首页 > 职称论文知识库 > 无人机国际论文发表

无人机国际论文发表

发布时间:

无人机国际论文发表

浅谈多旋翼无人机任务系统的优秀论文

前言: 随着无人机产品的不断增加,市场之间的竞争力,也逐渐的提升,对此本项目研究出了更适合于工业控制、自动化装备等领域产品的多旋翼无人机,产品不仅定位合理,同时与其他产品存在一定的差异,该任务系统,是指先进智能装备数据链的无人多旋翼任务,存在较高的能量利用效率、载荷运输性能,是其它无人机产品,在技术方面不能相比的;制定合理的市场规划,会给企业带来一定的经济效益。

1 多旋翼无人机定义概述

我们常称无人飞行载具,为无人飞机系统,主要是利用无线电智能遥控设备,以及自带的控制程序装置,对于不载人的飞机进行操控。其中广义的无人机,包括狭义无人机以及航模。

多旋翼飞行器,主要由动力系统、主体、控制系统组成,动力系统包括电机、动力、电子调速器、桨;主体部分包括机架、脚架、云台;控制系统包括由遥控接收器、遥控组成的手动控制;地面站,以及由主控、GPS、IMU、电子陀螺、LED显示屏组成的飞行控制器。其中四旋翼,是一种4输入6输出的欠驱动系统;通过PID、,鲁棒、模糊、非线性、自适应神经网络控制。近年来,对于系统的控制功能的研究趋势,为大荷载、自主飞行、智能传感器技术、自主控制技术、多机编队协同控制技术、微小型化等方向。其中一些关键技术为,数学模型的建立、能源供给系统、飞行控制算法、自主导航智能飞行。

2 控制系统改进发展阶段

多旋翼无人飞行器的控制系统,最初是由惯性导航系统,借助了微机电系统技术,形成了EMES惯性导航系统;经过对于EMES去噪声的研究,有效的降低了其传感器数据噪音的问题,最后经过等速度单片机、非线性系统结构的研究、应用,最终在2005年,制作出了性能相对稳定的多旋翼无人机自动控制飞行器。对其飞行器的评价,可从安全性、负载、灵活性、维护、扩展性、稳定性几方面要素进行分析。具有体积小、重量轻、噪音小、隐蔽性强、多空间平台使用、垂直起降,以及飞行高度不高、机动强、执行任务能力强的特点;在结构方面,不仅安全性高、易于拆卸维护、螺旋桨小、成本低、灵活控制的特点。

3 技术原理

3.1系统组成

无人多旋翼任务系统,总体技术方案框图如图1所示;如图所示,无人多旋翼任务系统,由无人机、地面工作站构成。无人机,由多旋翼无人机、任务载荷组成;地面工作站,由数据链通信单元、工业控制电脑、飞行控制摇杆等组成。

3.2系统技术原理

3.2.1多旋翼无人机,通过对于螺旋桨微调的推力,实现稳定的飞行姿态控制、维持。经过上述,对于多旋翼无人机、常规直升机、固定翼飞机的对比,可以明显的看出,多旋翼无人机,在任务飞行方面,具有多能量的优势,从而更好的执行完成飞行任务,改善了飞行姿态维持,消耗大量能量的缺陷,从而更好的保证了其能量利用率,直接产生续航时间、载荷运输性能的提升;在结构方面,做了大量的简化,省去了传动机构,使其运行噪音、故障概率、维护成本大大的降低。

3.2.2无人机,与地面工作站之间的通信,通过设备数据链实现连接,起到通信中介的作用,同好也是无人机、地面工作站之间,实现地空信息交换的重要桥梁环节。以往无人机,对于地空信息的转换连接,只是普通的点对点通信,收到信号传输距离的影响,性能发挥受到严重的影响,只能实现一些简单遥控数据信号的传输。

但是本项目,对于无人多旋翼任务系统的研究,是通过数据链协议MAVLink的研究后,将其合理的嵌入到控制核心、地面数据链的ARM平台中,有效的改善了以往低空信息传输环节存在的问题,将其遥测、遥信、遥控、遥调、遥视这五遥很好的进行了统一,保证了通信之间的无障碍,从根本上解决了无人机和地面工作站的数据通信问题。其中涉及到的.五遥;其中遥测,是指对于远方的电压、电流、功率、压力、温度等模拟量进行测量;其中遥信,是指对于远方的电气开关、设备,以及机械设备的工作、运行等状态进行监视;遥控,是指对于远方电气设备、电气机械化装置工作状态的控制、保护;遥调,是指对于远方所控设备的工作参数、标准流程等进行设定、调整;遥视,是指对于远方设备的安全运行状态的监视、记录。

3.2.3传统的无人机,在飞行时需要通过人工对于遥控器的操作,对其飞行姿态进行的控制,体现出其自动程序的不完善,功能单调等缺陷。但是本项目对于无人机的研究,在地面工作站,通过飞行任务规划软件的配套,有效的改善了以往功能单一的缺点,直接增加了其功能性。其中飞行任务规划软件,具备GoogleMap高速API接口,实现对于无人机飞行航线,在三维地图上的简易规划,同时也能对其航线进行启动,使其实现自动巡航、执行飞行任务、返航等操作。

4 技术关键点及创新点

4.1技术关键点:

4.1.1地空信息的的数据通信。

先进智能装备数据链协议MAVLink的应用,能够对其所有数据进行有效的整合,并全部归纳在数据链路中,整合五遥操作,有效的降低了多种通信制式、通信模块存在等方面的问题,提高了通信效率,保证了通讯功能得以有效发挥。

4.1.2解决飞行姿态操控问题

嵌入式操作系统,在ARM处理器平台上的应用,加上陀螺仪等传感器、卡尔曼滤波等先进算法,从而更好的保证了控制系统的功能增加,除此之外,不仅实现了无人操作飞行,在飞行操纵方面,也有效的降低了能耗,增加了能量利用率。

