首页 > 职称论文知识库 > 玻尔发表的论文

玻尔发表的论文

发布时间:

玻尔发表的论文

波尔(Niels Henrik David Bohr,1885~1962),丹麦物理学家。他于1913年在原子结构问题上迈出了革命性的一步,提出了定态假设和频率法则,从而奠定了这一研究方向的基础。波尔指出: (1)在原子系统的设想的状态中存在著所谓的"稳定态"。在这些状态中,粒子的运动虽然在很大程度上遵守经典力学规律,但这些状态稳定性不能用经典力学来解释,原子系统的每个变化只能从一个稳定态完全跃迁到另一个稳定态。 (2)与经典电磁理论相反,稳定原子不会发生电磁辐射,只有在两个定态之间跃迁才会产生电磁辐射。辐射的特性相当於以恒定频率作谐振动的带电粒子按经典规律产生的辐射,但频率u与原子的运动不是单一关系,而是由下面的关系来决定 h = E'-E"。这就是波尔的原子能。 生平简述 波尔1885年10月7日出生於丹麦的哥本哈根。他父亲是一位生理学教授,思想开明。为使两个儿子从小就热爱自然科学,经常与朋友们一起就科学、哲学、文化及政治等问题进行有趣的讨论,以薰陶波尔和它的弟弟海拉德。除此之外,波尔的父亲还极为重视两个儿子的体质,培养他们的体育兴趣。所以,波尔和弟弟在少年时代就成了著名足球运动员,长大以后,他弟弟还进入了国家足球队,而波尔还具有了兵兵球、帆船和滑雪等终身爱好。 波尔在童年时代是一个行动缓慢、做事专心的孩子。他在学校里各门功课都很好,尤其是物理学和数学。他还酷爱文学,但本族语学得很费力。他一生都用功克服这一困难,花了很多时间一遍一遍地抄写手稿 不管是科学论文、大会发言稿,还是给朋友的信件。这反映了波尔对准确性的迫切要求和使自己的著作能传递尽可能多信息的强烈愿望。为了培养波尔的动手能力,他父亲为他购置了车床和工具。心灵手巧的波尔很快就熟练地掌握了金工技术,并敢於修理一切损坏了的东西,家里的钟表或自行车坏了,都是波尔自己动手修理。 在中学时代,波尔虽然是班里的第一名,但他从来不爱虚荣,甚至不曾为争夺第一名奋斗过。 他思维非常迅速,自然地、毫不拘束地发展著自己的才能,并毫不动摇地选择了自己的道路 做一个物理学家。 1903年,波尔顺利地中学毕业,进入了哥本哈根大学自然科学系。起初,他酷爱在大学的实验室里做实验,到二年级时,他决定参加丹麦皇家科学协会组织的优秀论文竞赛用瑞刊在1873年提出的射流振动法测定?获得了卡尔斯堡基金会的一笔助学金,从而有机会到英国剑桥大学卡文迪许实验室,跟随当时最有权威的物理学家J.J·汤木生 进行深造。 但波尔和J.J·汤姆逊处得并不融洽,原因是波尔和J.J·汤姆逊 第一次见面时就指出了J.J.汤姆逊 一篇论文中一些他认为错误的地方。于是,在1912年春转到了曼彻斯特大学的卢瑟福实验室工作。 实验室里有许多被卢瑟福发现和吸引来的优秀青年人才,如盖革、马考瓦、马斯登、埃万斯、拉歇尔、法扬斯、莫寒莱、海鸟希、查兑克 、达尔文等,波尔和他们相处得非常好,并和其中大部人成了终生朋友。这当中关系最好的,除了卢瑟福之外,就是海鸟希了。这位匈牙利物理学家是一位十分机敏可爱的交谈伙伴,时时处处成为集体的中心。他帮助波尔了解实验室当前大家最关心的问题,熟悉实验室的每个成员,并且海鸟希还精通化学,而波尔正好极需要这方面的知识。 波尔在卢瑟福的实验室工作了四个多月,於1912年7月底回国,因为他将在8月1日举行婚礼。在卢瑟福实验室工作的四个多用里,波尔收获极大,他对卢瑟福衷心敬重,无论在为人方面还是在治学方面,卢瑟福都是他的楷模。两位伟大的物理学家之间深厚而纯朴的友谊就这样开始了,这一友谊延续了四分之一世纪,直到卢瑟福过早地离世。 1912年9月,波尔到哥本哈根大学担任编外副教授,主讲热力学的力学基础。波尔在讲课中表现出一个教师的非凡才干,不管多难理解的问题,他都讲得清清楚楚、饶有兴趣。 在上课的同时,波尔继续在理论上进行探索,1913年,他发表了著名论文《原子和分子的结构》,成为他迈向森严的科学王国的伟大起步。 1914年10月,波尔又应邀到英国曼彻斯特大学任副教授,主讲热力学、运动学、电磁学和电子理论,并继续进行实验研究和原子结构理论及带电粒子制动理论的研究,取得了丰硕的成果。随著波尔声望的不断提高,哥本哈根大学决定为波尔设立理论物理学教授职位,于是,波尔於1916年夏天回国,成为哥本哈根大学理论物理学教授。第二年,他又被选为丹麦皇家科学协会会员。 19l8年11月第一次世界大战结束后,卢瑟福又邀请波尔去担任他们不久前专门设置的哲学博士职务,但波尔为了发展丹麦的物理学研究而婉言谢绝了。 1920年9月,在波尔的不懈努力下,哥本哈根大学终於建成了理论物理研究所,这个研究所成了吸引年轻而有富有天才的理论学家和实验物理学家研究原子及微观世界问题的白心。 海森堡、克拉迈尔斯、狄拉克、泡利、赫韦希、哈尔特列、朗道、派耶尔斯等许多杰出的物理学家都先后在这里工作过。在研究所里,波尔充分发挥每个年轻人的才干和独创性,从不借助行政手段进行领导,也不喜欢用指示或命令,因而充满著集体主义和友善精神。环境没有拘束,工作集思广益,解决了许多现代物理学最深奥的课题,形成了著名的哥本哈根学派,而波尔成了这一大学派的领袖。有人问波尔他的学派成功的奥秘何在,波尔回答说:"我从来不怕在青年人面前出丑。" 波尔的每一天都被工作挤得满满的,即使晚年也像青年时代一样精力充沛,这使许多人感到惊奇。