思想,尊重学生的年龄特点、心理特点,灵活地运用教法,把枯燥的数学学习变成了学生学习的乐园。

1. 在“做数学”中体验数学学习的乐趣。练习是使学生掌握知识,形成技能、发展智力的重要手段。课堂练习设计得好,不仅巩固新知识而且可以增添学生学习数学的兴趣。因此,在设计练习时,笔者力求设计各种情节有趣、形式新颖的练习形式。例如:引入负数后,七年级新生的计算出错,很多是符号出错,笔者就设计了如下快速抢答题,1×***-5***= ;1÷***-5***= ;1+***-5***= ;1-***-5*** = ;-1+***-5*** = ;-1-***-5*** = ;-1×***-5*** = ;-1÷***-5*** = ;***-3***= ;***-2***= -2= -2= 。要求回答对的,就通过。回答错的,教师点拨后,出题再做,对了,就编题给同学做,大受学生喜欢,学习的热情非常高涨。平时笔者还根据不同的教学内容设计不同型别、不同层次的练习题,满足学生不同层次的需求,照顾不同层次的学生,使学生始终保持高昂的学习热情。 2. 在合作交流中体验数学学习的乐趣。充满活力的数学课堂,应该是对学生具有吸引力、亲和力的“磁性”课堂。合作学习的情景来源于教师有目的地创造,在数学课堂教学中教师若能自然地创设合作学习的情境,不仅能让学生产生合作的冲动和交流的愿望,还能激发学生的学习兴趣。例如:在教学“数轴”时,让学生以小组为单位,讨论学校要在校门公路旁植树,每隔3米植一棵树,问在21米长的公路旁植树最多可植几棵树?有学生可能会得出:21÷3=7,可植树7棵;有学生结合数轴就很直观了,可植树8棵。经过大家讨论得到结论为:这类题要结合数轴,要注意考虑线段的端点,否则容易出错。再如,为让学生能找到正方体展开图的相对面,笔者让同桌合作将展开图折起来。在这个过程中,学生始终处于积极的探究性活动中,让同学们感到合作的力量,得到成功体验的机会。感受到学习过程的快乐,同时获得了数学思想和方法,产生学习数学的兴趣,树立学好数学的自信心。

3. 合理评价,让学生体验成功的乐趣。苏霍姆林斯基说过“你在任何时候也不要给学生打不及格的分数,请记住:成功的欢乐是一种巨大的情绪力量。”这启示我们教师在教学中应改变以往的评价方式,以鼓励性评价为主,让每一个学生都能抬起头来学习。例如,有一次笔者出示口算“3+***-6***”,一个学生,回答说:3+***-6***=3。笔者没有直接“宣判”对或错,而是说:“非常接近标准答案,你能再想一想吗?”这位学生放松地想了想,答:“3+***-6***=-3。”“你再编一编类似的题目,考考其他同学。”该生自己改正了自己的错误,体面地坐下了,自尊心得到了保护。每个孩子都有被人赏识的渴望,都希望得到别人的赞扬,宽容和鼓励。在教学中,要多鼓励表扬,让学生尝到成功的喜悦。教师的眼神、笑容、一个手势等对学生都是一种鼓励,让学生感受到自己被尊重,被信任。所以,每次学生回答后,笔者常用“你很聪明,你的回答对了!”“你真了不起,发现了同学出错的地方!”等这些充满 *** 、充满鼓励的语言来评价学生,保护了学生学习的积极性,使他们觉得学数学是快乐的,从而喜爱上数学课。

此外,教师还可以运用故事、比赛、表演等活动形式,保持学生学习数学的兴趣,陶冶学生情操,使学生愉快学习,从而形成稳定而持久的学习乐趣。

七年级数学是中学数学的基础,如果七年级新生能爱上数学课,就可以提高中学数学教学质量。为了使七年级学生尽快适应中学数学教学、顺利完成学习任务,必须从七年级学生的特点出发,让七年级学生对数学感兴趣,为以后学习奠定基础。

参考文献:

[1] 普天明,黄永明.数学教学方法的更新探索[J].课程教材教学研究***中教研究***,2005***Z1***.

[2] 陈芝红.初中数学教学方法新探[J].浙江教育科学,2007***6***.