4.1.3在工业控制领域应用的扩展

本项目以同一载具+多种载荷的建设、研究思路,针对于型号相同的多旋翼飞行器,设计一样的数据、电气、机械接口的任务载荷,实现快速更换载荷,使其飞行任务之间,能够良好、稳定的切换、衔接,保证该系统的实用性,同时也减少了任务执行的成本。

4.1.4增强地面工作站功能

通过C/S架构、C#语言、.net平台、三维GoogleMap、SQL数据库,以及地面任务规划软件、分析数据分析软件,从而更好的增强地面工作站的功能,以及自动化、智能化的程度,更好的为用户操作,带来更多的便利。

4.2项目的技术创新性

4.2.1在无人机、地面站,在植入数据链MAVLink的同时,加强整体系统功能的改进,有效的实现了五遥的综合统一。

4.2.2卡尔曼滤波、四元数算法,加上嵌入式ARM平台,对其飞行姿态实现有效控制。

4.2.3同一载具+多种载荷思路的研究,实现了无人机,对任务执行模式的有效转换。

4.2.4同时地面任务规划软件、分析数据分析软件的应用,提高了系统的控制功能,以及系统智能化程度。

5 总结

综上所述,通过对于无人多旋翼任务系统的分析,发现我国针对于此方面的研究,仍存在很多不完善的地方,该项目通过C/S架构、C#语言、先进智能装备数据链、分析数据分析软件等,照比以往的无人机飞行器,在系统功能改进方面,实现了遥测、遥信、遥控、遥调、遥视的统一;在任务执行模式方面,实现了灵活转换;在飞行姿态方面,实现了智能操控;是在已有多旋翼飞控技术的基础上,有效的规避了其以往的缺陷,同时自主飞行控制软件编程,这种飞控任务的提供,有效的实现了飞行中,自主导航智能飞行。

推荐《农业工程学报》,核心期刊、CA期刊、EI期刊、CSCD期刊

复合影响因子:3.118

《农业工程学报》被以下数据库收录:

CA 化学文摘(美)(2014)

JST 日本科学技术振兴机构数据库(日)(2013)

Pж(AJ) 文摘杂志(俄)(2014)

EI 工程索引(美)(2016)

CSCD 中国科学引文数据库来源期刊(2017-2018年度)(含扩展版)

北京大学《中文核心期刊要目总览》来源期刊:

1992年(第一版),1996年(第二版),2000年版,2004年版,2008年版,2011年版,2014年版;

期刊荣誉:

中科双效期刊;Caj-cd规范获奖期刊;

警用无人机的任务可以包括以下方面:侦察和监视:使用无人机进行侦察和监视犯罪嫌疑人的行踪和活动,收集相关情报,提高警方的反应能力和有效性。搜索和营救:使用无人机进行搜寻和营救行动,例如寻找失踪人员或营救被困者。交通管理:使用无人机监控交通拥堵情况,协助警方指挥交通,提高交通管理效率。灾害应急:使用无人机进行灾害监测和评估,提供紧急救援服务,例如洪水、地震、火灾等。边境监控:使用无人机监控国家边境,预防非法移民和恐怖袭击。警用无人机的任务要求会因具体应用场景而有所不同。

无人机是利用无线电遥控设备和自备的程序控制装置操纵的不载人飞机。下面是我为大家精心推荐的无人机应用技术论文,希望能够对您有所帮助。

无人机航测技术的应用分析

【摘 要】以生产项目为例,以无人机航测的技术流程为主线,介绍了无人机航测技术方面的应用分析。

【关键词】无人机、航测技术

【Abstract】Production project as an example, the unmanned aerial technology process, introduced the UAV aerial application analysis.

【Key woerds】UAV、aerial surveying technology

中图分类号:V279+.2文献标识码:A 文章编号:

0 引言

无人机航测遥感技术是继卫星遥感、飞机遥感之后发展起来的一项新型航空遥感技术,在应急测绘保障、国土资源监测、重大工程建设等方面得到广泛应用。它是一种机动灵活、可以实现快速响应的一种航测技术。但也存在影像重叠度不规则、像幅小、影像倾角大、旋偏角大,影像有明显畸变等问题,这些情况都对现有无人机航测技术提出了挑战。

本文从生产案例出发,以无人机航测技术为主线,对生产过程中无人机航测出现的一些问题进行了分析探讨。

1 生产实践

1.1主要技术依据

《无人机航摄系统技术要求》(CH/Z3002-2010);

《低空数字航空摄影规范》(CH/Z3005-2010);

《低空数字航空摄影测量内业规范》(CH/Z 3003-2010);

《低空数字航空摄影外业规范》(CH/Z 3004-2010) ... ...

1.2 数据源及预处理

1.2.1 数据源

本测区选用无人机航空摄影获取的真彩色影像,航摄面积为10平方公里。航摄仪采用Canon EOS 5DMarkⅡ,焦距为:35mm,相幅大小为:5616×3744,像元分辨率为6.41um。影像地面分辨率为0.2米。

1.2.2遥感影像预处理

无人机航空摄影采用的相机为非量测型相机,因此,在进行空中三角测量恢复影像空中姿态时,需要对相机进行像片畸变差改正。(相机畸变改正在四维公司检校完成)

1.3 无人机航测总体作业流程

1.4无人机航空摄影

本次无人机航摄分两个架次进行,由GPS领航数据计算相对飞行高度。飞行质量和影像良好,影像清晰度高、色彩均匀、饱和度良好,能够表达真实的地物信息,可以满足1:2000成图要求。

像片航向重叠度为75%,旁向重叠一般为35%-45%,旋偏角一般控制在12度以下。

1.5 像片控制测量

1.5.1 像控点精度要求

像控点对最近基础控制点的平面位置中误差不大于0.2米,高程中误差不大于0.2米。

1.5.2 像控点布点方案

项目布点方案确定为双模型布点,全部布设为平高点。

1.5.3 像控点测量

在像控测量之前,首先对测区内收集到的已知控制点进行联测,检核控制点情况;为满足后续像控测量,联测已知点的同时加密了2个控制点。联测采用GPS静态相对定位方式施测,采用边连式的布网形式。全网共联测已有已知点4个,新设控制点2个,观测时具体技术参数依据规范,像控点采用GPS实时动态定位(RTK)的方法进行测量,满足要求。