他不习惯使用时间表,从来不按工作计划工作,在节日和假日里也常常工作,甚至从挪威滑雪归来也不止一次地带回突然成熟的思想,在乘船远航时也不停止工作。因此,并不是每个人都能给波尔做助手的。要做他的助手,不仅要有坚强的神经系统,而且要放弃几乎全部的个人自由。因为这位导师在一天24小时内,随时都可能来找你谈一谈有关当前主要问题的复杂性,或者谈一谈他忽然想到的一个什麼主意,或者让你帮助他校正某种见解等。 1922年,波尔因对研究原子的结构和原子的辐射所做得重大贡献而获得诺贝尔物理学奖。为此,整个丹麦都沉浸在喜悦之中,举国上下都为之庆贺,波尔成了最著名的丹麦公民。为了支持正义与和平,波尔将自己的诺贝尔金质奖章捐给了芬兰战争。后来,人们又为他募集黄金重铸了一枚,永远陈列在丹麦博物馆里。 1924年6月,波尔被英国剑桥大学和曼彻斯特大学授予科学博士名誉学位,剑桥哲学学会接受他为正式会员,12月又被选为俄罗斯科学院的外国通讯院士。 1927年初,海森堡、玻恩、约尔丹、薛定谔、狄拉克等成功地创立了原子内部过程的全新理论 量子力学,波尔对量子力学的创立起了巨大的促进作用。 1927年9月,波尔首次提出了"互补原理",奠定了哥本哈根学派对量子力学解释的基础,并从此开始了与爱因斯坦持续多年的关於量子力学意义的论战。爱因斯坦提出一个又一个的想像实验,力求证明新理论的矛盾和错误,但波尔每次都巧妙地反驳了爱因斯坦的反对意见。这场长期的论战从许多方面促进了破尔观点的完善,使他在以后对互补原理的研究中,不仅运用到物理学,而且运用到其他学科。 1933年,希特勒夺取了政权,德国成了法西斯国家,这对於丹麦来说是一个危险的邻邦。波尔不是一个对什麼都不关心的人,他既关心政治时事、国家生活,也关心国际事件。他对当时法西斯政权实行的种族迫害和政治迫害深感忧愁和愤怒,积极创立和参加了丹麦救援移民委员会,对从德国逃难到哥本哈根的科学家及其他难民,给予了尽力的支持相帮助。 1940年4月,德国侵占了丹麦,丹麦政府宣布投降。美国、英国等许多国家的大学打电报给波尔,邀请波尔全家到他们那里去避难和工作。波尔非常不安,友好的关心和对自己命运的焦虑打动著他的心。但是,这一切都没能动摇他留在自己的岗位 哥本哈根理论物理研究所的决心。 波尔相信,这一切都是暂时的,不久都会过去。因此,不应该陷入苦闷,要坚持下去继续工作,抵抗侵略者,为共同的斗争做出贡献。在以后的一段时间里,波尔日见消瘦,然而他却勇敢地和毫不妥协地坚持著。波尔不隐瞒自己的好恶爱憎,拒绝与侵略者合作并不与支持侵略者的人来往。 1943年9月,希特勒政权准备逮捕波尔,为了避免遭到迫害,波尔在反抗运动参加者的帮助下冒著极大的危险逃到了瑞典。在瑞典,他帮助安排了几乎所有的丹麦籍犹太人逃出了希特勒毒气室的虎口。过了不久,林德曼来电报邀请波尔到英国工作,波尔在乘坐一架小型飞机飞往英国的途中几乎因缺氧而丧生。在英国待了两个月后,根据美国总统罗斯福和英国首相丘吉尔签署的魁北克协议,美国和英国物理学家应密切合作共同工作。于是波尔被任命为英国的顾问与查德威克等一批英国原子物理学家远涉重洋去了美国,参加了制造原子弹的曼哈顿计划。波尔由於担心德国率先造出原子弹,给世界造成更大的威胁,所以也和爱因斯坦一样,以科学顾问的身分积极推动了原子弹的研制工作。 但他坚决反对在对日战争中使用原子弹,也坚决反对在今后的战争中使用原子弹,始终坚持和平利用原子能的观点。他积极与美国和英国的国务活动家取得联系,参加了禁止核实验,争取和平、民主和各民族团结的斗争。对於原子弹给日本造成的巨大损失,他感到非常内疚,并为此发表了《科学与文明》和《文明的召唤》两篇文章,呼吁各国科学家加强合作,各平利用原子能,对那些可能威胁世界安全的任何步骤进行国际监督,为各民族今后无忧无虑地发展自己的科学文化而斗争。 1945年8月20日,波尔又回到了丹麦,继续担任理论物理研究所所长,并被重新选为丹麦皇家科学协会主席。在以后的日子里,波尔不仅积极参加和领导原子物理的理论研究,而且继续致力於发展原子能的和平利用。随著时间的推移,波尔为争取和平事业和国际合作而进行的斗争广为人们所知,他的威信越来越高,影响越来越大了。因此,1957年他理所当然的被授予第一届"和平利用原子能"奖。 波尔成了丹麦的骄傲,全国广泛举行了庆祝他诞辰60周年和70周年的活动。在庆祝他60周年诞辰时,为他建立了40万克朗的独立基金,以便他用来鼓励各种研究活动。在祝他70周年诞辰时,国王授予他丹麦一级勋章,政府和科协会决定设立铸有他头像的波尔金质奖章,用来奖励那些有卓越贡献的现代物理学家。 波尔在暮年时,仍然积极参加组织活动和社会活动,为巩固各国科学家的国际合作而到处奔波,直到1962年11月18日与世长辞。 从此,人们矢去了一位天才的科学家和思想家,一位争取世界和平和各国人民相互谅解的战士,一位纯朴、诚实、善良和平易近人的全人类的朋友。世界上许多国家约有关机构给丹麦皇家科学协会发来了无数唔电、信函,沉痛悼念这位科学巨人。 12月14日,隆重举行了纪念波尔的大会,国王夫妇、波尔的妻子、儿子、儿媳及许多波尔的朋友和同事出席了大会。大会的报告介绍了波尔对物理学和哲学的发展所做的不朽贡献,以及他的活动对皇家科学协会的重大意义。夜晚,大家自发地聚集在一起,倾谈对波尔的怀念。 为了纪念波尔,哥本哈根大学理论物理研究所被命名为尼尔斯.波尔研究所。