【摘 要】常听家长说我的小孩小学数学都要考八十几分九十几分,现在上了初中孩子连及格都成问题。究其原因,学生没能适应初中阶段的学习.有些知识在成人看来很简单,在学生眼里却很难理解,所以我们做教师的,走进孩子的内心,从学生的角度思考问题,帮助孩子们搞好六七年级的衔接,以适应初中阶段的学习

【关键词】适应;衔接;策略

有关策略的含义,目前在学界有着多种不同的表述,其中“策略是旨在达到某种目的而对步骤与方法、技巧等所作的优化组合、精巧安排”。它点出了策略的本质属性,为帮助孩子们顺利度过六七年级的过渡期,根据个人经验,以生为本从孩子的角度出发展开教学,有利于帮助孩子们尽快适应初中阶段的学习.

一、上课适当放慢速度,帮助孩子们适应“课堂容量小到课堂容量大”的过渡

小学阶段教学内容较少,初中阶段教学内容较多,课堂容量显然加大.一般来说,小学老师教态较亲切,课内提问次数较多,有时一堂课内每位学生都可能有被问一次的机会,问题多半讲得较细,有时还可反复讲,反复练.,所以大部分的小学生在老师的帮助下是基本可以掌握好小学的有关知识的.,而初中阶段学习科目和每节课的授课内容都比小学多,课内外的时间都比较紧,课内提问,练习,辅导,讲解都不可能像小学那样频繁,那么细,初一新生基本上还具有小学生的学习心理,跟不上老师的步伐,导致学习掉队,所以我们初一教师开始一段时间不能操之过急,应顺应小学教师的教法,教学的内容少一些,进度慢一些,在具体讲授每节课知识时,做到形象、直观、对比、有趣等,课堂上尽可能多提问,但要提到要害处,,多启发、多表扬、多练习,引导学生逐步进入初中学习轨道。

二、做好翻译工作,帮助孩子们“学会对符号语言的理解认识”

由小学具体的数到初中用字母表示数这一飞跃,也是学生感到困难的地方。学生对表示数的字母作用产生片面认识,老师在教学中必须设法使学生真正理解用字母表示数的意义及目的,让学生知道字母表示数最本质的东西。由于负数的引入引出了绝对值等概念,数的运算出现了符号法则。成为学生学习的又一难点,如何让学生很自然地把有理数的运算与非负有理数的运算统一起来,是老师在教学中必须着力解决的。比如a>0,对七年级的学生不明白是什么意思,老师要具体翻译为字母a表示的是正数,a=a这个式子在七年级学生眼里有些茫然,老师要具体翻译为一个数的绝对值等于它的相反数,这样学生才明确原来这个数可以是0也可以是负数,诸如这样的符号语言式子较多,老师要不厌其烦的将他们翻译成中文语言让学生逐步学会认识理解,从而学会数学符号语言的认识与表述。

三、用数形结合思想帮助孩子适应“形象思维到抽象思维的过渡”

小学几何中对图形的性质和位置关系没有深入的研究,而初中几何就是通过研究几何图形的性质来研究物体的形状、大小和位置的,几何图形是研究几何命题的必需的直观工具,对于初中生来说,图形的形象思维比抽象思维更容易接受。因此,在几何教学中,要充分利用图形帮助学生克服抽象思维的困难。例如:已知a>0,b<0,a>b,比较a,-a,b. -b的大小。学生认为没告诉具体数值无法比较,聪明一点的孩子可以用特值法,但对结论的正确与否自己没把握,这是一个代数问题,数形结合仍然适用。教师指导学生画出数轴,在数轴上根据a、b的位置标出-a、-b的位置,再根据“数轴上的数从左往右越来越大”进行比较,在直观图形下,学生一目了然,进一步加深了对相反数和有理数比较大小的理解,同时通过具体的例子感受数形结合思想可以转化问题的难度。

刚进入七年级学习的学生,对知识的理解更多地停留在感性认识的层面上,因此,更要重视学生由感性认识向理性认识的过渡。在数学知识的形成与应用上,不要对学生的理解持较高的要求,要尽可能地让学生经历整个知识的发生过程,理解知识的形成过程。有时要动手画图,有时还要让孩子们动手操作拼图,苏霍姆林斯基说“儿童的智慧在他们的手指尖上。”通过动手操作把抽象的东西转化为具体的,学生就理解了,这样就能使学生学习变得自然、轻松、高效。

四、教师规范书写的展示帮助孩子们适应“单纯的数字运算到规范书写”要求的过渡.