1.6 空中三角测量

本项目采用Virtuozo工作站进行空三加密,根据航飞及影像分布情况,将空三区域分为两个加密区域网采用自动与手动相结合的方式进行空三加密,即采用自动匹配进行像点量测,剔除粗差。人工调整直至连接点符合规范要求,检查点平面中误差为0.3米,高程中误差为0.17米,最终加密成果符合1:2000数据采集要求。

1.7 数据采集

在空三完成后,利用空三成果进行单模型定向时我们发现有模型无法定向的情况,第一架次无法建立的模型有29个,占总模型数的4%。第二架次有67个无法建立的模型占总模型数的9%。主要原因为无人机航摄姿态不稳定导致的飞行倾角、旋偏角过大,航线弯曲、像片比例不一致等现象都是导致单模型定向精度差的原因。考虑到1:2000地形图精度要求,我们提出了如下解决方案:在测图定向超限点的周围进行野外实测用来检核分析数据并进行必要的修正。

1.8 项目精度报告

根据1:2000精度要求对测绘产品检进行了精度的统计,统计了3幅地形图,其中高程精度中误差最大为0.36米,最小为0.27米,从统计的结果看,粗差率比较高,有的达到了5%,平面精度中误差为0.75米。

2 结 论

(1)无人机航空摄影测量技术应用于地形图的生产存在不确定性,比如,区域网整体加密精度评定良好,但单模型定向精度存在超限情况,在测图过程中表现为测图定向点和立体模型套合差大、接边误差大等,可以通过外业实测进行补充测量、验证。

(2)利用无人机航测进行航空摄影测量时,应采用试验区的作业方法,即在确定布点方案前选取一定面积的试验区进行布点方案试验,分析精度指标后确定作业方案。

(3)目前,无人机航测技术主要应用于载人飞机航测技术的补充方面,如多块小面积、危险场所、远离机场或没有可供其起降场地的区域,在载人机不便或无法完成的情况下,由无人机来完成。

参考文献:

[1] 范承啸,韩俊,熊志军,赵毅。 无人机遥感技术现状与应用[J] 测绘科学 2009,34(5):214-215;

[2] 崔红霞,李杰,林宗坚,储美华。非量测数码相机的畸变差检测研究[J] 测绘科学2005,30(1):105-107;

[3] 连镇华。无人机航摄相片倾角对立体高程扭曲的影响分析[J] 地理空间信息2010,8(1):20-22;

作者简介:徐锦前(1982-),男,辽宁铁岭人,工程师,主要从事摄影测量和地理信息系统建库等测绘工作。

点击下页还有更多>>>无人机应用技术论文

无人机国际论文发表网

浅谈多旋翼无人机任务系统的优秀论文

前言: 随着无人机产品的不断增加,市场之间的竞争力,也逐渐的提升,对此本项目研究出了更适合于工业控制、自动化装备等领域产品的多旋翼无人机,产品不仅定位合理,同时与其他产品存在一定的差异,该任务系统,是指先进智能装备数据链的无人多旋翼任务,存在较高的能量利用效率、载荷运输性能,是其它无人机产品,在技术方面不能相比的;制定合理的市场规划,会给企业带来一定的经济效益。

1 多旋翼无人机定义概述

我们常称无人飞行载具,为无人飞机系统,主要是利用无线电智能遥控设备,以及自带的控制程序装置,对于不载人的飞机进行操控。其中广义的无人机,包括狭义无人机以及航模。

多旋翼飞行器,主要由动力系统、主体、控制系统组成,动力系统包括电机、动力、电子调速器、桨;主体部分包括机架、脚架、云台;控制系统包括由遥控接收器、遥控组成的手动控制;地面站,以及由主控、GPS、IMU、电子陀螺、LED显示屏组成的飞行控制器。其中四旋翼,是一种4输入6输出的欠驱动系统;通过PID、,鲁棒、模糊、非线性、自适应神经网络控制。近年来,对于系统的控制功能的研究趋势,为大荷载、自主飞行、智能传感器技术、自主控制技术、多机编队协同控制技术、微小型化等方向。其中一些关键技术为,数学模型的建立、能源供给系统、飞行控制算法、自主导航智能飞行。

2 控制系统改进发展阶段

多旋翼无人飞行器的控制系统,最初是由惯性导航系统,借助了微机电系统技术,形成了EMES惯性导航系统;经过对于EMES去噪声的研究,有效的降低了其传感器数据噪音的问题,最后经过等速度单片机、非线性系统结构的研究、应用,最终在2005年,制作出了性能相对稳定的多旋翼无人机自动控制飞行器。对其飞行器的评价,可从安全性、负载、灵活性、维护、扩展性、稳定性几方面要素进行分析。具有体积小、重量轻、噪音小、隐蔽性强、多空间平台使用、垂直起降,以及飞行高度不高、机动强、执行任务能力强的特点;在结构方面,不仅安全性高、易于拆卸维护、螺旋桨小、成本低、灵活控制的特点。

3 技术原理

3.1系统组成

无人多旋翼任务系统,总体技术方案框图如图1所示;如图所示,无人多旋翼任务系统,由无人机、地面工作站构成。无人机,由多旋翼无人机、任务载荷组成;地面工作站,由数据链通信单元、工业控制电脑、飞行控制摇杆等组成。

3.2系统技术原理

3.2.1多旋翼无人机,通过对于螺旋桨微调的推力,实现稳定的飞行姿态控制、维持。经过上述,对于多旋翼无人机、常规直升机、固定翼飞机的对比,可以明显的看出,多旋翼无人机,在任务飞行方面,具有多能量的优势,从而更好的执行完成飞行任务,改善了飞行姿态维持,消耗大量能量的缺陷,从而更好的保证了其能量利用率,直接产生续航时间、载荷运输性能的提升;在结构方面,做了大量的简化,省去了传动机构,使其运行噪音、故障概率、维护成本大大的降低。