设氢原子核外电子的速度为 v ,可能的轨道半径为 r ,则有 ,所以核外电子的总能量为 ,由题意知 ,故有 ,由玻尔的跃迁理论有 ,即 ,故巴耳末线系的波长符合下述公式 。

玻尔分析了卢瑟福提出的原子模型的缺陷,对它作了大胆的改进。1913年,由卢瑟福推荐,玻尔在《哲学杂志》上发表了题为《原子和分子结构》的文章,他把光的量子学说和原子的有核模型结合起来,提出了关于原子结构的“玻尔模型”,后人也把它叫做“卢瑟福-玻尔模型”。玻尔利用这一模型,对只有一个电子的氢原子和类氢原子的谱线频率作出了相当成功的解释。玻尔的理论在量子论发展历史上曾经起过很大的作用,有人甚至称他的论文《原子和分子结构》发表的日期是“现代原子理论的诞生日”。爱因斯坦也称赞玻尔的理论是“最伟大的发现之一”。由于玻尔对原子物理学做出了开拓性的贡献,荣获了1922年底的诺贝尔物理学奖。

爱因斯坦发表玻尔的论文

爱因斯坦至少三项重大成就:提出光量子假设(光子说),建立相对论(狭义相对论和广义相对论),创建现代宇宙学理论.爱因斯坦的重大成就开始于1905年,这一年后来被科学界称为“爱因斯坦奇迹年”:1905年3月,爱因斯坦应用普朗克的能量子假说,提出光量子假设(后来称为光子说),一举解决了光电效应的疑难问题;4月,爱因斯坦向苏黎世大学提交论文《分子大小的新测定法》,以强有力的论据最终证明了原子论学说;5月,爱因斯坦完成了近代物理学划时代性的论文《论动体的电动力学》,独立而完整地提出了狭义相对性原理,建立起狭义相对论,开创物理学的新纪元;6月,爱因斯坦在《关于光的产生和转化的一个启发性观点》(以及1906年3月的《论光的产生与吸收》)中提出了光量子假设,创立了光子说,重新强调了光的粒子性;同年9月,爱因斯坦在论文《物体的惯性同它所含的能量有关吗》中提出了质能关系一个原始形式,后经改写即成为狭义相对论中最著名的一个公式:质能方程(E=mc^2);1906年,爱因斯坦完成了关于固体比热《普朗克的辐射和比热理论》的论文,创建了固体比热量子理论的第一个模型:爱因斯坦模型;1907年,爱因斯坦提出等效原理,迈出了创建广义相对论的第一步;1913年,爱因斯进一步阐述了广义相对性原理;1915年11月25日,爱因斯坦成功地建立起广义相对论的引力场方程(著名数学家希尔伯特比爱因斯坦早五天用数学方法推导出了场方程,因此场方程有时也称为希尔伯特-爱因斯坦引力场方程),完成了广义相对论的理论创建工作;1916年是爱因斯坦的又一个取得重大成就的年份,3月,爱因斯坦完成了《广义相对论的基础》的总结性论文,广义相对论体系完整地建立起来;5月,爱因斯坦提出宇宙空间有限无界的假说;8月,爱因斯坦完成了《关于辐射的量子理论》,总结量子理论的发展,提出了受激辐射理论,成为激光技术的理论基础,同年爱因斯坦进一步指出光子也存在动量(1927年康普顿效应的发现完全证实了爱因斯坦的光量子假设);1917年,爱因斯坦应用他创立的广义相对论研究整个宇宙,建立起第一个自洽的宇宙模型(为了保持静态的宇宙,爱因斯坦在他的引力场方程中添加了一个“宇宙常数”项,以保持模型稳定,1929年哈勃发现宇宙不是静态的,而是一直在膨胀的,后来爱因斯坦称“宇宙常数”是他“一生中最大的错误”),开创了在严格的理论基础之上的宇宙学研究的全新阶段;1921年,爱因斯坦因为在光电效应方面的研究成果获得诺贝尔物理学奖(不是相对论,直到第二次世界大战结束以后,相对论才获得了广泛的认可和高度的赞誉);1922年,爱因斯坦完成了关于统一场论的第一篇论文,开创了统一场理论研究的先河(他试图将电磁场和引力场统一起来,但未能获得成功);1927年,爱因斯坦参加了第五届布鲁塞尔索尔维物理讨论会,开始同哥本哈根学派就量子力学的解释问题进行激烈的论战,发表《牛顿力学及其对理论物理学发展的影响》,从此他与量子力学“正统理论”分道扬镳,对于量子力学后来的发展产生了深远的影响(爱因斯坦曾经与玻尔争论量子力学的完备性问题,提出了著名的“光子箱”理想实验,与同样著的名“薛定谔猫”佯谬一起构成了对“正统”量子力学理论的重大挑战);1934年,爱因斯坦同波多耳斯基和罗森合作发表了向哥本哈根学派挑战的论文,提出了著名的“ERP佯谬”,质疑量子力学的不完备性;1937年,爱因斯坦同英费尔德和霍夫曼合作完成论文《引力方程和运动问题》,从广义相对论的场方程推导出了物质的运动方程,进一步揭示了时空、物质和运动的深刻的内在联系,这是爱因斯坦取得的最后一项重大成就;除上述成果之外,爱因斯坦还取得了其它一些研究成果,同时致力于推动人类和平事业和科普宣传工作,所有的这些成果和努力极大地推动了科学技术的发展和人类社会的进步,爱因斯坦因此成为20世纪最伟大的物理学家.