小学数学多是单纯的数字运算,对学生的书写格式要求不高,而重庆市近些年的数学中考150分的题目,有80分需要过程表述,可见随着年级的增高对书写格式的要求也在不断增加。初一学生很多时候做解答题只写答案,要么就是几个数字摆在那儿,没有必要的叙述和步骤,只满足于写对答案,而不苛求于解题过程的合理性与逻辑性。所以教师要一步一步把过程详细的展示给学生看,让学生在观摩中逐步学会规范的过程书写。从学生的实际出发,加强对学习困难生的个别辅导,作业的检查和批改做到及时评价,及时矫正。讲课时要有意放慢进度,概念应从学生的生活实际引入,深入浅出地讲,同时,针对七年级学生的注意力不能长时间集中,不适应单一的教学法的特点,方法上要讲练结合,严格统一书写格式。让学生通过感知―---概括―---应用的思维过程加强对知识的理解,从而引导学生发现真理,掌握规律,学会运用,学会书写。

五、进行学法指导,引导学生逐步学会自主学习,帮助孩子们适应“知识难度加大”的过渡

初中生活对七年级新生具有新鲜感,在心理上普遍存在着一种上进的愿望,教师应抓住这个契机,激发学生的学习热情。在学习能力方面,他们的记忆力较强,但理解力较差,习惯于具体思维而不习惯于抽象思维,不善于独立思考,对老师有依赖心理。教师要根据学生的实际认识水平,尽量做到按基本知识、基本技能和基本思想方法三个方面考察学生,使大多数学生学习数学能变被动为主动。首先要指导学生如何听课做笔记,如何搞知识小结,习题归类,以及作业的书写格式,做题规范等等。其次要引导学生学会读数学书,课前读书能使学生找出疑点,抓注重点;课后读书能弥补课堂上探索知识时的不足,还能深化所学知识。再次要教会学生如何订正错题,逐步在较高的层次上学会知识概括等等。通过实际例子的思维过程引导,让学生感悟转化思想。让学生感悟在研究数学问题时,将未解决的问题转化成已解决的问题,将复杂的问题转化成简单的问题,将数量问题转化成图形问题或将图形问题转化成数量问题等等。

作为教师从学生实际出发,了解每个学生的基础知识、学习方法、性格特点和心理活动等多方面的情况,在中、小学数学知识间架起衔接的桥梁,以生为本从学生的角度展开教学,帮助学生顺利过渡。