3.2.2无人机,与地面工作站之间的通信,通过设备数据链实现连接,起到通信中介的作用,同好也是无人机、地面工作站之间,实现地空信息交换的重要桥梁环节。以往无人机,对于地空信息的转换连接,只是普通的点对点通信,收到信号传输距离的影响,性能发挥受到严重的影响,只能实现一些简单遥控数据信号的传输。

但是本项目,对于无人多旋翼任务系统的研究,是通过数据链协议MAVLink的研究后,将其合理的嵌入到控制核心、地面数据链的ARM平台中,有效的改善了以往低空信息传输环节存在的问题,将其遥测、遥信、遥控、遥调、遥视这五遥很好的进行了统一,保证了通信之间的无障碍,从根本上解决了无人机和地面工作站的数据通信问题。其中涉及到的.五遥;其中遥测,是指对于远方的电压、电流、功率、压力、温度等模拟量进行测量;其中遥信,是指对于远方的电气开关、设备,以及机械设备的工作、运行等状态进行监视;遥控,是指对于远方电气设备、电气机械化装置工作状态的控制、保护;遥调,是指对于远方所控设备的工作参数、标准流程等进行设定、调整;遥视,是指对于远方设备的安全运行状态的监视、记录。

3.2.3传统的无人机,在飞行时需要通过人工对于遥控器的操作,对其飞行姿态进行的控制,体现出其自动程序的不完善,功能单调等缺陷。但是本项目对于无人机的研究,在地面工作站,通过飞行任务规划软件的配套,有效的改善了以往功能单一的缺点,直接增加了其功能性。其中飞行任务规划软件,具备GoogleMap高速API接口,实现对于无人机飞行航线,在三维地图上的简易规划,同时也能对其航线进行启动,使其实现自动巡航、执行飞行任务、返航等操作。

4 技术关键点及创新点

4.1技术关键点:

4.1.1地空信息的的数据通信。

先进智能装备数据链协议MAVLink的应用,能够对其所有数据进行有效的整合,并全部归纳在数据链路中,整合五遥操作,有效的降低了多种通信制式、通信模块存在等方面的问题,提高了通信效率,保证了通讯功能得以有效发挥。

4.1.2解决飞行姿态操控问题

嵌入式操作系统,在ARM处理器平台上的应用,加上陀螺仪等传感器、卡尔曼滤波等先进算法,从而更好的保证了控制系统的功能增加,除此之外,不仅实现了无人操作飞行,在飞行操纵方面,也有效的降低了能耗,增加了能量利用率。

4.1.3在工业控制领域应用的扩展

本项目以同一载具+多种载荷的建设、研究思路,针对于型号相同的多旋翼飞行器,设计一样的数据、电气、机械接口的任务载荷,实现快速更换载荷,使其飞行任务之间,能够良好、稳定的切换、衔接,保证该系统的实用性,同时也减少了任务执行的成本。

4.1.4增强地面工作站功能

通过C/S架构、C#语言、.net平台、三维GoogleMap、SQL数据库,以及地面任务规划软件、分析数据分析软件,从而更好的增强地面工作站的功能,以及自动化、智能化的程度,更好的为用户操作,带来更多的便利。

4.2项目的技术创新性

4.2.1在无人机、地面站,在植入数据链MAVLink的同时,加强整体系统功能的改进,有效的实现了五遥的综合统一。

4.2.2卡尔曼滤波、四元数算法,加上嵌入式ARM平台,对其飞行姿态实现有效控制。

4.2.3同一载具+多种载荷思路的研究,实现了无人机,对任务执行模式的有效转换。

4.2.4同时地面任务规划软件、分析数据分析软件的应用,提高了系统的控制功能,以及系统智能化程度。

5 总结

综上所述,通过对于无人多旋翼任务系统的分析,发现我国针对于此方面的研究,仍存在很多不完善的地方,该项目通过C/S架构、C#语言、先进智能装备数据链、分析数据分析软件等,照比以往的无人机飞行器,在系统功能改进方面,实现了遥测、遥信、遥控、遥调、遥视的统一;在任务执行模式方面,实现了灵活转换;在飞行姿态方面,实现了智能操控;是在已有多旋翼飞控技术的基础上,有效的规避了其以往的缺陷,同时自主飞行控制软件编程,这种飞控任务的提供,有效的实现了飞行中,自主导航智能飞行。

推荐《农业工程学报》,核心期刊、CA期刊、EI期刊、CSCD期刊

复合影响因子:3.118

《农业工程学报》被以下数据库收录:

CA 化学文摘(美)(2014)

JST 日本科学技术振兴机构数据库(日)(2013)

Pж(AJ) 文摘杂志(俄)(2014)

EI 工程索引(美)(2016)

CSCD 中国科学引文数据库来源期刊(2017-2018年度)(含扩展版)

北京大学《中文核心期刊要目总览》来源期刊:

1992年(第一版),1996年(第二版),2000年版,2004年版,2008年版,2011年版,2014年版;

期刊荣誉:

中科双效期刊;Caj-cd规范获奖期刊;

无人机国际论文发表时间

推荐《农业工程学报》,核心期刊、CA期刊、EI期刊、CSCD期刊

复合影响因子:3.118

《农业工程学报》被以下数据库收录:

CA 化学文摘(美)(2014)

JST 日本科学技术振兴机构数据库(日)(2013)

Pж(AJ) 文摘杂志(俄)(2014)

EI 工程索引(美)(2016)

CSCD 中国科学引文数据库来源期刊(2017-2018年度)(含扩展版)

北京大学《中文核心期刊要目总览》来源期刊:

1992年(第一版),1996年(第二版),2000年版,2004年版,2008年版,2011年版,2014年版;

期刊荣誉:

中科双效期刊;Caj-cd规范获奖期刊;

