首页 > 期刊论文知识库 > 函数的三种表达方式研究论文

函数的三种表达方式研究论文

发布时间:

函数的三种表达方式研究论文

函数是数学名词,代数式中,凡相关的两数X与Y,对于每个X值,都只有一个Y的对应值。这种对应关系就表示Y是X的函数。函数(function)的定义通常分为传统定义和近代定义,函数的两个定义本质是相同的,只是叙述概念的出发点不同,传统定义是从运动变化的观点出发,而近代定义是从集合、映射的观点出发。函数的近代定义是给定一个数集A,假设其中的元素为x,对A中的元素x施加对应法则f,记作f(x),得到另一数集B,假设B中的元素为y,则y与x之间的等量关系可以用y=f(x)表示,函数概念含有三个要素:定义域A、值域B和对应法则f。其中核心是对应法则f,它是函数关系的本质特征。函数,最早由中国清朝数学家李善兰翻译,出于其著作《代数学》。之所以这么翻译,他给出的原因是“凡此变数中函彼变数者,则此为彼之函数”,也即函数指一个量随着另一个量的变化而变化,或者说一个量。

在数学领域,函数是一种关系,这种关系使一个集合里的每一个元素对应到另一个(可能相同的)集合里的唯一元素。----A variable so related to another that for each value assumed by one there is a value determined for the other. 自变量,函数一个与他量有关联的变量,这一量中的任何一值都能在他量中找到对应的固定值。----A rule of correspondence between two sets such that there is a unique element in the second set assigned to each element in the first set. 函数两组元素一一对应的规则,第一组中的每个元素在第二组中只有唯一的对应量。函数的概念对于数学和数量学的每一个分支来说都是最基础的。functions 数学中的一种对应关系,是从非空集合A到实数集B的对应。简单地说,甲随着乙变,甲就是乙的函数 。精确地说,设X是一个非空集合,Y是非空数集 ,f是个对应法则 , 若对X中的每个x,按对应法则f,使Y中存在唯一的一个元素y与之对应 , 就称对应法则f是X上的一个函数,记作y=f(x),称X为函数f(x)的定义域,集合为其值域(值域是Y的子集),x叫做自变量,y叫做因变量,习惯上也说y是x的函数。 若先定义映射的概念,可以简单定义函数为:定义在非空数集之间的映射称为函数。 例1:y=sinx X=〔0,2π〕,Y=〔-1,1〕 ,它给出了一个函数关系。当然 ,把Y改为Y1=(a,b) ,a<b为任意实数,仍然是一个函数关系。 其深度y与一岸边点 O到测量点的距离 x 之间的对应关系呈曲线,这代表一个函数,定义域为〔0,b〕。以上3例展示了函数的三种表示法:公式法 , 表格法和图像法。 复合函数有3个变量,y是u的函数,y=ψ(u),u是x的函数,u=f(x),往往能形成链:y通过中间变量u构成了x的函数: x→u→y,这要看定义域:设ψ的定义域为U 。 f的值域为U,当U*ÍU时,称f与ψ 构成一个复合函数 , 例如 y=lgsinx,x∈(0,π)。此时sinx>0 ,lgsinx有意义 。但如若规定x∈(-π,0),此时sinx<0 ,lgsinx无意义 ,就成不了复合函数。 反函数就关系而言,一般是双向的 ,函数也如此 ,设y=f(x)为已知的函数,若对每个y∈Y,有唯一的x∈X,使f(x)=y,这是一个由y找x的过程 ,即x成了y的函数 ,记为x=f -1(y)。称f -1为f的反函数。习惯上用x表示自变量 ,故这个函数仍记为y=f -1(x) ,例如 y=sinx与y=arcsinx 互为反函数。在同一坐标系中,y=f(x)与y=f -1(x)的图形关于直线y=x对称。 隐函数若能由函数方程 F(x,y)=0 确定y为x的函数y=f(x),即F(x,f(x))≡0,就称y是x的隐函数。思考:隐函数是否为函数?因为在其变化的过程中并不满足“一对一”和“多对一” 多元函数设点(x1,x2,…,xn) ∈GÍRn,UÍR1 ,若对每一点(x1,x2,…,xn)∈G,由某规则f有唯一的 u∈U与之对应:f:G→U,u=f(x1,x2,…,xn),则称f为一个n元函数,G为定义域,U为值域。 基本初等函数及其图像 幂函数、指数函数、对数函数、三角函数、反三角函数称为基本初等函数。 ①幂函数:y=xμ(μ≠0,μ为任意实数)定义域:μ为正整数时为(-∞,+∞),μ为负整数时是(-∞,0)∪(0,+∞);μ=(α为整数),当α是奇数时为( -∞,+∞),当α是偶数时为(0,+∞);μ=p/q,p,q互素,作为的复合函数进行讨论。略图如图2、图3。 ②指数函数:y=ax(a>0 ,a≠1),定义成为( -∞,+∞),值域为(0 ,+∞),a>0 时是严格单调增加的函数( 即当x2>x1时,) ,0<a<1 时是严格单减函数。对任何a,图像均过点(0,1),注意y=ax和y=()x的图形关于y轴对称。如图4。 ③对数函数:y=logax(a>0), 称a为底 , 定义域为(0,+∞),值域为(-∞,+∞) 。a>1 时是严格单调增加的,0<a<1时是严格单减的。不论a为何值,对数函数的图形均过点(1,0),对数函数与指数函数互为反函数 。如图5。 以10为底的对数称为常用对数 ,简记为lgx 。在科学技术中普遍使用的是以e为底的对数,即自然对数,记作lnx。 ④三角函数:见表2。 正弦函数、余弦函数如图6,图7所示。 ⑤反三角函数:见表3。双曲正、余弦如图8。 ⑥双曲函数:双曲正弦(ex-e-x),双曲余弦�(ex+e-x),双曲正切(ex-e-x)/(ex+e-x) ,双曲余切( ex+e-x)/(ex-e-x)。 [编辑]补充在数学领域,函数是一种关系,这种关系使一个集合里的每一个元素对应到另一个(可能相同的)集合里的唯一元素(这只是一元函数f(x)=y的情况,请按英文原文把普遍定义给出,谢谢)。函数的概念对于数学和数量学的每一个分支来说都是最基础的。 术语函数,映射,对应,变换通常都是同一个意思。 二次函数I.定义与定义表达式 一般地,自变量x和因变量y之间存在如下关系: y=ax²+bx+c(a,b,c为常数,a≠0) 则称y为x的二次函数。 二次函数表达式的右边通常为二次三项式。 II.二次函数的三种表达式 一般式:y=ax²+bx+c(a,b,c为常数,a≠0) 顶点式:y=a(x-h)²+k [抛物线的顶点P(h,k)] 交点式:y=a(x-x1)(x-x2) [仅限于与x轴有交点A(x1,0)和 B(x2,0)的抛物线] 注:在3种形式的互相转化中,有如下关系: h=-b/2a k=(4ac-b²)/4a x1,x2=(-b±√b²-4ac)/2a III.二次函数的图象 在平面直角坐标系中作出二次函数y=x²的图象, 可以看出,二次函数的图象是一条抛物线。 IV.抛物线的性质 1.抛物线是轴对称图形。对称轴为直线 x = -b/2a。 对称轴与抛物线唯一的交点为抛物线的顶点P。 特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0) 2.抛物线有一个顶点P,坐标为 P [ -b/2a ,(4ac-b²)/4a ]。 当-b/2a=0时,P在y轴上;当Δ= b²-4ac=0时,P在x轴上。 3.二次项系数a决定抛物线的开口方向和大小。 当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。 |a|越大,则抛物线的开口越小。 4.一次项系数b和二次项系数a共同决定对称轴的位置。 当a与b同号时(即ab>0),对称轴在y轴左; 当a与b异号时(即ab<0),对称轴在y轴右。 5.常数项c决定抛物线与y轴交点。 抛物线与y轴交于(0,c) 6.抛物线与x轴交点个数 Δ= b²-4ac>0时,抛物线与x轴有2个交点。 Δ= b²-4ac=0时,抛物线与x轴有1个交点。 Δ= b²-4ac<0时,抛物线与x轴没有交点。 V.