1.中国古代在数的方面的贡献 算筹 根据史书的记载和考古材料的发现,古代的算筹实际上是一根根同样长短和粗细的小棍子,一般长为13--14cm,径粗0.2~0.3cm,多用竹子制成,也有用木头、兽骨、象牙、金属等材料制成的,大约二百七十几枚为一束,放在一个布袋里,系在腰部随身携带。需要记数和计算的时候,就把它们取出来,放在桌上、炕上或地上都能摆弄。别看这些都是一根根不起眼的小棍子,在中国数学史上它们却是立有大功的。而它们的发明,也同样经历了一个漫长的历史发展过程。在算筹计数法中,以纵横两种排列方式来表示单位数目的,其中1-5均分别以纵横方式排列相应数目的算筹来表示,6-9则以上面的算筹再加下面相应的算筹来表示。表示多位数时,个位用纵式,十位用横式,百位用纵式,千位用横式,以此类推,遇零则置空。这种计数法遵循十进位制。 算筹的出现年代已经不可考,但据史料推测,算筹最晚出现在春秋晚期战国初年(公元前722年~公元前221年),一直到算盘发明推广之前都是中国最重要的计算工具。 算筹的发明就是在以上这些记数方法的历史发展中逐渐产生的。它最早出现在何时,现在已经不可查考了,但至迟到春秋战国;算筹的使用已经非常普遍了。前面说过,算筹是一根根同样长短和粗细的小棍子,那么怎样用这些小棍子来表示各种各样的数目呢? 那么为什么又要有纵式和横式两种不同的摆法呢?这就是因为十进位制的需要了。所谓十进位制,又称十进位值制,包含有两方面的含义。其一是"十进制",即每满十数进一个单位,十个一进为十,十个十进为百,十个百进为千……其二是"位值制,即每个数码所表示的数值,不仅取决于这个数码本身,而且取决于它在记数中所处的位置。如同样是一个数码"2",放在个位上表示2,放在十位上就表示20,放在百位上就表示200,放在千位上就表示2000……在我国商代的文字记数系统中,就已经有了十进位值制的荫芽,到了算筹记数和运算时,就更是标准的十进位值制了。 按照中国古代的筹算规则,算筹记数的表示方法为:个位用纵式,十位用横式,百位再用纵式,千位再用横式,万位再用纵式……这样从右到左,纵横相间,以此类推,就可以用算筹表示出任意大的自然数了。由于它位与位之间的纵横变换,且每一位都有固定的摆法,所以既不会混淆,也不会错位。毫无疑问,这样一种算筹记数法和现代通行的十进位制记数法是完全一致的。 中国古代十进位制的算筹记数法在世界数学史上是一个伟大的创造。把它与世界其他古老民族的记数法作一比较,其优越性是显而易见的。古罗马的数字系统没有位值制,只有七个基本符号,如要记稍大一点的数目就相当繁难。古美洲玛雅人虽然懂得位值制,但用的是20进位;古巴比伦人也知道位值制,但用的是60进位。20进位至少需要19个数码,60进位则需要59个数码,这就使记数和运算变得十分繁复,远不如只用9个数码便可表示任意自然数的十进位制来得简捷方便。中国古代数学之所以在计算方面取得许多卓越的成就,在一定程度上应该归功于这一符合十进位制的算筹记数法。马克思在他的《数学手稿》一书中称十进位记数法为"最妙的发明之一",确实是一点也不过分的。 二进制思想的开创国 著名的哲学家数学家莱布尼茨(1646-1716)发明了对现代计算机系统有着重要意义的二进制,不过他认为在此之前,中国的《易经》中已经提到了有关二进制的初步思想。当代的许多科学家认为易经中并不含有复杂的二进制思想,可是这本中国古籍中的一些基本思想和二进制在很大程度上仍然有着千丝万缕的联系。 元始的《灵宝经》里面把阴阳定义为阳是自冬至到夏至的上升的气,阴为从夏至到冬至下降的气,这是对地球周期运动的最简练认识。阴阳是一种物质认识,后来转化为思想方式,反者道之动等等,都是这种思想的表现。从而开创了对立统一的思想方式,实际上计算机的电子脉冲的思想是与之一致的,采样定律也是与之一致的。 《易经》是我国伏羲、周文王等当政者积累观天测算经验而成的关于天象气象和人变易的经典,从八卦到六十四卦,就是二进制三位到六位表达,上世纪八十年代还有四位计算机,可以说,周文王的六十四卦在表达能力上已经高于四位计算机。 十进制的使用 《卜辞》中记载说,商代的人们已经学会用一、二、三、四、五、六、七、八、九、十、百、千、万这13个单字记十万以内的任何数字,但是现在能够证实的当时最大的数字是三万。甲骨卜辞中还有奇数、偶数和倍数的概念。 