第五次索尔维会议结束以后,爱因斯坦并没有放弃对世界的经典描述,他仍然认为量子力学对世界本质的解释并不完备。 比如说,波恩的概率解释,爱因斯坦认为这只能算得上是对一个系统的概率描述,并不符合单个量子客体,因为爱因斯坦认为单个量子客体具有确定的物理量,只是我们现在还无法把握而已,所以只能退而求其次,给出概率解释。 同样的,他也对测不准原理很不满意,他决定这次从测不准原理入手,证明量子力学的逻辑不一致,从而证明量子力学现在还算不上是一个完备的理论。 1930年的10月,爱因斯斯坦在第六次索尔维会议上,提出了一个思想实验,这就是我们熟知的“爱因斯坦光盒”。 爱因斯坦说,现在有一个不透明的箱子,在箱子上开有一个小孔,里面装着一些光子,还有一个钟表,这个钟表作为计时装置链接这一个快门,可以控制小孔的开合。 整个装置用弹簧挂在支架上,下面有一个配重G,现在我们把箱子里的钟表和外面的钟表对好钟,也就是两个钟表的时间是同步的。 现在箱子上小孔处的快门瞬间打开,然后闭合,在这个过程中只允许一个光子逃逸,快门打开到闭合,这个极短的时间Δt可以根据外面的钟表测出来,因为里面的钟表和外面的钟表是同步的。 所以我们现在就测量出了时间,这个物理量,由于光子飞出去以后,整个箱子的质量会减小,质量变化的量Δm可以根据箱子上的指针测量出来; 然后根据,质能方程我们就能够知道能量的变化量ΔE,这样我们就同时准确地测量出了时间和能量这两个物理量。 那么你哥本哈根说的测不准关系就不成立。玻尔听了这个思想实验以后,瞬间就懵了,感觉这次像是被爱因斯坦击中了要害。 他一时间想不出这个思想实验那里有问题,玻尔整天都是面如死灰,闷闷不乐,海森堡和泡利还安慰玻尔说,没事没事,爱因斯坦的光盒肯定哪里有问题。 在当天会议结束以后,他们返回住处的的时候,就有了这张照片。 爱因斯坦笑了,笑得像一个刚考了满分的孩子。而玻尔的表情就显得比较凝重,他在后面追着爱因斯坦,不知道说着什么。 当天晚上,玻尔在房间里一直转圈,他思考问题的时候经常这样,据海森堡的回忆,当天晚上玻尔睡得很晚,第二天早晨,当他们再次见到玻尔的时候,玻尔的脸上已经乐开了花。 因为他想到了爱因斯坦错在了哪里?而且爱因斯坦要是知道了他所犯的错误,估计会被气得说不出话来。 玻尔说,光子逃逸以后确实能测量出能量的变化,但是当光子逃逸以后,整个箱子会在重力场中的位置发生变化,由于广义相对论的红移效应,这就导致了箱子内的钟表的时间发生改变,当箱子内的钟表不再和外面的钟表同步的时候,我们就无法精确的测量时间了。 你看看,爱因斯坦为了攻击量子力学,竟然把自己的相对论给忘了。爱因斯坦只能接受玻尔的反驳。 在与玻尔两次的交锋当中,爱因斯坦都败下阵来,其实他也承认量子力学肯定是包含了某种最高的真理,但是在他的内心深处总是觉得量子力学还不完备。 所以从以后,爱因斯坦也不再说量子力学的逻辑不一致,他将攻击方向转向了证明量子力学还不是一个完善的理论,也就是存在隐变量。 隐变量就是隐藏着的变量,还没有被我们发现的现实性的物理量,爱因斯坦认为,正是因为量子力学没有考虑到这个变量,所以才有了几率解释,才有了测不准关系。 比如说,以前我们没有发现原子的时候,我们就无法对气体表现出来的温度和压力做出描述,那么原子就是一个隐变量,当我们确认了有原子存在的时候,只要算出他们的平均动能,那气体的温度和压力就得到了解释。 在第六届索尔维会议结束以后,爱因斯坦就和玻尔很少有接触了,1934年因为德国 社会 的问题,爱因斯坦来到了美国,他选择在普林斯顿度过他的后半生。 在普林斯顿大学,爱因斯坦只有两件事,他关于统一场论的梦想,就像麦克斯韦当年统一电磁和光学一样,他希望将电磁理论和引力统一起来。 这个方向和逻辑没有问题,现在的物理学的终极任务就是寻找可以描述万物的统一理论,只需要一个方程就可以解释四种基本自然力。 爱因斯坦是第一个尝试和上帝对话的人,虽然他失败了,但他的理想值得我们每一个人的尊重,而且爱因斯坦还觉得,只要有了统一场论,就能证明量子力学是不是完备。 因为量子力学应该是统一场论的副产品。这个逻辑也没有问题,毕竟统一场论是万物至理。 不过就在爱因斯坦还抓着量子力学的尾巴不放的时候,量子力学已经在各个方面展现出了他的魔力,年轻的物理学家不再讨论量子力学是否完备,也不在乎量子力学对世界的解释是否违反直觉。 他们利用量子力学解决了很多的问题,也做出了很多新的发现,比如在1930年,剑桥的查德威克就发现了中子,费米和他的团队发现了中子可以诱发重核裂变,开创了核物理。 1932年,卢瑟福的实验室制造出了第一台粒子加速器,开启了高能物理的时代。与此同时,人们还发现了中微子的迹象,等等。 所以在当时的年轻人眼里,爱因斯坦就是一个无法接受量子力学的“老白痴”,说爱因斯坦是过去的 历史 遗迹,爱因斯坦也承认在普林斯顿就有一些年轻人这样说他。 因此,就很少有研究生去找爱因斯坦,毕竟爱因斯坦的研究方向也很难出啥成果。不过,毕竟爱因斯坦是可以比肩牛顿的人,总会有一些小迷弟,比如罗森,25岁,1934年从麻省理工过来给爱因斯坦当助手,他俩还合作发表过一篇论文,也就是我们现在熟知的爱因斯坦-罗森桥,说的是可以穿越时间和空间的虫洞。 还有一位小迷弟叫波多尔斯基,39岁,俄罗斯人,1935年初,爱因斯坦告诉他俩,自己已经有了可以证明量子力学不完备的想法了,并且口述了自己的观点。 罗森负责计算,波多尔斯基负责写文章,3月底他们就完成了这篇只有4页纸的论文,史称爱因斯坦-波多尔斯基-罗森论文,也就是众所周知的EPR论文。 论文题目为:可以认为量子力学所描述的物理现实是完备的吗?当然论文中给出了否定的答案。 由于时间的关系,我们下节课在聊,EPR论文都说了啥。

尼尔斯波尔发表的论文

玻尔(1885-1962),全名:尼尔斯·亨瑞克·戴维·玻尔(Niels Henrik David Bohr)丹麦人,是原子物理学的奠基人。他在研究量子运动时,提出了一整套新观点,建立了原子的量子论,首次打开了人类认识原子结构的大门,为近代物理研究开辟了道路。近代物理学大厦的基础-量子力学,是以玻尔为领袖的一代杰出物理学家集体才华的结晶。1922年诺贝尔物理学奖获得者。他是一位卓越的科学研究工作的领导和组织者,1921年创建了哥本哈根理论物理研究所,并逐渐在物理学界形成了举世闻名的“哥本哈根学派”。