二次函数与一元二次方程 特别地,二次函数(以下称函数)y=ax²+bx+c, 当y=0时,二次函数为关于x的一元二次方程(以下称方程), 即ax²+bx+c=0 此时,函数图象与x轴有无交点即方程有无实数根。 函数与x轴交点的横坐标即为方程的根。 一次函数I、定义与定义式: 自变量x和因变量y有如下关系: y=kx+b(k,b为常数,k≠0) 则称y是x的一次函数。 特别地,当b=0时,y是x的正比例函数。 II、一次函数的性质: y的变化值与对应的x的变化值成正比例,比值为k 即 △y/△x=k III、一次函数的图象及性质: 1. 作法与图形:通过如下3个步骤(1)列表;(2)描点;(3)连线,可以作出一次函数的图象——一条直线。因此,作一次函数的图象只需知道2点,并连成直线即可。 2. 性质:在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。 3. k,b与函数图象所在象限。 当k>0时,直线必通过一、三象限,y随x的增大而增大; 当k<0时,直线必通过二、四象限,y随x的增大而减小。 当b>0时,直线必通过一、二象限;当b<0时,直线必通过三、四象限。 特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图象。 这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。 IV、确定一次函数的表达式: 已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。 (1)设一次函数的表达式(也叫解析式)为y=kx+b。 (2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。所以可以列出2个方程: y1=kx1+b① 和 y2=kx2+b②。 (3)解这个二元一次方程,得到k,b的值。 (4)最后得到一次函数的表达式。 V、一次函数在生活中的应用 1.当时间t一定,距离s是速度v的一次函数。s=vt。 2.当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。设水池中原有水量S。g=S-ft。 反比例函数 形如 y=k/x(k为常数且k≠0) 的函数,叫做反比例函数。 自变量x的取值范围是不等于0的一切实数。 反比例函数的图像为双曲线。 如图,上面给出了k分别为正和负(2和-2)时的函数图像。 三角函数三角函数是数学中属于初等函数中的超越函数的一类函数。它们的本质是任意角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的,其定义域为整个实数域。另一种定义是在直角三角形中,但并不完全。现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系。 由于三角函数的周期性,它并不具有单值函数意义上的反函数。 三角函数在复数中有较为重要的应用。在物理学中,三角函数也是常用的工具。 它有六种基本函数: 函数名 正弦 余弦 正切 余切 正割 余割 符号 sin cos tan cot sec csc 正弦函数 sin(A)=a/h 余弦函数 cos(A)=b/h 正切函数 tan(A)=a/b 余切函数 cot(A)=b/a 在某一变化过程中,两个变量x、y,对于某一范围内的x的每一个值,y都有确定的值和它对应,y就是x的函数。这种关系一般用y=f(x)来表示。 函数概念的发展历史1.早期函数概念——几何观念下的函数 十七世纪伽俐略(G.Galileo,意,1564-1642)在《两门新科学》一书中,几乎全部包含函数或称为变量关系的这一概念,用文字和比例的语言表达函数的关系。1673年前后笛卡尔(Descartes,法,1596-1650)在他的解析几何中,已注意到一个变量对另一个变量的依赖关系,但因当时尚未意识到要提炼函数概念,因此直到17世纪后期牛顿、莱布尼兹建立微积分时还没有人明确函数的一般意义,大部分函数是被当作曲线来研究的。1673年,莱布尼兹首次使用“function” (函数)表示“幂”,后来他用该词表示曲线上点的横坐标、纵坐标、切线长等曲线上点的有关几何量。与此同时,牛顿在微积分的讨论中,使用 “流量”来表示变量间的关系。 2.十八世纪函数概念——代数观念下的函数 1718年约翰•贝努利(Bernoulli Johann,瑞,1667-1748)在莱布尼兹函数概念的基础上对函数概念进行了定义:“由任一变量和常数的任一形式所构成的量。”他的意思是凡变量x和常量构成的式子都叫做x的函数,并强调函数要用公式来表示。 1755,欧拉(L.Euler,瑞士,1707-1783) 把函数定义为“如果某些变量,以某一种方式依赖于另一些变量,即当后面这些变量变化时,前面这些变量也随着变化,我们把前面的变量称为后面变量的函数。” 18世纪中叶欧拉(L.Euler,瑞,1707-1783)给出了定义:“一个变量的函数是由这个变量和一些数即常数以任何方式组成的解析表达式。”他把约翰•贝努利给出的函数定义称为解析函数,并进一步把它区分为代数函数和超越函数,还考虑了“随意函数”。不难看出,欧拉给出的函数定义比约翰•贝努利的定义更普遍、更具有广泛意义。 3.十九世纪函数概念——对应关系下的函数 1821年,柯西(Cauchy,法,1789-1857) 从定义变量起给出了定义:“在某些变数间存在着一定的关系,当一经给定其中某一变数的值,其他变数的值可随着而确定时,则将最初的变数叫自变量,其他各变数叫做函数。”在柯西的定义中,首先出现了自变量一词,同时指出对函数来说不一定要有解析表达式。不过他仍然认为函数关系可以用多个解析式来表示,这是一个很大的局限。 1822年傅里叶(Fourier,法国,1768——1830)发现某些函数也已用曲线表示,也可以用一个式子表示,或用多个式子表示,从而结束了函数概念是否以唯一一个式子表示的争论,把对函数的认识又推进了一个新层次。 1837年狄利克雷(Dirichlet,德,1805-1859) 突破了这一局限,认为怎样去建立x与y之间的关系无关紧要,他拓广了函数概念,指出:“对于在某区间上的每一个确定的x值,y都有一个或多个确定的值,那么y叫做x的函数。”这个定义避免了函数定义中对依赖关系的描述,以清晰的方式被所有数学家接受。这就是人们常说的经典函数定义。等到康托(Cantor,德,1845-1918)创立的集合论在数学中占有重要地位之后,维布伦(Veblen,美,1880-1960)用“集合”和“对应”的概念给出了近代函数定义,通过集合概念把函数的对应关系、定义域及值域进一步具体化了,且打破了“变量是数”的极限,变量可以是数,也可以是其它对象。 4.现代函数概念——集合论下的函数 1914年豪斯道夫(F.Hausdorff)在《集合论纲要》中用不明确的概念“序偶”来定义函数,其避开了意义不明确的“变量”、“对应”概念。库拉托夫斯基(Kuratowski)于1921年用集合概念来定义“序偶”使豪斯道夫的定义很严谨了。 1930 年新的现代函数定义为“若对集合M的任意元素x,总有集合N确定的元素y与之对应,则称在集合M上定义一个函数,记为y=f(x)。元素x称为自变元,元素y称为因变元。”术语函数,映射,对应,变换通常都有同一个意思。但函数只表示数与数之间的对应关系,映射还可表示点与点之间,图形之间等的对应关系。可以说函数包含于映射。正比例函数: 正比例函数y=kx(k是常数,k≠0)的图象是一条经过原点的直线.当x>0时,图象经过三、一象限,从左向右上升,即随x的增大y也增大;当k<0时,图象经过二、四象限,从左向右下降,即随x增大y反而减小. 正是由于正比例函数y=kx(k是常数,k≠0)的图象是一条直线,我们可以称它为直线y=kx.(另:中文“函数”名称的由来在中国清代数学家李善兰(1811—1882)翻译的《代数学》一书中首次用中文把“function”翻译为“函数”,此译名沿用至今。对为什么这样翻译这个概念,书中解释说“凡此变数中函彼变数者,则此为彼之函数”;这里的“函”是包含的意思。) 