十进位位值制记数法包括十进位和位值制两条原则,"十进"即满十进一;"位值"则是同一个数位在不同的位置上所表示的数值也就不同,如三位数"111",右边的"1"在个位上表示1个一,中间的"1"在十位上就表示1个十,左边的"1"在百位上则表示1个百。这样,就使极为困难的整数表示和演算变得如此简便易行,以至于人们往往忽略它对数学发展所起的关键作用。 我们有个成语叫"屈指可数",说明古代人数数确实是离不开手指的,而一般人的手指恰好有十个。因此十进制的使用似乎应该是极其自然的事。但实际情况并不尽然。在文明古国巴比伦使用的是60进位制(这一进位制到现在仍留有痕迹,如一分=60秒等)另外还有采用二十进位制的。古代埃及倒是很早就用10进位制,但他们却不知道位值制。所谓位值制就是一个数码表示什么数,要看它所在的位置而定。位值制是千百年来人类智慧的结晶。零是位值制记数法的精要所在。但它的出现却并非易事。我国是最早使用十进制记数法,且认识到进位制的国家。我们的口语或文字表达的数字也遵守这一原则,比如一百二十七。同时我们对0的认识最早。 十进制是中国人民的一项杰出创造,在世界数学史上有重要意义。著名的英国科学史学家李约瑟教授曾对中国商代记数法予以很高的评价,"如果没有这种十进制,就几乎不可能出现我们现在这个统一化的世界了",李约瑟说"总的说来,商代的数字系统比同一时代的古巴比伦和古埃及更为先进更为科学。" 分数和小数的最早运用 分数的应用 最初分数的出现,并非由除法而来。分数被看作一个整体的一部分。"分"在汉语中有"分开""分割"之意。后来运算过程中也出现了分数,它表示两整数比。分数的加减乘除运算我们小学就已完全掌握了。很简单,是不是?不过在七、八百年以前的欧洲,如果你有这种水平那么就可以说相当了不起了。那时精通自然数的四则运算就已达到了学者水平。至于分数,对当时人来说简直难于上青天。德国有句谚语形容一个人陷入绝境,就说:"掉到分数里去了"。为什么会如此呢?这都是笨拙的记数法导致的。在我国古代,《九章算术》中就有了系统的分数运算方法,这比欧洲大约早1400年。 西汉时期,张苍、耿寿昌等学者整理、删补自秦代以来的数学知识,编成了《九章算术》。在这本数学经典的《方田》章中,提出了完整的分数运算法则。 从后来刘徽所作的《九章算术注》可以知道,在《九章算术》中,讲到约分、合分(分数加法)、减分(分数减法)、乘分(分数乘法)、除分(分数除法)的法则,与我们现在的分数运算法则完全相同。另外,还记载了课分(比较分数大小)、平分(求分数的平均值)等关于分数的知识,是世界上最早的系统叙述分数的著作。 分数运算,大约在15世纪才在欧洲流行。欧洲人普遍认为,这种算法起源于印度。实际上,印度在七世纪婆罗门笈多的著作中才开始有分数运算法则,这些法则都与《九章算术》中介绍的法则相同。而刘徽的《九章算术注》成书于魏景元四年(263年),所以,即使与刘徽的时代相比,我们也要比印度早400年左右。 小数的最早使用 刘徽在《九章算术注》中介绍,开方不尽时用十进分数(徽数,即小数)去逼近,首先提出了关于十进小数的概念。到公元 1300年前后,元代刘瑾所著《律吕成书》中,已将写成把小数部分降低一行写在整数部分的后边。而西方的斯台汶直到1585年才有十进小数的概念,且他的表示方法远不如中国先进,如上述的小数,他记成或106368。 九九表的使用 作为启蒙教材,我们都背过九九乘法表:一一得一、一二得二……九九八十一。而古代是从"九九八十一"开始,因此称"九九表"。九九表的使用,对于完成乘法是大有帮助的。齐恒公纳贤的故事说明,到公元前7世纪时,九九歌诀已不希罕。也许有人认为这种成绩不值一提。但在古代埃及作乘法却要用倍乘的方式呢。举个例子。如算23×13,就需要从23开始,加倍得到23×2,23×4,23×8,然后注意到13=1+4+8,于是23+23×4+23×8加起来的结果就是23×13。从比较中不难看出使用九九表的优越性了。 根据考古专家在湖南张家界古人堤汉代遗址出土的简牍上发现的汉代"九九乘法表",竟与现今生活中使用的乘法口诀表有着惊人的一致。这枚记载有"九九乘法表"的简牍是木质的,大约有22厘米长,残损比较严重。此前在湘西里耶古城出土的一枚秦简上也发现了距今2200多年的乘法口诀表,并被考证为中国现今发现的最早的乘法口诀表实物。 除了里耶秦简外,与张家界古人堤遗址发现的这枚简牍样式基本一致的"九九乘法表"还曾在楼兰文书中见到过,那是写在两张残纸上的九九乘法表,为瑞典探险家斯文赫定在上个世纪初期发掘。 