玻尔从1905年开始他的科学生涯,一生从事科学研究,整整达57年之久。他的研究工作开始于原子结构未知的年代,结束于原子科学已趋成熟,原子核物理已经得到广泛应用的时代。他对原子科学的贡献使他无疑地成了20世纪上半叶与爱因斯坦并驾齐驱的、最伟大的物理学家之一。1.原子结构理论在1913年发表的长篇论文《论原子构造和分子构造》中创立了原子结构理论,为20世纪原子物理学开劈了道路。2.创建著名的“哥本哈根学派”1921年,在玻尔的倡议下成立了哥本哈根大学理论物理学研究所。玻尔领导这一研究所先后达40年之久。这一研究所培养了大量的杰出物理学家,在量子力学的兴起时期曾经成为全世界最重要、最活跃的学术中心,而且至今仍有很高的国际地位。 3.创立互补原理 1928年玻尔首次提出了互补性观点,试图回答当时关于物理学研究和一些哲学问题。其基本思想是,任何事物都有许多不同的侧面,对于同一研究对象,一方面承认了它的一些侧面就不得不放弃其另一些侧面,在这种意义上它们是“互斥”的;另一方面,那些另一些侧面却又不可完全废除的,因为在适当的条件下,人们还必须用到它们,在这种意义上说二者又是“互补”的。按照玻尔的看法,追究既互斥又互补的两个方面中哪一个更“根本”,是毫无意义的;人们只有而且必须把所有的方面连同有关的条件全都考虑在内,才能而且必能(或者说“就自是”)得到事物的完备描述。玻尔认为他的互补原理是一条无限广阔的哲学原理。在他看来,为了容纳和排比“我们的经验”,因果性概念已经不敷应用了,必须用互补性概念这一“更加宽广的思维构架”来代替它。因此他说,互补性是因果性的“合理推广”。尤其是在他的晚年,他用这种观点论述了物理科学、生物科学、社会科学和哲学中的无数问题,对西方学术界产生了相当重要的影响。玻尔的互补哲学受到了许许多多有影响的学者们的拥护,但也受到另一些同样有影响的学者们的反对。围绕着这样一些问题,爆发了历史上很少有先例的学术大论战,这场论战已经进行了好几十年,至今并无最后的结论,而且看来离结束还很遥远。4.在原子核物理方面的成就作为卢瑟福的学生,玻尔除了研究原子物理学和有关量子力学的哲学问题以外,对原子核问题也是一直很关心的。从20世纪30年代开始,他的研究所花在原子核物理学方面的力量更大了。他在30年代中期提出了核的液滴模型,认为核中的粒子有点像液滴中的分子,它们的能量服从某种统计分布规律,粒子在“表面”附近的运动导致“表面张力”的出现,如此等等。这种模型能够解释某些实验事实,是历史上第一种相对正确的核模型。在这样的基础上,他又于1936年提出了复合核的概念,认为低能中子在进入原子核内以后将和许多核子发生相互作用而使它们被激发,结果就导致核的蜕变。这种颇为简单的关于核反应机制的图像至今也还有它的用处。当L.迈特纳和O.R.弗里施根据O.哈恩等人的实验提出了重核裂变的想法时,玻尔等人立即理解了这种想法并对裂变过程进行了更详细的研究,玻尔并且预言了由慢中子引起裂变的是铀-235而不是铀-238。他和J.A.惠勒于1939年在《物理评论》上发表的论文,被认为是这一期间核物理学方面的重要成就。众所周知,这方面的研究导致了核能的大规模释放。

1885年10月7日,玻尔生于哥本哈根,父亲克里斯丁·玻尔是哥本哈根大学的生理学教授,母亲出身于一个富有的犹太人家庭,从小受到良好的家庭教育,并爱好足球,曾经和弟弟哈那德·玻尔共同参加职业足球比赛。1903年,18岁进入哥本哈根大学数学和自然科学系,主修物理学。1907年,玻尔以有关水的表面张力的论文获得丹麦皇家科学文学院的金质奖章,并先后于1909年和1911年分别以关于金属电子论的论文获得哥本哈根大学的科学硕士和哲学博士学位。随后去英国学习,先在剑桥J.J.汤姆孙主持的卡文迪许实验室,几个月后转赴曼彻斯特,参加了曼彻斯特大学以E.卢瑟福为首的科学集体,从此和卢瑟福建立了长期的密切关系。1912年,玻尔考察了金属中的电子运动,并明确意识到经典理论在阐明微观现象方面的严重缺陷,赞赏普朗克和爱因斯坦在电磁理论方面引入的量子学说。创造性地把普朗克的量子说和卢瑟福的原子核概念结合了起来。1913年初,玻尔任曼彻斯特大学物理学教时,在朋友的建议下,开始研究原子结构,通过对光谱学资料的考察,写出了《论原子构造和分子构造》的长篇论著,提出了量子不连续性,成功地解释了氢原子和类氢原子的结构和性质。提出了原子结构的玻尔模型。按照这一模型电子环绕原子核作轨道运动,外层轨道比内层轨道可以容纳更多的电子;较外层轨道的电子数决定了元素的化学性质。如果外层轨道的电子落入内层轨道,将释放出一个带固定能量的光子。1916年任哥本哈根大学物理学教授。1917年当选为丹麦皇家科学院院士。1920年创建哥本哈根理论物理研究所并任所长,在此后的四十年他一直担任这一职务。1921年,玻尔发表了《各元素的原子结构及其物理性质和化学性质》的长篇演讲,阐述了光谱和原子结构理论的新发展,诠释了元素周期表的形成,对周期表中从氢开始的各种元素的原子结构作了说明,同时对周期表上的第72号元素的性质作了预言;1922年,第72号元素铪的发现证明了玻尔的理论,玻尔由于对于原子结构理论的贡献获得诺贝尔物理学奖。他所在的理论物理研究所也在二三十年代成为物理学研究的中心。1923年,玻尔接受英国曼彻斯特大学和剑桥大学名誉博士学位。1930年代中期,研究发现了许多中子诱发的核反应。玻尔提出了原子核的液滴模型,很好地解释了重核的裂变。玻尔认识到他的理论并不是一个完整的理论体系,还只是经典理论和量子理论的混合。他的目标是建立一个能够描述微观尺度的量子过程的基本力学。为此,玻尔提出了著名的“互补原理”,即宏观与微观理论,以及不同领域相似问题之间的对应关系。互补原理指出经典理论是量子理论的极限近似,而且按照互补原理指出的方向,可以由旧理论推导出新理论。这在后来量子力学的建立发展过程中得到了充分的验证。玻尔的学生海森堡在互补原理的指导下,寻求与经典力学相对应的量子力学的各种具体对应关系和对应量,由此建立了矩阵力学。互补理论在狄拉克、薛定谔发展波动力学和量子力学的过程中起到了指导作用。在对于量子力学的解释上,玻尔等人提出了哥本哈根诠释,但遭到了坚持决定论的爱因斯坦及薛定谔等人的反对。从此玻尔与爱因斯坦开始了玻尔-爱因斯坦论战,最有名的一次争论发生在第六次索尔维会议上,爱因斯坦提出了后来知名为爱因斯坦盒子的问题,以求驳倒不确定性原理。玻尔当时无言以对,但冥思一晚之后发现巧妙的进行了反驳,使得爱因斯坦只得承认不确定性原理是自洽的。这一争论一直持续至爱因斯坦去世。1937年5、6月间,玻尔曾经到过中国访问和讲学。期间,玻尔和束星北等中国学者有过深度学术交流,玻尔称束星北是爱因斯坦一样的大师。束星北的文章《引力与电磁合论》《爱因斯坦引力理论的非静力场解》是相对论早期的重要论述。1939年,玻尔任丹麦皇家科学院院长。第二次世界大战开始,丹麦被德国法西斯占领。1943年玻尔为躲避纳粹的迫害,逃往瑞典。1944年,玻尔在美国参加了和原子弹有关的理论研究。1945年,玻尔回到丹麦,此后致力于推动原子能的和平利用。1947年,丹麦政府为了表彰玻尔的功绩,封他为“骑象勋爵”。1952年,玻尔倡议建立欧洲原子核研究中心(CERN),并且自任主席。1955年,玻尔参加创建北欧理论原子物理学研究所,担任管委会主任。同年丹麦成立原子能委员会,玻尔被任命为主席。1962年11月18日,玻尔因心脏病突发在丹麦的卡尔斯堡寓所逝世,享年77岁。去世前一天,他还在工作室的黑板上画了当年爱因斯坦那个光子盒的草图。1965年玻尔去世三周年时,哥本哈根大学物理研究所被命名为尼尔斯·玻尔研究所。1997年IUPAC正式通过将第107号元素命名为Bohrium,以纪念玻尔。其子奥格·尼尔斯·玻尔也是物理学家,于1975年获得诺贝尔物理学奖。