深入研究一次函数徐若翰在学习一次函数时,根据中学要求,我们还要深入研究它的实际应用,以及如何改变图象的位置。一、实际问题中的分段函数〔例1〕(2005年武汉市)小明早晨从家骑车到学校,先上坡后下坡,行程情况如图。若返回时上、下一个坡的速度不变,那么小明从学校骑车回家用的时间是多少?分析:上、下坡的速度不同,问题要分两段来研究。根据函数图象提供的信息,可知小明从家去学校时,上坡路程为3600米,下坡路程为9600-3600=6000(米)。∴上坡速度为3600÷18=200(米/分钟)下坡速度为6000÷(30-18)=500(米/分钟)小明回家时,上坡路程6000米,下坡路程3600米,所用时间为6000÷200+3600÷500=(分钟)。二、在物理学科中的应用〔例2〕(2004年黄冈市)某班同学在探究弹簧的长度与外力的变化关系时,实验记录得到的相应数据如下表:求y关于x的函数解析式及自变量的取值范围。分析:根据物理学知识可知,弹簧在外力(所挂砝码的重力)作用下发生形变(伸长),外力与指针位置的关系可以用一次函数表示;但是,每个弹簧所受的外力都有一定的限度,因此我们必须求出自变量的取值范围。由已知数据求出:在弹簧受力伸长过程中,令y=,得x=275∴所求函数为注 两段之间的分界点是x=275,不是x=300。三、直线平移的应用〔例3〕(2005年黑龙江省)在直角坐标系中,已知点A(-9,0)、P(0,-3)、C(0,-12)。问:在x轴上是否存在点Q,使以点A、C、P、Q为顶点的四边形是梯形?若存在,求直线PQ的解析式;若不存在,请说明理由。分析:在所研究的梯形中哪两边平行?有两种可能:如果,就是把直线CA平移,经过P点易求直线CA的解析式为平移后得到直线的解析式为如果把直线PA:平移,经过C点得到直线:直线交x轴于点(-36,0)直线的解析式为如何理解函数概念曹阳函数是数学中的一个极其重要的基本概念,在中学数学中,函数及其有关的内容很丰富,所占份量重,掌握好函数的概念对今后的学习非常有用。回顾函数概念的发展史,“函数”作为数学术语是莱布尼兹首次采用的,他在1692年的论文中第一次提出函数这一概念,但其含义与现在对函数的理解大不相同。现代初中数学课程中,函数定义采用的是“变量说”。即:在某变化过程中,有两个变量x,y,如果对于x在某一范围内的每一个确定的值,按照某个对应法则,y都有唯一确定的值和它对应,那么就把y称为x的函数,x称为自变量,y称为因变量。它明确指出,自变量x在某一给定范围可以取任一个值,因变量y按一定的规律也相应每次取唯一确定的值。但是,初中阶段并不要求掌握自变量的取值范围(看一下初中要学的几个函数可知,这个定义完全够用,而且,对于初中生来说,也容易理解)。函数概念的抽象性很强,学生不易理解,要理解函数概念必须明确两点:第一,明确自变量和因变量的关系,在某变化过程中,有两个变量x,y,如果看成y随x的变化而变化,那么x称为自变量,y称为因变量;如果看成x随y的变化而变化,那么y称为自变量,x称为因变量。第二,函数定义的核心是“一一对应”,即给定一个自变量x的值就有唯一确定的因变量y的值和它对应,这样的对应可以是“一个自变量对应一个因变量”(简称“一对一”),也可以是“几个自变量对应一个因变量”(简称“多对一”),但不可以是“一个自变量对应多个因变量”(简称“一对多”),下面以图1来阐述这样的对应关系(其中x是自变量,y是因变量):“一对一” “多对一” “一对多”是函数 是函数 不是函数图1下面举4个例子帮助大家理解函数的概念:例1 一根弹簧的长度为10cm,当弹簧受到拉力F(F在一定的范围内)时,弹簧的长度用y表示,测得有关的数据如表1:表1拉力F(kg)1234…弹簧的长度y(c)…弹簧的长度y是拉力F的函数吗?分析:从表格中可读出信息,当拉力分别是1kg、2kg、3kg、4kg时,都唯一对应了一个弹簧的长度y,满足函数的定义,所以弹簧的长度y是拉力F的函数。一般地,以表格形式给出的函数,第一行是自变量的值,第二行是因变量的值。例2 图2是某地区一年内每个月的最高气温和最低气温图。图2图2描述了哪些变量之间的关系?你能将其中某个变量看成另一个变量的函数吗?分析:图中给出了三个变量,最高气温、最低气温和月份,从图中可以直观地看出最高气温和最低气温随着月份的变化而变化,而且每月的最高气温和最低气温都是唯一的,所以最高气温(或最低气温)是月份的函数。我们还可以发现7月和8月的最高气温相同,也就是说两个自变量对应了同一因变量。一般地,以图象形式给出的函数,横轴表示自变量,纵轴表示因变量。例3 下列变量之间的关系是不是函数关系?说明理由。(1)圆的面积S与半径r之间的关系;(2)汽车以70千米/时的速度行驶,它驶过的路程s(千米)和所用时间t(时)之间的关系;(3)等腰三角形的面积是,它的底边长y(厘米)和底边上的高x(厘米)之间的关系。分析:(1)圆的面积S与半径r之间的关系式是,当半径确定时,圆的面积S也唯一确定,所以圆的面积S与半径r之间的关系是函数关系。(2)路程s(千米)和所用时间t(时)的关系式是,当时间t确定时,路程s也唯一确定,所以路程s(千米)和所用时间t(时)之间的关系是函数关系。(3)底边长ycm和底边上的高xcm的关系式是,当底边上的高x确定时,底边长y也唯一确定,所以底边长ycm和底边上的高xcm之间的关系是函数关系。一般地,以关系式形式给出的函数,等号左边是因变量,等号右边的未知数是自变量。例4 下列图象中,不能表示函数关系的是( )分析:在上面四个图象中,A、C、D都可以表示函数关系,因为任意给定一个自变量x的值,都有唯一的一个y值与它相对应,但是B图中,任意给定一个自变量x的值,却有两个不同的y值与它对应,所以本题应选B。〔问题〕设m是一个小于2006的四位数,已知存在正整数n,使得m-n为质数,且mn是一个完全平方数,求满足条件的所有四位数m。幂函数幂函数的一般形式为y=x^a。 如果a取非零的有理数是比较容易理解的,不过初学者对于a取无理数,则不太容易理解,在我们的课程里,不要求掌握如何理解指数为无理数的问题,因为这涉及到实数连续统的极为深刻的知识。因此我们只要接受它作为一个已知事实即可。 对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性: 首先我们知道如果a=p/q,q和p都是整数,则x^(p/q)=q次根号(x的p次方),如果q是奇数,函数的定义域是R,如果q是偶数,函数的定义域是[0,+∞)。当指数n是负整数时,设a=-k,则x=1/(x^k),显然x≠0,函数的定义域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道: 排除了为0与负数两种可能,即对于x>0,则a可以是任意实数; 排除了为0这种可能,即对于x<0和x>0的所有实数,q不能是偶数; 排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。总结起来,就可以得到当a为不同的数值时,幂函数的定义域的不同情况如下: 如果a为任意实数,则函数的定义域为大于0的所有实数; 如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0 的所有实数。 在x大于0时,函数的值域总是大于0的实数。 在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。 而只有a为正数,0才进入函数的值域。 由于x大于0是对a的任意取值都有意义的,因此下面给出幂函数在第一象限的各自情况.可以看到:(1)所有的图形都通过(1,1)这点。(2)当a大于0时,幂函数为单调递增的,而a小于0时,幂函数为单调递减函数。(3)当a大于1时,幂函数图形下凹;当a小于1大于0时,幂函数图形上凸。(4)当a小于0时,a越小,图形倾斜程度越大。(5)a大于0,函数过(0,0);a小于0,函数不过(0,0)点。(6)显然幂函数无界。高斯函数 设x∈R , 用 [x]或int(x)表示不超过x 的最大整数,并用表示x的非负纯小数,则 y= [x] 称为高斯(Guass)函数,也叫取整函数。 任意一个实数都能写成整数与非负纯小数之和,即:x= [x] + (0≤<1)