曾听朋友说过这样一件事情,那些需要发表论文的作者,要么是1个月内发表,要么是一个半月内发表,还有的是要求1周内发表,半个月内发表的。这些作者的要求真的是让人哭笑不得,因为根本论文发表的周期根本就没有那么快。那么论文发表一般的周期是怎样的呢,小编在这里讲给大家听。

按照以往的情况来说,也就是三年前来说,一般发表论文的周期是在一到四个月之间,小编这里说的是正规的期刊,像万方,知网、维普收录的比较热门的期刊,一般能在3-4个月发表。但是今年期刊发表却有了改变,今年的普遍刊期发表周期是这样的,大概是2-6个月之间,你们看到这之间的差距了吗?再给大家详细介绍下,像上知网的教育类期刊,最早也是在你提交的4个月以后才可以进行发表,有的论文还会排到明年下半年。值得注意的是,这只是普通期刊的发表周期,而不是核心期刊,也不是学报。像经济类期刊的刊期是在两到五个月之间,也就是说,如果我们想要最快发表经济类期刊,也是需要在两个月后才能进行发表的,这还属于加急情况。医学类期刊的发表周期在4-6个月,医学期刊比其他期刊的发表周期都长,审稿更加的严格,但例如工程科技类期刊可以在1-3个月内可以进行发表,如果你要发表的期刊是工程科技类,那么你还有加急发表的机会,但其他的类别的期刊基本不太可能在2个月内就发表出来。

作者朋友们一定要了解清楚论文发表的一般周期,如果因为自己不了解这个周期而错过了论文发表的最佳时间,那就得不偿失了。今年发表论文不同往年,由于期刊数量较少,期刊的页吗也变少了,所以发表期刊的时间都比较紧张,比往年刊期靠后2-3个月。在这里给作者朋友们提醒,如果需要发表论文一定提前准备好。

论文发表的时间需要提前多久合适?提前发表论文的适当时间是多长?论文完成后,检查无问题,就需要选择期刊进行投稿了。论文发表投稿后通常有三个审稿时间,即初步审查、重新审查和最后审查。这一过程耗时长,对作者来说也是非常痛苦的。因此,笔者最关心的是这个时间问题,那么论文发表在什么时候才合适呢?这取决于作者是投什么类型的期刊了。期刊的水平、审稿日期和发表时间不同。省级投稿的发表时间一般比较短,审稿期约为1-3个月。对于核心期刊,想要在核心期刊就需要预约了。审稿相对严格,所以时间相对较长,通常8个月到一年,有时可能会更长。论文发表还需要注意以下过程:提交稿件、审核、验收/拒绝、修订和润色、最终审稿、定稿、校对、排版、印刷、出版和邮寄。特别是审稿,作为论文发表前不可缺少的一个过程,论文的审稿时间是论文发表全过程中最长的一个环节。如果一次通过还算不错的运气了。如果由于论文内容而反复修正和审稿,势必导致论文发表时间的增加。在提交论文之前,必须对文件进行更正。需要提醒笔者,虽然现在很多论文发表期刊,例如:月刊、半月版,甚至旬刊,但还是建议作者提前做好准备,特别是每年3月、9月,各地都有职称报道,是论文发表的高峰时期。可以说,所有正规生物杂志社都面临大量积压的稿件,版面非常紧张。因此,即使作者此时想发表论文,也要提前准备,这样可以方便快捷的发表,也不担心审稿时间太长或者推迟了。当然,如果你想快速发表论文,就需要所写论文达到高质量的要求;论文内容能激发编辑的阅读兴趣,标题具有吸引力;论文的字数和格式符合提交期刊的要求。这样,论文的审核过程就可以更加顺畅,论文发表周期也会更快。

或许你对美国第一艘航空母舰“兰利号”有所耳闻,也经常从新闻中听到美国兰利空军基地和国家航空航天局兰利研究中心的大名,你是否有些疑惑,兰利究竟是何方神圣,为何诸多美国军事设施均以兰利命名呢?

兰利(网络图)

美国第一艘航空母舰“兰利号”(网络图)

仰望星空,好奇心成了最好的老师

1834年8月22日,塞缪尔·皮尔庞特·兰利(Samuel Pierpont Langley)出生在美国马萨诸塞州罗克斯布里一个普通的商人家庭。年幼的小兰利起初就读于波士顿拉丁文学校,小小的他对漫天的繁星广袤的银河总是充满好奇,经常抱着厚厚的天文学书籍翻来翻去。

为了纪念兰利对航空事业的卓越贡献,美国将他的头像印在了45美分的邮票上(网络图)

“太空中除了星星还有什么呢?月亮上面为什么有的地方暗有的地方亮呢?金星、水星和火星是不是也像地球一样有自己的月亮呢?……”小兰利经常拉着哥哥约翰,扑闪着大眼睛问个没完。为了满足弟弟的好奇心,让他能够更加直观地了解天河,约翰帮助小兰利制作了一架简易的天文观测仪器。在这架不起眼的仪器帮助下,小兰利利用它找到了金星的位置,看到了月亮上的陨坑和月海(注一),他还发现了木星的卫星和土星外侧美妙的行星环。天空中绚烂的景象让小兰利兴奋不已,也进一步激发了他小小的身体里求知的欲望。

从野小子到大教授

从波士顿英文高中毕业后,兰利由于经济原因而没有进入大学。尽管他很擅长制造和操作机械,但他更想从事天文学方面的工作,可对于一个高中毕业的人而言,找到这样一份工作无疑是十分困难的。后来,兰利来到了美国西部,在那里他试图从事建筑方面的工作,并向建筑师和设计师们学习了机械和绘图技巧。然而一心惦念着蓝天的兰利最终很快便厌倦了建筑工作,他毅然回到了马萨诸塞州,重新拿起了天文望远镜。始终对头顶充满未知的苍穹充满了向往的兰利,凭借顽强的毅力,通过自学获得了渊博的天文学、物理学和航空学知识。1865年,他终于获得了哈佛大学天文台的助教职位,随后调任美国海军军官学校教授。

1978年上映的讲述莱特兄弟传奇故事的电影《基蒂霍克之风》,影片也同样赞扬了兰利的先驱性贡献(网络图)