乘法表在古代并非中国一家独有,古巴比伦的泥版书上也有乘法表。但汉字(包括数目字)单音节发声的特点,使之读起来朗朗上口;后来发展起来的珠算口诀也承继了这一特点,对于运算速度的提高和算法的改进起到一定作用。 负数的使用 人们在解方程或其它数的运算过程中,往往要碰到从较小数减去较大数的情形,另外,还遇到了增加与减小,盈余与亏损等互为相反意义的量,这样,人们自然地引进了负数。 负数的引进,是中国古代数学家对数学的一个巨大贡献。在我国古代秦、汉时期的算经《九章算术》的第八章"方程"中,就自由地引入了负数,如负数出现在方程的系数和常数项中,把"卖(收入钱)"作为正,则"买(付出钱)"作为负,把"余钱"作为正,则"不足钱"作为负。在关于粮谷计算的问题中,是以益实(增加粮谷)为正,损实(减少粮谷)为负等,并且该书还指出:"两算得失相反,要以正负以名之"。当时是用算筹来进行计算的,所以在算筹中,相应地规定以红筹为正,黑筹为负;或将算筹直列作正,斜置作负。这样,遇到具有相反意义的量,就能用正负数明确地区别了。 在《九章算术》中,除了引进正负数的概念外,还完整地记载了正负数的运算法则,实际上是正负数加减法的运算法则,也就是书中解方程时用到的"正负术"即"同名相除,异名相益,正无入正之,负无入负之;其异名相除,同名相益,正无入正之,负无入负之。"这段话的前四句说的是正负数减法法则,后四句说的是正负数加法法则。它的意思是:同号两数相减,等于其绝对值相减;异号两数相减,等于其绝对值相加;零减正数得负数,零减负数得正数。异号两数相加,等于其绝对值相减;同号两数相加,等于其绝对值相加;零加正数得正数,零加负数得负数,当然,从现代数学观点看,古书中的文字叙述还不够严谨,但直到公元17世纪以前,这还是正负数加减运算最完整的叙述。 在国外,负数出现得很晚,直至公元1150年(比《九章算术》成书晚l千多年),印度人巴土卡洛首先提到了负数,而且在公元17世纪以前,许多数学家一直采取不承认的态度。如法国大数学家韦达,尽管在代数方面作出了巨大贡献,但他在解方程时却极力回避负数,并把负根统统舍去。有许多数学家由于把零看作"没有",他们不能理解比"没有"还要"少"的现象,因而认为负数是"荒谬的"。直到17世纪,笛卡儿创立了坐标系,负数获得了几何解释和实际意义,才逐渐得到了公认。 从上面可以看出,负数的引进,是我国古代数学家贡献给世界数学的一份宝贵财富。负数概念引进后,整数集和有理数集就完整地形成了。 圆周率的计算 圆周率是数学中最重要的常数之一。对它的计算,可以作为显示出一个国家古代数学发展的水平的尺度之一。而我国古代数学在这方面取得了令世人瞩目的成绩。 我国古代最初把圆周率取作3,这虽应用起来简便,但太不准确。在求准确圆周率值的征途中,首先迈出关键一步的是刘徽。他创立割圆术,用圆内接正多边形无限逼近圆而求取圆周率值。用这种方法他求得圆周率的近似值为,也有人认为他得到了更好的结果:。青出于蓝,而胜于蓝。后继者祖冲之利用割圆术得出了正确的小数点后七位。而且他还给出了约率与密率。密率的发现是数学史上卓越的成就,保持了一千多年的世界纪录,是一项空前杰作。2.阿拉伯数字并不是阿拉伯人最早发明的,而是最早起源于印度。据传早在公元七世纪时,阿拉伯人渐渐地征服了周围的其他民族,建立起一个东起印度,西到非洲北部及西班牙的萨拉森大帝国。到后来,这个大帝国又分裂成为东、西两个国家。由于两个国家的历代君主都注重文化艺术,所以两国的都城非常繁荣昌盛,其中东都巴格达更胜一筹。这样,西来的希腊文化,东来的印度文化,都汇集于此。阿拉伯人将两种文化理解并消化,形成了新的阿拉伯文化。大约在公元750年左右,有一位印度的天文学家拜访了巴格达王宫,把他随身带来的印度制作的天文表献给了当时的国王。印度数字1、2、3、4……以及印度式的计算方法,也就好似在这个时候介绍给了阿拉伯人。因为印度数字和计算方法简单又方便,所以很快就被阿拉伯人所接受了,并且逐渐地传播到欧洲各个国家。在漫长的传播过程中,印度创造的数字就被称为“阿拉伯数字”了。到后来,人们虽然弄清了“阿拉伯数字”的来龙去脉,但有大家早已习惯了“阿拉伯数字”这个叫法,所以也就沿用下来了。3.人类认识0早,还是认识1早。1、2、3、4……9、0称为“阿拉伯数字”。其实,这些数字并不是阿拉伯人创造的,它们最早产生于古代的印度。