1、列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。列表法也有它的局限性:在于求解范围小,适用题型狭窄,大多跟寻找规律或显示规律有关。比如,正、反比例的内容,整理数据,乘法口诀,数位顺序等内容的教学大都采用“列表法”。

2、解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问提中的函数关系,不能用解析式表示。

3、图象法:形象直观,但只能近似地表达两个变量之间的函数关系。把一个函数的自变量x与对应的因变量y的值分别作为点的横坐标和纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。这种表示函数关系的方法叫做图象法。

拓展资料:

函数的定义:给定一个数集A,假设其中的元素为x。现对A中的元素x施加对应法则f,记作f(x),得到另一数集B。假设B中的元素为y。则y与x之间的等量关系可以用y=f(x)表示。我们把这个关系式就叫函数关系式,简称函数。

函数概念含有三个要素:定义域A、值域C和对应法则f。其中核心是对应法则f,它是函数关系的本质特征。

函数(function),最早由中国清朝数学家李善兰翻译,出于其著作《代数学》。之所以这么翻译,他给出的原因是“凡此变数中函彼变数者,则此为彼之函数”,也即函数指一个量随着另一个量的变化而变化,或者说一个量中包含另一个量。

函数的定义通常分为传统定义和近代定义,函数的两个定义本质是相同的,只是叙述概念的出发点不同,传统定义是从运动变化的观点出发,而近代定义是从集合、映射的观点出发。

参考资料:百度百科词条 函数

1、列表法:一目了然 2、解析式法:简单明了 3、图象法:形象直观

三角函数的研究论文

三角学与天文学 早期三角学不是一门独立的学科,而是依附于天文学,是天文观测结果推算的一种方法,因而最先发展起来的是球面三角学.希腊、印度、 *** 数学中都有三角学的内容,可大都是天文观测的副产品.测量天体之间的距离不是一件容易的事. 天文学家把需要测量的天体按远近不同分成好几个等级.离我们比较近的天体,它们离我们最远不超过100光年(1光年=万亿1012公里),天文学家用三角视差法测量它们的距离.三角视差法是把被测的那个天体置于一个特大三角形的顶点,地球绕太阳公转的轨道直径的两端是这个三角形的另外二个顶点,通过测量地球到那个天体的视角,再用到已知的地球绕太阳公转轨道的直径,依靠三角公式就能推算出那个天体到我们的距离了.稍远一点的天体我们无法用三角视差法测量它和地球之间的距离,因为在地球上再也不能精确地测定它们的视差了. 〔河内天体的距离又称为视差,恒星对日地平均距离(a)的张角叫做恒星的三角视差(p),则较近的恒星的距离D可表示为:sinπ=a/D〕 若π很小,π以角秒表示,且单位取秒差距(pc),则有:D=1/π 用周年视差法测定恒星距离,有一定的局限性,因为恒星离我们愈远,π就愈小,实际观测中很难测定.三角视差是一切天体距离测量的基础,至今用这种方法测量了约10,000多颗恒星.因此从天文学中又衍生出了三角学,而三角学则为天文研究奠定了基础. 三角学起源于古希腊.为了预报天体运行路线、计算日历、航海等需要,古希腊人已研究球面三角形的边角关系,掌握了球面三角形两边之和大于第三边,球面三角形内角之和大于两个直角,等边对等角等定理.印度人和 *** 人对三角学也有研究和推进,但主要是应用在天文学方面.15、16世纪三角学的研究转入平面三角,以达到测量上应用的目的.16世纪法国数学家韦达系统地研究了平面三角.他出版了应用于三角形的数学定律的书.此后,平面三角从天文学中分离出来,成了一个独立的分支.平面三角学的内容主要有三角函数、解三角形和三角方程. 而三角学的发展历程又是十分漫长的. 最早,古希腊门纳劳斯(Menelaus of Alexandria)著《球面学》,提出了三角学的基础问题和基本概念,特别是提出了球面三角学的门纳劳斯定理;50年后,另一个古希腊学者托勒密(Ptolemy)著《天文学大成》,初步发展了三角学.而在公元499年,印度数学家阿耶波多(ryabhata I)也表述出古代印度的三角学思想;其后的瓦拉哈米希拉(Varahamihira)最早引入正弦概念,并给出最早的正弦表;公元10世纪的一些 *** 学者进一步探讨了三角学.当然,所有这些工作都是天文学研究的组成部分.直到纳西尔丁(Nasir ed-Din al Tusi,1201~1274)的《横截线原理书》才开始使三角学脱离天文学,成为纯粹数学的一个独立分支.而在欧洲,最早将三角学从天文学独立出来的数学家是德国人雷格蒙塔努斯(J•Regiomontanus,1436~1476). 雷格蒙塔努斯的主要著作是1464年完成的《论各种三角形》.这是欧洲第一部独立于天文学的三角学著作.全书共5卷,前2卷论述平面三角学,后3卷讨论球面三角学,是欧洲传播三角学的源泉.雷格蒙塔努斯还较早地制成了一些三角函数表. 雷格蒙塔努斯的工作为三角学在平面和球面几何中的应用建立了牢固的基础.他去世以后,其著作手稿在学者中广为传阅,并最终出版,对16世纪的数学家产生了相当大的影响,也对哥白尼等一批天文学家产生了直接或间接的影响. 最先使用三角学一词的是文艺复兴时期的德国数学家皮蒂斯楚斯(B.Pitiscus,1561~1613),他在1595年出版的《三角学:解三角形的简明处理》中创造这个词.其构成法是由三角形(tuiangulum)和测量(metuicus)两字凑合而成.要测量计算离不开三角函数表和三角学公式,它们是作为三角学的主要内容而发展的. 三角测量在中国也很早出现,公元前一百多年的《周髀算经》就有较详细的说明,例如它的首章记录“周公曰,大哉言数,请问用矩之道.商高曰,平矩以正绳,偃矩以望高,复矩以测深,卧矩以知远.”(商高说的矩就是今天工人用的两边互相垂直的曲尺,商高说的大意是将曲尺置于不同的位置可以测目标物的高度、深度与广度)1世纪时的《九章算术》中有专门研究测量问题的篇章. 16世纪三角函数表的制作首推奥地利数学家雷蒂库斯(G.J.Rhetucus,1514~1574).他1536年毕业于滕贝格(Wittenbery)大学,留校讲授算术和几何.1539年赴波兰跟随著名天文学家哥白尼学习天文学,1542年受聘为莱比锡大学数学教授.雷蒂库斯首次编制出全部6种三角函数的数表,包括第一张详尽的正切表和第一张印刷的正割表. 17世纪初对数发明后大大简化了三角函数的计算,制作三角函数表已不再是很难的事,人们的注意力转向了三角学的理论研究.不过三角函数表的应用却一直占据重要地位,在科学研究与生产生活中发挥着不可替代的作用. 三角公式是三角形的边与角、边与边或角与角之间的关系式.三角函数的定义已体现了一定的关系,一些简单的关系式在古希腊人以及后来的 *** 人中已有研究. 文艺复兴后期,法国数学家韦达(F.Vieta)成为三角公式的集大成者.他的《应用于三角形的数学定律》(1579)是较早系统论述平面和球面三角学的专著之一.其中第一部分列出6种三角函数表,有些以分和度为间隔.给出精确到5位和10位小数的三角函数值,还附有与三角值有关的乘法表、商表等.第二部分给出造表的方法,解释了三角形中诸三角线量值关系的运算公式.除汇总前人的成果外,还补充了自己发现的新公式.如正切定律、和差化积公式等等.他将这些公式列在一个总表中,使得任意给出某些已知量后,可以从表中得出未知量的值.该书以直角三角形为基础.对斜三角形,韦达仿效古人的方法化为直角三角形来解决.对球面直角三角形,给出计算的完整公式及其记忆法则,如余弦定理,1591年韦达又得到多倍角关系式,1593年又用三角方法推导出余弦定理. 1722年英国数学家棣莫弗(A.De Meiver)得到以他的名字命名的三角学定理 ?(cosθ±isinθ)n=cosnθ+isinnθ, 并证明了n是正有理数时公式成立;1748年欧拉(L.Euler)证明了n是任意实数时公式也成立,他还给出另一个著名公式 ?eiθ=cosθ+isinθ, 对三角学的发展起到了重要的推动作用. 近代三角学是从欧拉的《无穷分析引论》开始的.他定义了单位圆,并以函数线与半径的比值定义三角函数,他还创用小写拉丁字母a、b、c表示三角形三条边,大写拉丁字母A、B、C表示三角形三个角,从而简化了三角公式.使三角学从研究三角形解法进一步转化为研究三角函数及其应用,成为一个比较完整的数学分支学科.而由于上述诸人及19世纪许多数学家的努力,形成了现代的三角函数符号和三角学的完整的理论. 如今,人们从更高、更深的角度来认识“三角学”,是由于复数的引入.人们对复数的思考由来已久,例如对方程x2+1=0的根的思考,但人们认真地将虚数=i引入数学则是16世纪的事了.之后欧拉建立了著名的欧拉公式:eiθ=cosθ+isinθ,使得三角学中的问题都可以化归为复数来讨论,于是三角学中一大批问题得以轻松地解决.有了复数与欧拉公式,使人们对三角学的已有理论的理解更为深刻,并可以把一些原始的、复杂的处理三角学的方法与工具“抛到一边”. 事实上,三角学是一门实用的数学分支,尽管源自于天文学,但在很多其他学科中都有用. 百年前,希尔伯特在他那著名的讲演中,用以下这段话作为结束语:“数学的有机统一,是这门科学固有的特点,因为它是一切精确自然科学知识的基础,为了圆满实现这个崇高的目标,让新世纪给这门科学带来天才的大师和无数热诚的信徒吧!”我深信,只要我们从现在开始,学好数学,用好数学,21世纪一定会“给这门科学带来天才的大师”,而且其中肯定有许多来自我们90后! 注:简单的将网上的排了一下序,仍需修改!