两年后,兰利出任阿勒格尼(Allegheny)天文台首任台长,同时担任西宾夕法尼亚大学(现匹兹堡大学)的天文学教授。在一位名叫威廉·肖的匹兹堡商人资助下,兰利得以对天文台的设备进行更新,并购置了新型望远镜。正是在这台望远镜的帮助下,他利用所观测的天文数据,设计出一套精确的时间标准,即著名的阿勒格尼时间系统(注二)。

阿勒格尼天文台是世界著名的天文观测机构之一,兰利在天文学上的成就多数都是在这里完成的(网络图)

要说兰利在物理学上的贡献,那就不得不提他发明的测辐射热计了。这种仪器是他为了精准测量微量的热而发明的,它的灵敏度达到十万分之一摄氏度。兰利用自己发明的仪器,对光谱可见波段和红外波段的太阳辐射强度进行了详细测定,并首次将人类对太阳光谱的认知延展到了远红外区。测辐射热计不仅为地球太阳能辐射量的测量奠定了基础,同时也可安装于高空气球上以避开大气的影响,从而进行天文观测。如今兰利早已成为了物理学中的单位,人们为了纪念他在辐射测量方面的杰出成就,将每平方厘米1卡路里的辐射单位称为1兰利。

1881年兰利发表论文公布了他所发明的测辐射热计,这幅图便是该篇著名论文中给出的测辐射热计结构图(来源于兰利的论文)

年过半百投身航空,无人飞机初获成功

兰利凭借天文学上的成就而声名鹊起,先后获得了多个天体物理学奖项,但在五十多岁时他却决然地选择了投身航空。曾有人不解地问他:“兰利先生,您是从什么时候开始对飞行感兴趣的呢?”“从我记事的那一刻起。”兰利举目天宇,斩钉截铁地回答道。他先后开展了一系列以不同速度在空气中运动时飞机升力和阻力的试验,对空气动力学原理进行了深入研究,第一次解释了鸟类在空气中滑翔的原理。兰利还总结了倾斜平板的升力规律,提出了至今仍被学界沿用的升力计算公式。

1887年,兰利建造了一个旋转臂用于模拟风洞,并研制出更为庞大的飞机模型,这种飞机模型采用了微型蒸汽机进行驱动。他将一个1磅(约0.45千克)重的铜片通过弹簧固定在旋转臂上,他发现当铜片在空中保持悬浮时,弹簧的伸长量不足1盎司(约36微米),这使他意识到持续的动力飞行是可行的。几年后,兰利总结了数年间的研究成果,写成了《空气动力学试验》一书,这本书随后成为了重要的航空基础理论著作。

如今匹兹堡大学的展厅里依旧陈列着兰利的6号无人机模型(网络图)

从天文学转向航空事业的兰利,靠着勤奋钻研的精神和顽强不懈的努力,在很短时间内便取得了同样丰硕的成果,然而这些成果都还停留在对飞行理论进行探讨的层面。兰利显然并不满足,他并不仅仅想知道人类能不能飞,他迫切地想解决人类如何飞的问题。他立刻马不停蹄地着手建造飞机,他的目标只有一个:让人可以像鸟儿一样自由地翱翔天际。经过不断的试验和改进,1896年5月6日,兰利终于在华盛顿附近的波托马克河上迎来了成功。他的5号无人飞机模型从船上弹射起飞,在空中飞行了约1200米。这次的成功飞行将以往重于空气的飞行器的飞行距离提高了十倍以上,证明了重于空气的飞行器是可以获得足够的升力并实现持续稳定的飞行的,被认为是航空史上重于空气的飞行器进行的第一次持续动力飞行。半年后,兰利的6号无人模型机更是进一步将飞行距离提高到了1500米。

1896年5月6日,兰利在波托马克河上试飞的5号无人飞机模型(网络图)

暮年折戟,终留遗憾

两年后,美国和西班牙为争夺殖民地而发起战争,美国陆军部和史密松协会开始对兰利进行资助,以期能够研制出载人飞机。最初兰利和助手查尔斯·马修·曼利(Charles Matthews Manly)只进行飞机的总体设计和建造,而内燃机部分则委托给了制造商。然而当制造商将产品交到兰利手上时,兰利却皱起眉直摇头,他略感失望地对一旁的曼利说:“这根本无法满足飞机对动力和重量的要求!”作为一名优秀的机械师,曼利自信地告诉兰利:“兰利先生,我想我可以试试。”最终,曼利果然不负所望,成功解决了内燃机的设计与制造问题。曼利所设计的内燃机功率(约36.8kW)远大于莱特兄弟首架飞机所用的内燃机功率(约8.8kW),这让兰利大为欣慰。这一动力装置性能的提升也为其后航空史上动力持续飞行的发展做出了巨大贡献。

曼利(左)和兰利(右)(网络图)

解决了最为关键的动力问题后,在兰利和曼利的反复尝试之下,他们终于制造出了载人飞机。这架飞机具有前后串置的两对机翼,并拥有可以实现俯仰和偏航控制的尾翼,通过调整机翼间的二面角,使飞机基本保持水平飞行。纵然如此,这架飞机却有着致命的缺陷,它只能在没有大风的环境下飞行,而且需要弹射器辅助其起飞。更为糟糕的是,由于没有起落架,在飞行结束后飞机只能降落在波托马克河中,这就使得飞行员的安全难以得到保证,而每完成一次飞行试验后都要对飞机进行大规模的维修。1903年,在经历了两次严重的坠机事故后,日渐年迈的兰利不得不终止了自己研制载人飞机的计划。此后的波托马克河边,人们再也看不到那个怀揣着飞行梦想的垂垂老者了,黄昏下的河水拍打着堤岸,似乎在怀念曾经不时响起的轰鸣声。

1903年的波托马克河上,兰利设计的载人飞机安装在船上的发射架上等待发射(网络图)

1903年10月7日,兰利的载人飞机刚一发射便一头栽入河中(网络图)