大约在公元750年左右,有一位印度的天文学家拜访了巴格达王宫,把他随身带来的印度制作的天文表献给了当时的国王。印度数字1、2、3、4……以及印度式的计算方法,也就在这个时候介绍给了阿拉伯人。因为印度数字和计算方法简单而又方便,所以很快就被阿拉伯人所接受了,并且逐渐地传播到欧洲各个国家。在漫长的传播过程中,印度创造的数字就被称为“阿拉伯数字”了。 由此可以看出,他们是同时被创造的。但我个人认为,人类是先认识1,因为初一的教科书上写着,负数是在人们的生产生活中产生的。人类应该是先发明了用1,2,3...数数,然后发现有东西没有了再用0表示,再发明了负数。4.数学中的符号+ - × ÷ ∧(表示乘方)√(开方)是有理数基本运算符号。 由于研究的需要,人类创造了大量的数学符号,来代替和表示某些数学概念和规律,简化了数学研究工作,促进了数学的发展。 在中学数学中,常见的数学符号有以下六种:一、数量符号 如,圆周率;a,x等。二、运算符号如加号(+),减号(-),乘号(×或·),除号(÷或-),比号(:)等。三、关系符号如“=”是“等号”,读作“等于”;“≈”或“=”是“约等号”读作“约等于”;“≠”是“不等号”。读作“不等于”;“>”是“大于符号”,读作“大于”;“<”是“小干符号”,读作“小于”;“‖”是“平行符号”,读作“平行于”;“⊥”是“垂直符号”,读作“垂直于”等。四、结合符号 如小括号( ),中括号[ ],大括号{ }。五、性质符号 如正号(+)、负号(-),绝对值符号(||)。六、简写符号 如三角形(△),圆(⊙),幂()等。这些符号的产生,一是来源于象形,实际上是缩小的图形。如平行符号“‖”是两条平行的直线;垂直符号“⊥”是互相垂直的两条直线;三角形符号“△”是一个缩小了的三角形;符号“⊙”表示一个圆,中间的一点表示圆心,以免与数0及英文字母O混淆。二是来源于会意,即由图形就可以看出某种特殊的意义。如用两条长度相等的线段“=”并列在一起,表示等号;加一条斜线“≠”,表示不等号;用符号“>”表示大于(左侧大,右边小),“<”表示小于(左侧小,右边大),意思不难理解;用括号“( )”、“[ ]”、“{}”把若干个量结合在一起,也是不言而喻的。三是来源于文字的缩写。如我们以后将要学到的平方根号“”中的“√”,是从拉丁字母Radix(根值)的第一个字母r演变而来。相似符号“∽”是把拉丁字母S横过来写,而S是Sindlar(相似)的第一个字母。还有大量的符号是人们经过规定沿用下来的。当然这些符号并不是一开始就都是这种形状,而是有一个演变过程的,这里就不多讲了。数学符号的产生,为数学科学的发展提供了有利的条件。首先,提高了计算效率。古时候,由于缺少必要的数学符号,提出一个数学问题和解决这个问题的过程,只有用语言文字叙述,几乎象做一篇短文,难怪有人把它称为“文章数学”。这种表达形式很不方便,严重阻碍了数学科学的发展。当数量、图形之间的关系能够用适当的数学符号表达后,人们就可以在这个基础上,根据自己的需要,深入进行推理和计算,因而能更迅速地得到问题的解答或发现新的规律。其次,缩短了学习的时间。初等数学发展到今天,已有两千多年的历史,内容非常丰富,而其中主要的内容今天能够在小学和中学阶段学完,这里数学符号是起一定作用的。例如,我们的祖先开始只有1、2少数几个数字的概念,而今天幼儿园的小朋友就能掌握几十个这样的数。分析原因,除了古今生活条件不同,人们的见识差别极大以外,今天已有一套完整的记数符号,人们容易掌握。第三、推动了深入的研究。我们研究数学概念和规律,不仅需要简明、确切地表达它们,而对它们内部复杂的关系,需要深人地加以探讨,没有数学符号的帮助,进行这样的研究是十分困难的。所以,数学符号的应用,是多快好省地研究数学科学的重要途径。我国宋朝著名科学家沈括曾经说过,数学方法应该“见繁即变,见简即用”。数学符号正是适应这种变“繁”为“简”的实际需要而产生的。数学符号不仅随着数学发展的需要而产生,而且也随着数学的发展不断完善。比如,古代各民族都有自己的记数符号,但在长期使用过程中,印度——阿拉伯数码记数方法显示出更多的优点,因而其他的数码符号逐渐淘汰,国际上都采用了这种记数方法。

  • 索引序列
  • 七上数学论文
  • 七年级上学期数学论文
  • 七年级上册数学论文300字
  • 数学报七年级上册答案零五网
  • 七下数学小论文
  • 返回顶部