原文链接:几何中的两个基本量是:线段的长度和角的大小.三角函数的本质就是用线段长度之比来表示角的大小,从而将两个基本量联系在一起,使我们可以借助三角变换或三角计算来解决一些较难的几何问题.三角函数不仅是一门有趣的学问,而且是解决几何问题的有力工具. 1. 角函数的计算和证明问题 在解三角函数问题之前,除了熟知初三教材中的有关知识外,还应该掌握: (1)三角函数的单调性 当a为锐角时,sina与tga的值随a的值增大而增大;cosa与ctga随a的值增大而减小;当a为钝角时,利用诱导公式转化为锐角三角函数讨论. 注意到sin45°=cos45°=,由(1)可知,当时0<a<45°时,cosa>sina;当45°<a<90°时,cosa<sina. (2)三角函数的有界性|sina|≤1,|cosa|≤1,tga、ctga可取任意实数值(这一点可直接利用三角函数定义导出). 例1(1986年全国初中数学竞赛备用题)在△ABC中,如果等式sinA+cosA=成立,那么角A是( ) (A)锐角 (B)钝角 (C)直角 分析 对A分类,结合sinA和cosA的单调性用枚举法讨论. 解当A=90°时,sinA和cosA=1; 当45°<A<90°时sinA>,cosA>0, ∴sinA+cosA> 当A=45°时,sinA+cosA= 当0<A<45°时,sinA>0,cosA> ∴sinA+cosA> ∵1, 都大于. ∴淘汰(A)、(C),选(B). 例2(1982年上海初中数学竞赛题)ctg67°30′的值是( ) (A)-1 (B)2- (C)-1 (D) (E) 分析 构造一个有一锐角恰为67°30′的Rt△,再用余切定义求之.

因为对于任意a∈r,都有在(a,a+π)内,f(x)与y=0有且只有两个交点又因为函数为三角函数,且在区间长度为π的区间内恒成立!所以π为该函数的一个周期!因为函数为f(x)=sin(wx)。所以w=2π/π=2

函数极限的几种求解方法研究论文

采用洛必达法则求极限。

洛必达法则是分式求极限的一种很好的方法,当遇到分式0/0或者∞/∞时可以采用洛必达,其他形式也可以通过变换成此形式。

洛必达法则:符合形式的分式的极限等于分式的分子分母同时求导。

存在准则

单调有界准则:单调增加(减少)有上(下)界的数列必定收敛。

在运用以上两条去求函数的极限时尤需注意以下关键之点。一是先要用单调有界定理证明收敛,然后再求极限值。二是应用夹挤定理的关键是找到极限值相同的函数 ,并且要满足极限是趋于同一方向 ,从而证明或求得函数 的极限值。

求极限的方法归纳:1. 代入法,分母极限不为零时使用。先考察分母的极限,分母极限是不为零的常数时即用此法。2. 倒数法,分母极限为零,分子极限为不等于零的常数时使用。3. 消去零因子(分解因式)法,分母极限为零,分子极限也为零,且可分解因式时使用。4. 消去零因子(有理化)法,分母极限为零,分子极限也为0,不可分解,但可有理化时使用。可利用平方差、立方差、立方和进行有理化。5. 零因子替换法,利用第一个重要极限:lim[x-->0]sinx/x=1,分母极限为零,分子极限也为零,不可分解,不可有理化,但出现或可化为sinx/x时使用,常配合利用三角函数公式。6. 无穷转换法,分母、分子出现无穷大时使用,常常借用无穷大和无穷小的性质。

函数极限的几种常用的求解方法加以归纳。1.利用极限的描述性定义极限的描述性定义为:若当自变量的绝对值|x|无限增大时,相应的函数值f(x)无限接近某确定的常数A,则称当x趋向无穷时函数f(x)以A为极限,或f(x)收敛到A,记为f(x)=A或f(x)→A(x→∞)利用描述性说明可以容易地估计出一些简单的函数极限,六类基本初等函数的极限也都可以根据描述性定义,结合图像方便地得到。六类基本初等函数的极限需要学生熟记于心,这是后面求一些复杂函数极限的基础。但其中,有一些极限会比较容易混淆,在应用的时候要引起注意。比如:lnx=-∞;lnx=+∞;e=+∞;e=0arctanx=-;arctanx=;arctanx不存在2.利用极限的四则运算法则利用极限的四则运算法则可以求一些较为简单的复合函数的极限,但在应用的时候必须满足定理的条件:参加求极限的函数应为有限个,且每个函数的极限都必须存在;考虑商的极限时,还需要求分母的极限不为0。 特殊极限的计算如图:

3.利用一些常见的重要极限公式(或等价无穷小替换)在微积分的教材中给出了两个重要极限公式:lim((sinx)/x) = 1 (x->0)或lim(1 + 1/n)^n = e(n->正无穷)可以利用这两个重要极限公式及其变形公式来求函数的极限。4.利用函数变量替换求极限对于一些较复杂的复合函数,我们可以适当地进行变量替换,简化极限的计算,这是一个由繁到简的过程。 对复合函数f[φ(x)],令u=φ(x),a=φ(x),则有f[φ(x)]=f(u).5.利用无穷小量的性质解答如图:

6.利用函数连续性求极限若函数f(x)连续,则有f[φ(x)]=f[φ(x)]。7.利用二个准则:夹逼准则和单调有界准则 。8.未定式求极限(1)分子、分母都趋向无穷大,即型,处理方法是分子、分母同除无穷大因子的最高次幂。(2)分子,分母都趋向无穷小,即型,常见的处理方法是:消零因子,有理化,利用重要极限公式或等价无穷小替换。

9.罗毕达法则对于未定式或的极限计算,还有一种重要而又简便的方法,即罗毕达法则。而且,有些未定式可能要重复使用罗必塔法则,才能确定待求极限之值。如图:

而其它类型的未定式求极限的关键是,先将它们化为型或型,然后再利用罗必塔法则或其他方法求解。

10.利用级数收敛的必要条件 ,如果级数u收敛,则其一般项u收敛于0,即u=.分段函数求极限一般的,分段函数本身不是初等函数,但在其每段子区间上表示为初等函数,可按初等函数讨论极限问题,而对分段函数分界点的极限就必须先讨论左右极限。