玻璃论文发表

在中国,绝大多数货车是略微向后倾斜的。其实这是中国车辆种类少的原因,少见多怪这个很容易理解吧?在美国,如同轿车那么斜的货车很常见, 他们还有直立的甚至向前倾斜的。中国向前倾斜的也有,比如仿制俄罗斯的火箭炮拖车就是这样的。早期的轿车也是直立的,有时出于美观向后略微倾斜。随着汽车的发展,出于减少空气阻力的考虑,高速的轿车挡风玻璃都变成向后倾斜以获得更好的空气动力性。货车一般车速比较慢,而且货车因为重载,风阻占整个行驶阻力的份额比较少,再者货车驾驶舱占整个车的尺寸很小,风挡形状对整个车没多少影响。所以货车对挡风玻璃的倾斜没那么多考虑。通常,玻璃略微向前倾斜会有最好的观察性能,但这样会造成重量增加,所以一般这种形状的很少见到。略微向后倾斜在结构重量、使用空间和观察性能方面得到了最好的统一,所以大多数汽车都这样布置包括一些轿车。大角度向后倾斜因为玻璃的反光和阳光对司机的干扰,因此观察性能很差,另外空间利用上也差,结构重量变大,这是为了获得高速性能而做出的妥协。这种结构对前下方的视线也被阻挡了,所以对于驾驶员高高在上的货车来说完全不可取,即使轿车中也用得不是很多。

在 块状金属玻璃(BMGs) 中引入更松散的原子堆积区域,可以促进塑性变形,使BMGs在室温下更具延展性。在此, 来自北京 科技 大学的吕昭平等研究者,提出了一种不同的合金设计方法,即掺杂非金属元素形成密集的填充图案。 相关论文以题为“Substantially enhanced plasticity of bulk metallic glasses by densifying local atomic packing”发表在Nature Communications上。

论文链接:

块状非晶玻璃从液态继承了无序的非晶结构。由于缺乏作为低势垒变形载体的晶体缺陷,如位错和堆垛缺陷,BMGs通常比它们的晶体对应物更强、更硬。然而,BMGs合金在室温下拉伸塑性极低,在载荷作用下往往发生灾难性破坏,严重阻碍了其广泛应用。与晶体相不同的是,BMGs的无序原子堆积不易定量描述,只有有限的方法来调整它们的结构-性能关系。因此, 调整BMGs的力学性能以克服其室温脆性,一直是一个长期存在的挑战。

在远低于玻璃化转变温度的BMGs中,塑性变形主要是由于局部扩散跃迁或被称为剪切转变区(shear transformation zone, STZs)的原子团簇的局部共同剪切事件,即一组原子共同克服了局部原子重排的能量势垒鞍点。 变形能力源于金属键合所固有的灵活性: 离域电子允许金属原子在彼此之间滑动而不受键合断裂的影响,而键合断裂有利于损伤而非剪切,例如在离子玻璃中。尽管局部剪切转变开始的位置仍然难以预测,但人们普遍认为,在BMGs中引入更松散的填充区域,可以有效地促进局部塑性事件。这些区域具有较高的局部势能,在加载时容易发生非弹性变形,表现为类液体行为。 因此,增加松散填充区域的数量,可以有效地提高BMGs的塑性。

这种材料设计路线,通过低温热循环或严重塑性变形等方法提高了BMGs的塑性,这些方法通常通过增加密度较低区域的可用性来增强结构波动。然而,目前大多数提高GMGSD塑性的方法,通常会由于引入更松散的填充区域而降低热稳定性和屈服强度。相比之下,松散填充区域的湮没通常被认为可以提高强度和硬度,并改善热稳定性,但往往会恶化塑性,正如BMGs中退火诱发的脆化所证明的那样。

在这里,研究者报告了一个新的设计概念,以改善BMGs的变形能力。研究者通过掺杂非金属元素(NMEs)来增加BMG的结构波动,这些元素具有较小的原子尺寸和与组成BMG的元素的混合负热 。研究者选择的候选元素是氧、氮、碳和硼,分别添加到Ti-、Zr-和Cu基BMGs中,同时,确定了特别合适的掺杂体系(范围从0.1%到0.3%),因此,研究者观察到强度和延展性的显著提高。这可以归因于在非金属溶质周围形成的局部致密堆积区域(LDPRs)体积分数的增加,同时避免了脆性二次相的形成。这些LDPRs的邻近区域变得相对松散,从而增强了材料的结构波动,促进了局部剪切,极大地提高了材料的宏观塑性和韧性,并增强了强度。在热力学的指导下,根据与这些掺杂剂相关的适当的负混合热,该方法原则上是通用的,可以用于广泛改善MGs性能。