当得知政府花费巨资支持的项目无果而终时,批评的声浪纷至沓来。美国著名的天文学家、数学家西蒙·纽科姆(Simon Newcomb)曾说:“靠比空气重的机械飞行,即使并非绝对不可能,至少也是不现实的。”当时《纽约时报》的一篇文章对兰利的讥讽则更为尖刻,其中这样写道:“我们不希望兰利教授再耗费时间和金钱了,飞机的试验,是个伪科学。”在指责兰利将公众的钱白白扔到河里的同时,这篇文章还叫嚣,即使再过一千年,人类也飞不起来。然而讽刺的是,在这篇文章发表仅9天之后,莱特兄弟便第一次实现了载人飞行,而他们所依据的正是兰利的飞行理论。那一刻的兰利,或许也有“雪满山城鸦去尽,独留老鹤守残梅”的喟叹吧。

1914年柯蒂斯对兰利的最后一架载人飞机进行了改进,并成功飞上蓝天(网络图)

三年后兰利在南卡罗来纳州去世,他终生未娶,将宝贵的一生都奉献给了人类认知苍穹和追寻飞行的征程上。尽管兰利并未实现载人飞行的夙愿,但他提出的飞行理论是毋庸置疑的,他在飞机设计方面的探索也给后来者提供了宝贵的经验和启迪。失败者同样获得了人们的尊敬,如今兰利的名字依旧在美国国家航空航天局兰利研究中心大放异彩!

美国国家航空航天局兰利研究中心外景(来源于兰利研究中心官网)

人物小档案:

塞缪尔·皮尔庞特·兰利(1834.08.22 - 1906.02.27),美国著名天文学家、物理学家和航空领域先驱。毕业于波士顿英文高中,凭借自学获得渊博的天文学、物理学和航空学知识,先后在哈佛大学天文台、美国海军军官学校和西宾夕法尼亚大学任教。设计了著名的阿勒格尼时间系统,并发明了测辐射热计,对天体物理学做出了突出贡献。晚年投身于航空事业,第一次解释了鸟类在空气中滑翔的原理,总结了倾斜平板的升力规律,为后来人类实现动力飞行奠定了重要的理论基础。

注一:

月海,即用肉眼遥望月球时所看到的黑暗色斑块,其实是月球表面比较低洼的平原,并不含水。目前人类已经确定的月海共有22个,其中绝大多数分布在月球正对地球的一面

注二:

阿勒格尼时间系统(Allegheny Time System),兰利根据天文观测结果提出的一套精确的时间标准。这套时间标准采用了时区的概念,1868年开始由阿勒格尼天文台进行播报,最初仅在阿勒格尼城的商业和宾夕法尼亚州的铁路业试用,后来被美国和加拿大的所有铁路业采用。在此之前,北美的每条铁路都有独自的计时方式,并无统一的计时标准,在时间管理上较为混乱。

参考资料详目:

1. 《空天飞行导论》,(美)John D. Anderson著,国防工业出版社2014年版

2. 《威尔逊讲大科学家:世界著名科学家的生活和发明》,(美)Grove Wilson著,新世界出版社2011年版

无人机国际论文发表要求

对要发表论文的条件要求:创新性、实用性、、严谨性、规范性;对选择期刊的要求条件:正规、可查询、级别适合;对作者的要求条件:学历、工作经历以及当下评职级别要符合,不可越级评职称。这些都是发表论文时要注意的条件事项,所以准备进行论文撰写发表的人员一定要注意这些信息哦。

链接:

30天论文写作发表进阶训练营。完结版,里面包含辅导课、直播课、音频课、视频课、PDF文档。

课程目录:

尔雅老师对四篇论文的解构修改辅导答疑

尔雅老师快速批量修改不同学科论文的教学示范

尔雅老师团队如何在30分钟找到论文选题并写出论文

对一篇弹幕英语教学论文的修改建议

对一篇新闻学本科毕业论文的修改建议

解构描摹一篇好论文的实用技巧

如何通过知网迅速找到200篇优质文献

如何利用知网的可视化计量分析做文献综述

如何批量下载200篇文献

......

一般中级职称论文还是比较好发表的,但是也需要注意一些问题,主要有一下几个方面:文章是原创的,抄袭率不能超过30%,这点也是最重要的,一般杂志社都会查抄袭率的;字数不宜太多,3000字左右,正好一个版面为佳;期刊必须有CN或ISSN刊号的,在新闻出版总署网可以查到的期刊。具体对期刊的选择最好是符合当地相关单位要求的;关注一下当地评职称相关文件,看看有没有什么特殊要求,例如有些地方发省级期刊和国家级期刊加分是不同的;需要注意下发表时间,有些专业性强的期刊发表时间是比较长的,所以应提前几个月准备;还有你在中级职称时发表的文章是不能用作评高级职称的,也就是说评高级的时候还要发表新的文章,并且对期刊要求更高了。具体的你可以去问问百姓论文网,我同事都在那里发表的,期刊也都拿到手了,很满意,希望对你有帮助