16 种求极限的方法,相信肯定对你有帮助。1、等价无穷小的转化只能在乘除时候使用,但是不是说一定在加减时候不能用 ,前提是必须证明拆分后极限依然存在 ,e 的 X 次方-1 或者(1+x) 的 a 次方-1 等价于 Ax 等等。全部熟记(x 趋近无穷的时候还原成无穷小2、洛必达法(大题目有时候会有暗示要你使用这个方法 )。首先他的使用有严格的使用前提!必须是 X 趋近而不是N 趋近!(所以面对数列极限时候先要转化成求x 趋近情况下的极限,当然 n 趋近是 x 趋近的一种情况而已,是必要条件(还有一点数列极限的 n 当然是趋近于正无穷的, 不可能是负无穷 !)必须是函数的导数要存在 !(假如告诉你 g(x), 没告诉你是否可导,直接用,无疑于找死 !!)必须是 0 比 0 无穷大比无穷大 !当然还要注意分母不能为 0。洛必达法则分为 3 种情况: 0 比 0 无穷比无穷时候直接用 ;0 乘以无穷, 无穷减去无穷 (应为无穷大于无穷小成倒数的关系 )所以无穷大都写成了无穷小的倒数形式了。 通项之后这样就能变成第一种的形式了 ;0的 0 次方, 1 的无穷次方,无穷的 0 次方。对于 (指数幂数 )方程方法主要是取指数还取对数的方法, 这样就能把幂上的函数移下来了, 就是写成 0 与无穷的形式了, (这就是为什么只有3 种形式的原因, LNx 两端都趋近于无穷时候他的幂移下来趋近于0,当他的幂移下来趋近于无穷的时候, LNX 趋近于 0)。3、泰勒公式(含有 e 的 x 次方的时候 ,尤其是含有正余弦的加减的时候要特变注意 !)E 的 x展开 sina ,展开 cosa, 展开 ln1+x, 对题目简化有很好帮助。4、无穷大比上无穷大面对无穷大比上无穷大形式的解决办法 ,取大头原则最大项除分子分母 !!!看上去复杂 ,处理很简单 !5、无穷小于有界函数无穷小于有界函数的处理办法 ,面对复杂函数时候 ,尤其是正余弦的复杂函数与其他函数相乘的时候,一定要注意这个方法。面对非常复杂的函数,可能只需 要知道它的范围结果就出来了!6、夹逼定理主要对付的是数列极限 !这个主要是看见极限中的函数是方程相除的形式,放缩和扩大。7、等比等差数列公式应用对付数列极限 (q 绝对值符号要小于1)8、各项的拆分相加(对付数列极限 )例如知道 Xn 与 Xn+1 的关系,已知 Xn 的极限存在的情况下,xn 的极限与 xn+1 的极限时一样的,因为极限去掉有限项目极限值不变化。9、求左右极限的方式(对付数列极限 )例如知道 Xn 与 Xn+1 的关系,已知 Xn 的极限存在的情况下,xn 的极限与 xn+1 的极限时一样的,因为极限去掉有限项目极限值不变化。10、两个重要极限的应用这两个很重要 !对第一个而言是 X 趋近 0 时候的 sinx 与 x 比值。第 2 个就如果 x 趋近无穷大,无穷小都有对有对应的形式 (第 2 个实际上是用于函数是 1 的无穷的形式 )(当底数是 1 的时候要特别注意可能是用地两个重要极限 )11、趋近于无穷大还有个方法,非常方便的方法 ,就是当趋近于无穷大时候 ,不同函数趋近于无穷的速度是不一样的 !x 的 x 次方快于 x!快于指数函数, 快于幂数函数, 快于对数函数(画图也能看出速率的快慢 )!!当 x 趋近无穷的时候,他们的比值的极限一眼就能看出来了。12、换元法换元法是一种技巧 ,不会对单一道题目而言就只需要换元,而是换元会夹杂其中。13、四则运算假如要算的话四则运算法则也算一种方法,当然也是夹杂其中的。14、数列极限还有对付数列极限的一种方法,就是当你面对题目实在是没有办法,走投无路的时候可以考虑转化为定积分。一般是从0 到 1 的形式。15、单调有界单调有界的性质,对付递推数列时候使用证明单调性!16、导数的定义直接使用求导数的定义来求极限, (一般都是 x 趋近于 0 时候,在分子上 f(x 加减某个值 )加减 f(x) 的形式 ,看见了要特别注意 )(当题目中告诉你 F(0)=0 时候 f(0) 导数=0 的时候,就是暗示你一定要用导数定义 !【求极限的一般题型】1、求分段函数的极限,当函数含有绝对值符号时,就很有可能是有分情况讨论的了 !当 X 趋近无穷时候存在 e 的 x 次方的时候,就要分情况讨论应为E的x 次方的函数正负无穷的结果是不一样的 2、极限中含有变上下限的积分如何解决嘞?说白了,就是说函数中现在含有积分符号,这么个符号在极限中太麻烦了你要想办法把它搞掉!解决办法:1、求导,边上下限积分求导,当然就能得到结果了,这不是很容易么?但是有 2 个问题要注意 !问题 1:积分函数能否求导 ?题目没说积分可以导的话,直接求导的话是错误!!!问题 2:被积分函数中既含有 t 又含有 x 的情况下如何解决?解决 1 的方法:就是方法 2 微分中值定理 !微分中值定理是函数与积分的联系!更重要的是他能去掉积分符号!解决 2 的方法:当 x 与 t 的函数是相互乘的关系的话, 把 x 看做常数提出来, 再求导数 !!当 x 与 t 是除的关系或者是加减的关系,就要换元了 !(换元的时候积分上下限也要变化 !)3、求的是数列极限的问题时候 :夹逼或者分项求和定积分都不可以的时候, 就考虑 x 趋近的时候函数值 ,数列极限也满足这个极限的 ,当所求的极限是递推数列的时候 :首先:判断数列极限存在极限的方法是否用的单调有界的定理。判断单调性不能用导数定义!数列是离散的 ,只能用前后项的比较 (前后项相除相减 ),数列极限是否有界可以使用归纳法最后对 xn 与 xn+1 两边同时求极限 ,就能出结果!4、涉及到极限已经出来了让你求未知数和位置函数的问题。解决办法:主要还是运用等价无穷小或者是同阶无穷小。因为例如 : 当 x 趋近 0 时候 f(x) 比 x=3 的函数 ,分子必须是无穷小,否则极限为无穷,还有洛必达法则的应用 ,主要是因为当未知数有几个时候,使用洛必达法则 ,可以消掉某些未知数,求其他的未知数。