图1 基底与掺杂ZrTiHfCuNi BMGs材料的力学行为。

图2 基合金纳米压痕探针τmax的相对频率分布。

图3 研究了基合金和O0.2、B0.2、O0.3掺杂合金的低温比热容实验数据。

图4 低温下BMGs中γ弛豫的研究。

图5 基合金和O掺杂合金的局部原子堆积和剪切响应的MD模拟。

图6 增强BMGs结构异质性的两种方法示意图。

综上所述,目前的研究结果表明了如何通过不同的设计概念成功地克服BMGs的室温脆性。这是通过形成塑料顺应区,形成周围的密集填充团簇包含间隙掺杂剂。在这种方法中,小的间隙原子被称为“簇形成者”,因为它们体积小,热力学上的考虑,以及它们部分的共价键贡献。由此产生的结构不均一性的增加被证明是大幅度提高BMGs塑性的有效方法,在没有损失的情况下,而是在强度上增加。因此,适当掺杂氧、硼、碳、氮等NMEs,可以同时提高塑性、强度、热稳定性,甚至增强GFA。 这种组合在玻璃成型、可塑性、强度和成本之间取得了良好的平衡,为符合塑料和耐损伤的BMGs开辟了全新的合成、加工和应用范围。 (文:水生)

南洋理工大学开发了可以吸收阳光的智能窗户。 窗户是建筑物中常见的建筑材料。最近,新加坡南洋理工大学开发了一种特殊的“智能窗户”,可以在白天吸收太阳能并在夜间释放热量,从而将建筑物的空调能耗降低了45%。研究小组在《焦耳》杂志上发表了该论文。 据报道,智能窗户在白天吸收阳光,在夜间释放热量。该窗口由两块普通玻璃组成,其溶液由获得专利的水凝胶,水和稳定剂组成。 白天,液体将吸收并存储太阳的热能,从而减少进入房间的热能,并减少对空调的需求。另外,液体在加热时将变得不透明,从而减少了阳光进入房间并进一步保持房间凉爽。 到了晚上,液体冷却并释放出热能,部分能量进入房间,这也减少了对空调的需求。 此外,与传统的双层玻璃窗户相比,该智能窗户可将室外噪音降低15%。 根据测试,这种类型的窗户可以将办公大楼的空调能耗降低45%。目前,南洋理工大学正在寻找合作伙伴,希望该技术可以商业化以实现节能减排。

玻璃纤维论文发表

探索恐龙灭绝之谜 建一 地球历史上的中生代曾经虫息过种类繁多的爬行动物一一恐龙。世界上已经发现的恐龙化石多达几百种,这样一个主宰地球l.6亿年之久的庞大动物类群在白垩纪末期却突然覆灭。写下了生物史上令人费解的一章。 迄今为止,各种有关恐龙灭绝原因的解释均不能自圆其说。近年来美国物理学家路易·阿尔瓦雷兹提出的小行星撞击地球的假说备受各方关注。他在研究意大利古比奥地区白垩纪末期地层中的黏上层时发现微量元素枣铱的含量比其他时期地层陡然增加了30-160多倍,之后人们从全球多处地点取样检测都得出同样结论,白垩纪末期地层中铱元素合量异常增高的确是普遍性的。于是阿尔瓦雷兹认为在白垩纪末期有一颗直径约10公里的小行星撞击了地球,产生的尘埃遮天蔽日。造成地表气候环境巨变,导致了恐龙的消亡。但是,用小行星撞击地球来解释岩层中铱含量增加和恐龙灭绝存在许多疑点。 1.小行星一般都是由硅、铁类元素构成,这样巨大的小行星落在地球表面即使经历漫长岁月也不可能踪迹全无,而在地球上从未发现有这样大型的陨石; 2.白垩纪末期的岩层大部分是熔岩冷却形成的火成岩,由尘埃堆积而成的沉积岩只占地表很小一部分。仅一颗小行星撞击扬起的尘埃能够把当时地球上绝大多数动植物埋入深达几千米的岩层中吗? 3.一颗小行星所含的铱元素就能均匀的散布以至覆盖整个地球表面吗?铱元素在地球深处也同样存在,为什么只推测铱元素来自地球以外而不是来国地球内部呢? 我们知道,地球内部的热核反应会不断积聚起巨大能量,一旦地壳承受不住时,内部压力便冲破地壳突然释放形成大爆发。铱枣这种主要存在于地核内的元素在大爆发时通过熔岩喷发从地球深处被带到地壳表层,而公认的标志白垩纪结束的黏土层正是由大量火山灰尘堆积形成。所以,白垩纪末期地层中铱含量普遍增多证明当时地壳曾发生了普遍性剧烈喷发。 化石档案告诉我们,绝大多数恐龙的死亡时间和绝大部分恐龙蛋化石的产出年代是在白垩纪末期,已发现的恐龙和恐龙蛋化石全部保存在富含铱的薄黏土层下的地层中,这与地质学界认定的白垩纪末期大规模造山运动等一系列全球性地壳构造剧烈变动的时间相吻合。 近年来在内蒙古巴音满都呼白垩纪末期的地层里出土的数百个原角龙和甲龙化石中,大量完整的恐龙骨架成群堆积在一起,从遗骸的埋葬姿势看,它们是在极度痛苦中死去,其中还有整群的恐龙幼仔骨架。这一情景显示它们是灾难性的集体死亡,而且死后尸体迅速在原地被埋葬(在世界其它地方的恐龙化石许多都有相似的死亡特征)。同时发现当地含化石的岩层是一种砖红色的粉沙岩层,这种由大量火山灰堆积而成的层积岩正是形成化石的最佳环境。可以推测那次环境剧变的过程相当突然和短暂。因为,如果地球的环境是在较长时间逐渐变化,恐龙种群是缓慢消亡的话,它们是不会留下这么大量埋没时间相对集中的恐龙蛋化石和整群恐农幼仔化石的。所以,大多数恐龙应是在生存环境一直基本正常的情况下因突然降临的毁灭性灾难而大批死亡。 大量体现当时地球环境特征的动植物化右均显示,白垩纪末期以前,地球大气层的密度和厚度远远超过现在,地表较为平坦,全球都是非常温暖潮湿的气候环境。那时极地和赤道温差很小,20世纪80年代,加拿大地质学家曾在北极圈内的埃尔斯米尔岛发现了一片以水衫为主的化石树林,林中还有鳄等动物化石,说明极地曾具有热带的气候环境。自然环境是决定生命存在形态的主要因素,地球大爆发后,当那些身躯硕大的恐龙赖以生存的湿热环境不复存在时,即使有一些幸存下来,也无法适应相对寒冷干燥、有冷暖季节区分的气候环境而继续生在。所以,大多数恐龙的绝迹便自然而然了。 还有一部分幸免于难的恐龙(大多体形较小)以及一些早在保罗纪就已经进化为原始鸟类、哺乳类的动物、遵循自然界物竞天择、适者生存的法则,在相对恶劣的环境中,经过7000万年不断演变,大多数物种改变了原来的形态,由冷血动物进化为耐寒的能调节体温的热血动物(鸟类、哺乳类及人类)。当然,每次大规模物种进化后,总会有一些物种保留原状,像鱼类进化为两栖类后,鱼类还延续生存,爬行类中也有极少数(鳄、蜴蝎等)至今仍然保持了7000万年前恐龙的原始形态。 地球岩层中的生物遗迹揭示,在生物进化史上,每隔一定时期就会发生一次物种大灭绝,白垩纪末期的恐龙灭绝不是生物进化史上惟一的灾难,在更早的年代曾发生过绝大部分无脊椎动物在很短时间突然出现的“寒武纪生命大爆炸”现象。就像生物从单细胞向多细胞进化与爬行动物向哺乳动物进化一样,它们需要一个进化的过程(有1984年发现的我国云南澄江化石群为证)。 迄今没有明显的证据可以证明恐龙灭绝这种大规模生物灭绝是由小行星撞击引起的。但是,地球内部至今仍在继续的地质构造频繁变动的事实表明,周期性地壳构造变动引起的环境“灾变”在生物进化过程中始终起主导作用,当然,小规模的物种逐渐进化也是贯穿于整个生命演变过程。周期性天体爆发(如新星爆发)是包括地球在内的所有行星在演变过程中不可缺少的重要环节。那些山脉中的海洋生物化石和海底矿藏就是解释恐龙时代因地壳剧烈变动而终结的最好说明。 参考资料:

根据学术堂的了解,1966年,美籍华人高锟博士(C.K.Kao)和霍克哈姆(C.A.Hockham)发表论文,预见了低损耗的光纤能够应用于通信,敲开了光纤通信的大门。从此光纤在通信中的应用引起了人们的重视,很快在1970年8月,美国康宁公司首次研制成功损耗为20dB/km的光纤,光纤通信的时代由此开始了。美籍华人高锟博士(C.K.Kao)和霍克哈姆(C.A.Hockham)在分析了造成光纤传输损耗高的主要原因后指出,如能完全除去玻璃中的杂质,损耗就可降到20dB/km——相当于同轴电缆的水平,那么,光纤就可用来进行光通信。在这种预想的鼓舞下,Corning公司终于在1970年制出了20dB/km损耗的光纤,从而为光纤通信的发展铺平了道路。对光纤谱特性的研究发现,它有3个低损耗的传输窗口,即850nm的短波长窗口和1300nm、1500nm的长波长窗口。而后,随着新的制造方法的出现及工艺水平的不断提高,光纤损耗不断降低。到1979年,单模光纤在1550nm波长的损耗已降到0.2dB/km,接近石英光纤的理论损耗极限。而且光波频率高,光纤的带宽资源亦十分可观,是任何其他传输媒质无法比拟的。可以这样说,光纤是通信工作者梦寐以求的理想传输媒质,有近乎完美的品质:几乎是无限的带宽;几乎是零的损耗:几乎为零的信号失真几乎为零的功率消耗几乎为零的材料消耗几乎为零的占有空间几乎为零的价格。因此,光纤是信息高速公路基础,开创当今信息革命的新纪元。

小题1:C小题2:A 略

光导纤维是一种比头发丝还细的玻璃纤维丝。光导纤维于20世纪20年代就研制出来了,是用超纯石英玻璃在高温下拉制而成的,有很好的导光能力。但是由于传输过程中光波衰减太大,因此没有实用价值。那时光导纤维每千米衰减100分贝,所以如果用来通信,就要每隔20米设一个中继站,故未能在实际通信中应用。

1966年,英籍华人高琨博士发表一篇著名的论文,首次提出解决玻璃纯度和成分的问题,就能够得到光传输衰减很小的玻璃纤维。

高琨于1957年从伦敦大学毕业,1965年开始从事光通信研究。他先是进行砷化镓光电二极管为光源的通信系统研究,后来又对光的传输媒体进行研究,发现主要困难是光波在纤维媒体中的损耗大,材料太脆,制作困难。于是他从改变材料的成分、纯度和结构入手,以解决光波传输的损耗等问题。实验结果表明,石英玻璃材料中的杂质浓度是影响光波衰减的主要因素,并对波长为1微米的光波进行实验得到每千米只衰减1分贝的好成果。他经过反复实验取得了许多重要的数据,为撰写论文打下了良好的基础。于是一篇以《适合于光频率的绝缘介质纤维表面波导》为题的论文发表了。他充分论述了经过多年艰辛探索的理论结果和实验成果。论文很快引起各国科学家和工程技术人员的重视和赞扬,并被广泛引入实际应用。1970年,美国康宁玻璃公司首先拉制成功第一根每千米只衰减20分贝的石英玻璃光导纤维。此后,光导纤维的衰减率不断下降:1974年,每千米2分贝;1976年,每千米1分贝;1979年,每千米0.2分贝;80年代达到每千米0.16分贝;90年代研制的氟化物玻璃纤维衰减更低,已降到每千米0.03分贝。这种高纯度氟化物玻璃光导纤维的传输能力十分强,一次传送距离长达4800千米,可以在无中继站的情况下进行洲际光通信。今天,可以说,光导纤维已走过艰辛的历程,取得了辉煌的成绩。

光纤的结构呈圆柱形,中间是直径为8微米或50微米的纤芯,具有高折射率,外面裹上低折射率的包层,最外面是塑料护套,整个外部直径为125微米。特殊的制造工艺,特殊的材料,使光纤既纤细似发,柔顺如丝,又具高抗拉强度,大抗压能力。在性能上,对光波衰减小,可以多功能传输声音、图像和文字,适应低温环境,抗电磁干扰,耐放射性辐射,光波在光纤中传播不向外辐射电磁波,有极高的保密特点,信息以光速传送,速度无与伦比,光通信比电通信的容量要提高1~10亿倍,一根光纤能同时传输100亿个电话,或1000万套电视节目,容量之大,难以想像,使它理所当然地成为现代通信的“天之骄子”。光导纤维不仅可用于通信,还可以用作传送光能;可以制作医用胃窥镜和工业用内腔镜,用途广泛。

  • 索引序列
  • 玻尔发表的论文
  • 爱因斯坦发表玻尔的论文
  • 尼尔斯波尔发表的论文
  • 玻璃论文发表
  • 玻璃纤维论文发表
  • 返回顶部