发表sci期刊论文有什么要求?学术论文公开发表必须在正规学术期刊上。由于它是公开发表物,需要遵循某些期刊的发表要求。无论是在国内学术期刊还是国际学术期刊上发表,都是这样。国际学术期刊的发表要求与国内学术期刊大不相同,而且在期刊上存在一定的差异。下面一起来看看发表sci期刊论文有哪些要求?sci期刊通常是国际上具有影响力和知名度的学术期刊,学术水平很高,这类期刊对刊物发表的要求也是比较高的。主要是对文章本身的要求,但对作者的身份职务没有什么特别要求,比国内一些核心刊物宽松一些。发表sci期刊的关键是文章的层次。撰写一篇好的sci论文的基础有两个方面。一是英语写作水平,二是专业知识水平。对国内大多数作者来说,英语写作水平不高。英语水平高也并不意味着英语写作水平就高。写作需要掌握一定的技能,也就是说,在正常的时间里,它需要不断的磨炼。以下是发表sci期刊论文写作的4个要点:1、文本摘要本文的摘要是对本文的简单总结,包括主要研究问题、方法、结果和结论。它可以用短语概括。摘要中的字数不应超过500个。2、引言这部分提出问题,回顾前人对这一问题的研究成果,即明确选题的研究背景,以及选题在整个学科中的重要性和必要性,注意清楚的哪些是别人的结论,哪些是自己的结论。3、方法和结果这是最关键的部分,包括实验对象、实验材料和实验过程。描述应该有一个清晰的层次感。每个步骤之间的顺序和相关性应清楚描述,不要引起实验过程混乱的现象,因为评审者最终判断你的实验是否合理,是从这个过程中描述来的。4、参考资料应标记引用内容,这是一个基本的学术道德要求。引用过程中未指出文献档的来源出处会造成本人的成功内容是假象,以免造成剽窃的现象。同时也会被误认为是一种抄袭,因此为了避免在影响作者个人发展时出现这样的误解,所有引用的部分都需要体现在参考中,甚至一些不起眼的内容也需要标准清楚。因此,发表sci期刊论文的各个方面要求相对较高,应特别注意写作。此外,还应特别注意语法和时态的应用。毕竟,英语表达与汉语不同。如果作者的英语写作水平不够高,或者在写作时感觉比较吃力。就需要有针对实践性的积累。或者是找一些专业机构指导润色。这将提高发表效率。有关发表sci期刊论文的详细信息,可咨询泰杰生物的小编。

无人机国际论文发表网站

是时候拿出我的镇山之宝了。先推荐论文+专利下载神网站:在家里如何免费使用中国知网?2. 文献检索类的网站我只推荐一个,隆重推出:大木虫学术导航Google学术搜索镜像_sci-hub网址_大木虫学术导航不知道这个网站真的血亏! 大木虫学术导航号称是科研人员学术研究的第一站,放个网站封面大家感受一波。不仅颜值高,内涵也特别丰富!它涵盖了各个站点的Google学术搜索、Google镜像搜索、Sci-Hub、Libgen和各类翻译软件(Google翻译、有道翻译、百度翻译等)还有国外叫的上名字和叫不上名字的学术网站它也都有,比如Wiley、ACS、Nature、Springer和Elsevier。有了这个大木虫的汇总,这些学术网站的网址就都不用收藏了呀!国内常用的知网、万方数据库和维普期刊它也有,还有期刊影响因子的查询。各类科研基金的网站汇总和专利查询网关于国标的各个站点的网络、实用科研工具和各类科研信息交流平台可以说是大木虫真的是有它在手、天下我有的神仙网站,答应我这么优秀的搜索网站一定不要浪费,实实在在地用起来好吗!3. 吹完了大木虫的彩虹屁,再来推荐一个优秀的论文查重网站笔杆网论文查重软件_论文检测软件_笔杆网这个查重网站是我在写硕士论文期间,同学之间争相推荐的查重网站。除了查重率略高以外,可以说没有什么缺点,完胜我用的其他所有查重网站。在操作上,它非常简单,只需要输入题目粘贴文本就可以完成检索了,不需要关注各种乱七八糟的公众号;在查重系统对比库的来源上,它也是我所知的数据库最广的查重网站,包含期刊指纹数据库、学位论文指纹数据库、会议论文指纹数据库、图书指纹数据库和网页指纹数据库等海量对比指纹数据库。因为数据库广泛,所以它查出来的论文重复率会偏高。但好处就是你用这个网站查出来的重

推荐《农业工程学报》,核心期刊、CA期刊、EI期刊、CSCD期刊

复合影响因子:3.118

《农业工程学报》被以下数据库收录:

CA 化学文摘(美)(2014)

JST 日本科学技术振兴机构数据库(日)(2013)

Pж(AJ) 文摘杂志(俄)(2014)

EI 工程索引(美)(2016)

CSCD 中国科学引文数据库来源期刊(2017-2018年度)(含扩展版)

北京大学《中文核心期刊要目总览》来源期刊:

1992年(第一版),1996年(第二版),2000年版,2004年版,2008年版,2011年版,2014年版;

期刊荣誉:

中科双效期刊;Caj-cd规范获奖期刊;

去找壹品优刊网,出刊只花了21天。

省级刊物:《民营科技》主管单位:云南省科学技术厅 主办单位:云南省民办科技机构管委会国际刊号:ISSN 1673-4033,国内刊号:CN 53-1125/N,国家新闻出版总署收录、知网、维普、万方收录。 省级刊物:《科技信息》主管单位:山东省科技厅 主办单位:山东省技术开发服务中心国际标准刊号:ISSN 1001-9960 国内统一刊号:CN 37-1021/N国家新闻出版总署收录、知网、万方、龙源、维普收录。 省级刊物:《黑龙江科技信息》主管单位:黑龙江科协 主办单位:黑龙江省科学技术学会国际标准刊号ISSN 1673-1328 国内统一刊号CN 23-1400/G3国家新闻出版总署收录、知网、万方、龙源、维普收录。 国家级刊物:《文体用品与科技》主管单位:国家轻工联合会主办单位:全国文教体育用品信息中心和中国文教体育用品协会国际标准刊号:`ISSNI006-8902 国内统一刊号:CN11-3762/TS国家新闻出版总署收录、知网、万方、龙源、维普收录 国家级刊物:《数字技术与应用》主管单位:天津市中环电子信息集团有限公司 主办单位:天津市电子仪表信息研究所 国际标准刊号:ISSN 1007-9416 国内统一刊号:CN12-1369/TN国家新闻出版总署收录、知网、万方、龙源、维普收录。由于篇幅有限,中国期刊库就只介绍这么多科技期刊给大家,如果您还需要了解更多,或者您需要找我们快速发表论文的话,可以联系中国期刊库在线编辑。中国期刊库---------论文发表,专业期刊论文发表网

  • 索引序列
  • 无人机国际论文发表
  • 无人机国际论文发表网
  • 无人机国际论文发表时间
  • 无人机国际论文发表要求
  • 无人机国际论文发表网站
  • 返回顶部