高中三角函数公式研究论文

三角学与天文学 早期三角学不是一门独立的学科,而是依附于天文学,是天文观测结果推算的一种方法,因而最先发展起来的是球面三角学.希腊、印度、 *** 数学中都有三角学的内容,可大都是天文观测的副产品.测量天体之间的距离不是一件容易的事. 天文学家把需要测量的天体按远近不同分成好几个等级.离我们比较近的天体,它们离我们最远不超过100光年(1光年=万亿1012公里),天文学家用三角视差法测量它们的距离.三角视差法是把被测的那个天体置于一个特大三角形的顶点,地球绕太阳公转的轨道直径的两端是这个三角形的另外二个顶点,通过测量地球到那个天体的视角,再用到已知的地球绕太阳公转轨道的直径,依靠三角公式就能推算出那个天体到我们的距离了.稍远一点的天体我们无法用三角视差法测量它和地球之间的距离,因为在地球上再也不能精确地测定它们的视差了. 〔河内天体的距离又称为视差,恒星对日地平均距离(a)的张角叫做恒星的三角视差(p),则较近的恒星的距离D可表示为:sinπ=a/D〕 若π很小,π以角秒表示,且单位取秒差距(pc),则有:D=1/π 用周年视差法测定恒星距离,有一定的局限性,因为恒星离我们愈远,π就愈小,实际观测中很难测定.三角视差是一切天体距离测量的基础,至今用这种方法测量了约10,000多颗恒星.因此从天文学中又衍生出了三角学,而三角学则为天文研究奠定了基础. 三角学起源于古希腊.为了预报天体运行路线、计算日历、航海等需要,古希腊人已研究球面三角形的边角关系,掌握了球面三角形两边之和大于第三边,球面三角形内角之和大于两个直角,等边对等角等定理.印度人和 *** 人对三角学也有研究和推进,但主要是应用在天文学方面.15、16世纪三角学的研究转入平面三角,以达到测量上应用的目的.16世纪法国数学家韦达系统地研究了平面三角.他出版了应用于三角形的数学定律的书.此后,平面三角从天文学中分离出来,成了一个独立的分支.平面三角学的内容主要有三角函数、解三角形和三角方程. 而三角学的发展历程又是十分漫长的. 最早,古希腊门纳劳斯(Menelaus of Alexandria)著《球面学》,提出了三角学的基础问题和基本概念,特别是提出了球面三角学的门纳劳斯定理;50年后,另一个古希腊学者托勒密(Ptolemy)著《天文学大成》,初步发展了三角学.而在公元499年,印度数学家阿耶波多(ryabhata I)也表述出古代印度的三角学思想;其后的瓦拉哈米希拉(Varahamihira)最早引入正弦概念,并给出最早的正弦表;公元10世纪的一些 *** 学者进一步探讨了三角学.当然,所有这些工作都是天文学研究的组成部分.直到纳西尔丁(Nasir ed-Din al Tusi,1201~1274)的《横截线原理书》才开始使三角学脱离天文学,成为纯粹数学的一个独立分支.而在欧洲,最早将三角学从天文学独立出来的数学家是德国人雷格蒙塔努斯(J•Regiomontanus,1436~1476). 雷格蒙塔努斯的主要著作是1464年完成的《论各种三角形》.这是欧洲第一部独立于天文学的三角学著作.全书共5卷,前2卷论述平面三角学,后3卷讨论球面三角学,是欧洲传播三角学的源泉.雷格蒙塔努斯还较早地制成了一些三角函数表. 雷格蒙塔努斯的工作为三角学在平面和球面几何中的应用建立了牢固的基础.他去世以后,其著作手稿在学者中广为传阅,并最终出版,对16世纪的数学家产生了相当大的影响,也对哥白尼等一批天文学家产生了直接或间接的影响. 最先使用三角学一词的是文艺复兴时期的德国数学家皮蒂斯楚斯(B.Pitiscus,1561~1613),他在1595年出版的《三角学:解三角形的简明处理》中创造这个词.其构成法是由三角形(tuiangulum)和测量(metuicus)两字凑合而成.要测量计算离不开三角函数表和三角学公式,它们是作为三角学的主要内容而发展的. 三角测量在中国也很早出现,公元前一百多年的《周髀算经》就有较详细的说明,例如它的首章记录“周公曰,大哉言数,请问用矩之道.商高曰,平矩以正绳,偃矩以望高,复矩以测深,卧矩以知远.”(商高说的矩就是今天工人用的两边互相垂直的曲尺,商高说的大意是将曲尺置于不同的位置可以测目标物的高度、深度与广度)1世纪时的《九章算术》中有专门研究测量问题的篇章. 16世纪三角函数表的制作首推奥地利数学家雷蒂库斯(G.J.Rhetucus,1514~1574).他1536年毕业于滕贝格(Wittenbery)大学,留校讲授算术和几何.1539年赴波兰跟随著名天文学家哥白尼学习天文学,1542年受聘为莱比锡大学数学教授.雷蒂库斯首次编制出全部6种三角函数的数表,包括第一张详尽的正切表和第一张印刷的正割表. 17世纪初对数发明后大大简化了三角函数的计算,制作三角函数表已不再是很难的事,人们的注意力转向了三角学的理论研究.不过三角函数表的应用却一直占据重要地位,在科学研究与生产生活中发挥着不可替代的作用. 三角公式是三角形的边与角、边与边或角与角之间的关系式.三角函数的定义已体现了一定的关系,一些简单的关系式在古希腊人以及后来的 *** 人中已有研究. 文艺复兴后期,法国数学家韦达(F.Vieta)成为三角公式的集大成者.他的《应用于三角形的数学定律》(1579)是较早系统论述平面和球面三角学的专著之一.其中第一部分列出6种三角函数表,有些以分和度为间隔.给出精确到5位和10位小数的三角函数值,还附有与三角值有关的乘法表、商表等.第二部分给出造表的方法,解释了三角形中诸三角线量值关系的运算公式.除汇总前人的成果外,还补充了自己发现的新公式.如正切定律、和差化积公式等等.他将这些公式列在一个总表中,使得任意给出某些已知量后,可以从表中得出未知量的值.该书以直角三角形为基础.对斜三角形,韦达仿效古人的方法化为直角三角形来解决.对球面直角三角形,给出计算的完整公式及其记忆法则,如余弦定理,1591年韦达又得到多倍角关系式,1593年又用三角方法推导出余弦定理. 1722年英国数学家棣莫弗(A.De Meiver)得到以他的名字命名的三角学定理 ?(cosθ±isinθ)n=cosnθ+isinnθ, 并证明了n是正有理数时公式成立;1748年欧拉(L.Euler)证明了n是任意实数时公式也成立,他还给出另一个著名公式 ?eiθ=cosθ+isinθ, 对三角学的发展起到了重要的推动作用. 近代三角学是从欧拉的《无穷分析引论》开始的.他定义了单位圆,并以函数线与半径的比值定义三角函数,他还创用小写拉丁字母a、b、c表示三角形三条边,大写拉丁字母A、B、C表示三角形三个角,从而简化了三角公式.使三角学从研究三角形解法进一步转化为研究三角函数及其应用,成为一个比较完整的数学分支学科.而由于上述诸人及19世纪许多数学家的努力,形成了现代的三角函数符号和三角学的完整的理论. 如今,人们从更高、更深的角度来认识“三角学”,是由于复数的引入.人们对复数的思考由来已久,例如对方程x2+1=0的根的思考,但人们认真地将虚数=i引入数学则是16世纪的事了.之后欧拉建立了著名的欧拉公式:eiθ=cosθ+isinθ,使得三角学中的问题都可以化归为复数来讨论,于是三角学中一大批问题得以轻松地解决.有了复数与欧拉公式,使人们对三角学的已有理论的理解更为深刻,并可以把一些原始的、复杂的处理三角学的方法与工具“抛到一边”. 事实上,三角学是一门实用的数学分支,尽管源自于天文学,但在很多其他学科中都有用. 百年前,希尔伯特在他那著名的讲演中,用以下这段话作为结束语:“数学的有机统一,是这门科学固有的特点,因为它是一切精确自然科学知识的基础,为了圆满实现这个崇高的目标,让新世纪给这门科学带来天才的大师和无数热诚的信徒吧!”我深信,只要我们从现在开始,学好数学,用好数学,21世纪一定会“给这门科学带来天才的大师”,而且其中肯定有许多来自我们90后! 注:简单的将网上的排了一下序,仍需修改!

早期三角学不是一门独立的学科,而是依附于天文学,是天文观测结果推算的一种方法,因而最先发展起来的是球面三角学.希腊、印度、阿拉伯数学中都有三角学的内容,但那大都是天文观测的副产品.例如,古希腊门纳劳斯著的《球面学》,提出了三角学的基础问题和基本概念.50年后,另一个古希腊学者托勒密著《天文学大成》,初步发展了三角学.而在公元499年,印度数学家阿耶波多也表述出古代印度的三角学思想;其后的瓦拉哈米希拉最早引入正弦概念,并给出最早的正弦表;公元10世纪的一些阿拉伯学者进一步探讨了三角学.当然,所有这些工作都是天文学研究的组成部分.直到纳西尔丁的《横截线原理书》才开始使三角学脱离天文学,成为纯粹数学的一个独立分支.而在欧洲,最早将三角学从天文学独立出来的数学家是德国人雷格蒙塔努斯.雷格蒙塔努斯的主要著作是1464年完成的《论各种三角形》.这是欧洲第一部独立于天文学的三角学著作.全书共5卷,前2卷论述平面三角学,后3卷讨论球面三角学,是欧洲传播三角学的源泉.雷格蒙塔努斯还较早地制成了一些三角函数表.最先使用三角学一词的是德国数学家皮蒂斯楚斯,他在1595年出版的《三角学:解三角形的简明处理》中创造这个词.其构成法是由三角形和测量两字凑合而成.要测量计算离不开三角函数表和三角学公式,它们是作为三角学的主要内容而发展的.16世纪三角函数表的制作首推奥地利数学家雷蒂库斯.雷蒂库斯首次编制出全部6种三角函数的数表,包括第一张详尽的正切表和第一张印刷的正割表.

应该是将几个题串联起来稍加分析就行网上有很多范文希望可以采纳我们也可以的

研究潮汕小吃论文的表达方式

去华侨公园斜对面的“飘香”店铺吃,几十年历史了,最正宗。听我妈妈说她小时候那店就在了~

一、出身贫贱 自然天成我国数不清的地方小吃或点心,其形成要么脱胎于宫廷,要么产生于民间。而潮汕小吃,几乎全都是民间独创,并一直在民间流传。这是历史上潮汕地处“省尾国角”,远离国家政治中心,以及商业社会形成较晚,社会富裕程度不高所决定的。信手拈来几样潮汕小吃:西天巷蚝烙、贡咕鹅肉、老姐猪脚饭、老妈宫粽球,哪一个名字不是朴素直白,乡土气息扑鼻。综观潮汕小吃,其形成大致有三种渠道。1、祭祀神灵的贡品潮汕沿海,气候炎热,潮湿,人容易得病,加上海上作业风险大,劳作和收获不成比例,偶然因素较多,当人们无法预测自己的命运时,往往把希望寄托在神明保佑上。此外,在物质匮乏的年代,有了拜神的活动,人们也可以给自己一个改善生活的理由。因此,旧时潮汕民间俗信,有时节多,神灵多的特点。许多潮汕小吃原本就是拜神的贡品,如春节的“菜头粿”(意,彩头)、“甜粿”,妈祖生(诞辰)的“面线”(意,长寿),端午节的“粽球”,中秋节的“月饼”等等,俗话说“时节做时粿”,那时候,什么时节吃什么小吃都有一定的规矩。2、补充正餐的点心这部分潮汕小吃不象粤式点心,是有闲阶层闲来无事,用以打发时间的茶点,而是乡间城镇的苦力用来充饥的小食品。潮人习惯吃粥,一是早先粮食不够,一是气候所然。干粗活的人早上吃几大碗粥,经不住一阵出力出汗,正餐未到,己饥肠辘辘。这时,遇到穿街走巷的小食摊担就象找到救星,他掏出几分钱就可补充点体力,聊补一时所需。那时,夏天有消暑的草粿(凉粉)、豆花、各类甜汤等。冬天有热乎乎的牛肉丸汤、韭菜粿、水粿等。吃草粿是不用勺子的,端起浅口碗,嘴巴沿着碗沿“呼噜、呼噜”旋一圈,水布一抹嘴,爽!牛肉丸原本是客家小吃。汕头开埠后,山货出洋,洋货进山,水上交通繁忙。汕头韩堤一带以前是客家货船停泊点,有许多客家货船停在那里过夜。晚上,就有客家人划着小船卖牛肉丸汤,供给货船老大当宵夜。后来,牛肉丸被潮汕人所改革创新,在汤里加粿条,成为牛肉丸粿条,一直到现在,仍是潮人最钟情的小吃。后来又克隆出鱼丸、虾丸、墨鱼丸、猪肉丸等等,创造出潮汕的“肉丸系列”。“中华名小吃”中的“新兴街牛肉丸”就是汕头人做的。如今,一说起牛肉丸,大家都以为是姓潮,其实,它是潮人拿来主义的产物。潮人的聪明才智在一个小小的丸子里表现得淋漓尽致。3、家常点心最具美食意义的小吃,是潮汕巧媳妇们为小孩解馋做的各种家常小吃。如南瓜烙、秋瓜烙、番茄烙等。旧时,时节尚未到,小孩就吵着要吃“粿”,居家的媳妇便要想些法子打发这些馋嘴的孩子。潮汕农村家家产户有的是番薯粉,随手摘下自家田头厝角种的蔬果,掺和在一起,用油一煎,就成为风味独特的小吃。我小的时候,吃过祖母用番薯粉拌隔夜的冷粥做成的“冷粥烙”,真的是别有风味。有一种小吃叫“猪头粽”,据说是澄海人的无意之作。早年澄海农村闹元宵有赛大猪的习俗,每家海产都要宰猪祭祖,有一户人家祭完祖,剩下猪头一时未能吃掉,便将猪头肉剁碎了,加调料,做成“猪头粽”,不想却特别美味。于是流传开来,成为一种风味小吃。潮汕小吃以商品的面孔进入市场是在上世纪的二三十年代,也即汕头商业经济鼎盛的时期。那时的小公园,商铺、酒楼、旅店云集,形成一个典型的消费市场,作为一种美食,潮汕小吃自然也能在此找到自己的位置,如老字号爱西干面、飘香小吃、西天巷蚝烙、老妈宫粽球等,都是在那个时期进入小公园。如上所叙,在饮食中,小吃更具文化意义,故容易成为一种地方文化的标识,深深地印在人们脑海中。君不见,许多旅居海外的潮人一到汕头,头一件事就是直奔小公园,到老字号小吃店美美地吃上一餐潮汕小吃,以了却挥之不去的思乡之情。潮汕小吃扎根于民间,它不依附于官文化、士大夫文化,从诞生之日起就以自然天成的姿态,顺应物竞天择的自然规律,流传于民间,故此,我们现在才能品尝到这么多富有乡土气息的风味小吃。二、材料简单 味道独特广式点心以洋气见长,如奶黄包、蛋挞、叉烧包等。上海小吃以海鲜著称,如蟹黄灌汤包、鱼茸春卷。北方小吃则以面食为主。潮汕小吃则是无米不成粿。一个潮汕方言“粿”字就将潮汕小吃的主要原料概括怡尽。在潮汕字典中“粿”是这样解释的,一种大米粉做皮,有馅的果品。韭菜粿因为皮是番薯粉,馅是蔬菜,俗称“无米粿”,可见大米在小吃中的位置。早先,潮汕先民从中原南迁到潮汕,按祖籍的习惯,祭祖要用面食当果品,南方不产麦子,只能用大米来做果品。这就是“粿”的来历。后来,祭祀食品的原料和做法不断花样翻新,相沿成习,人们就把所有祭祀的包点都称为“粿”。潮人在运用稻谷做小吃方面可真是出神入化,竟然可以是一种原料既是皮也入馅——“米包米”的。如有一种叫“桃粿”的小吃,糯米粉做皮,糯米饭入馅,非但不觉乏味,还非常清香可口。

我的家乡在潮汕,这里特产丰富,这些特产当中,里面的小吃是最丰富的。小吃分别有牛肉丸、笋粿、粿汁、卤鹅等等 我最喜欢的是牛肉丸,但要做牛肉丸可不是那么简单哦!做牛肉丸必须先把些牛肉放在板上,把两条大约三四斤重的铁棒在牛肉块上面重重地打。差不多打一小时后,牛肉就变成了肉酱了,做出丸子要肉酱放在一个桶里搅拌几下,把肉酱在手里挤出,一个圆圆的丸子就出了。再把它们放在热水里泡十几分钟,牛肉丸就完成了。 牛肉丸有多种吃法,可以制成牛肉粿汁、也可以做汤吃、还可以做点心吃。牛肉丸的味道棒极了!只要你轻轻一咬,就感觉到香脆可口。牛肉丸还含有蛋白质呢! 我爱我的家乡,更爱潮汕许许多多的小吃!篇二:潮汕小吃朋友,你来过潮汕地区吗?品尝过潮汕小吃吗?说起潮汕小吃,那可是多种多样,说也说不完;它不仅样式多,而且各有特色,就拿潮汕蚝烙来说吧,它可是我最喜欢的潮汕小吃。蚝,是我们潮汕的特色水产,味道鲜美而且营养丰富,被誉为海里的牛奶。聪明的潮汕人发明出了用蚝和生粉一起烙的吃法,称为蚝烙。看,那厨师熟练地打着蛋,在平底锅里倒上油,用大火将锅里的油烧得滚烫,然后把和着生粉的鲜蚝适量地倒入油锅中,接着将打好的蛋轻轻淋上去,不一会儿,生粉就结成了一张大饼似的块状,颜色也逐渐由浅变深了。这时,厨师把大片的蚝烙铲起来,将它翻个底朝天,那油泡泡还在欢快地跳动着,只见翻过来的那一面已经呈金黄色。厨师时不时地翻动着,一阵子后,再将大片蚝烙撕成几块,再炒几下,撒上一层翠绿的芫荽,香喷喷的蚝烙就做好了。 做这蚝烙,下的功夫可不少,火要够猛,油要够多,时间还得掌握好,不然,怎么会好吃,怎么会吸引了千千万万的人为它垂涎呢? 吃正宗的蚝烙,还少不了一碟鱼露。蚝烙炒得滑滑软软的,表皮酥脆爽口,里层鲜嫩柔软,融入了微微的蛋香又不失海鲜的味道,实在妙!再加上鱼露特有的咸味,不知该怎么形容它的香呀! 蚝烙只是众多潮汕小吃中的一种,还有手打牛肉丸、达濠鱼丸、水景球多得我都数不过来了。潮汕饮食文化丰富多彩,如果你到潮汕来,除了观赏风景,一定要尝尝我们这儿的特色小吃,那才不枉此行。

有没有点创新意识呀,这东西前人都不知道搞了多少次了还研究这个,单我们那届级里就有四五个研究这个,你们还研究,超级无语了

  • 索引序列
  • 函数的三种表达方式研究论文
  • 三角函数的研究论文
  • 函数极限的几种求解方法研究论文
  • 高中三角函数公式研究论文
  • 研究潮汕小吃论文的表达方式
  • 返回顶部