首页 > 医学论文 > 再生医学论文发表

再生医学论文发表

发布时间:

再生医学论文发表

再生医学是多科学及技术的交叉融合应用

再生医学是利用生命科学、工程学、计算机科学等多学科的理论和方法,融合材料科学、细胞技术、组织工程技术、基因工程技术等多项现代生物工程技术,从而实现修复、替代和增强人体内受损、病变或有缺陷的组织和器官的技术。狭义的再生医学主要包括组织工程、再生材料、干细胞等领域。

A股上市企业研发投入超过3000万元

从我国再生医学上市企业的研发投入来看,2022年,迈普医学、正海生物等A股上市企业研发投入均在3000万元以上,冠昊生物、奥精医疗和佰仁医疗的研发投入更是超过5000万元,研发投入占公司营业收入的15%以上;瑞济生物和吉林中科企业规模体量较小,为新三板挂牌企业,研发投入在200-500万元内,研发投入占比超过10%。目前,我国再生医学行业处于发展初期,随着再生医学企业研发投入的加大、创新能力的提升,以及一系列利好政策的支持,资本的加码,再生医学行业得以快速发展。

再生医学专利申请分析

——申请时间:2020年专利申请数量最多

从专利申请时间来看,中国再生医学行业专利申请数量呈先上升后下降趋势发展,其中2020年专利申请数量最多,超过900项;2022年,中国再生医学行业专利申请数量为686项。

——热门申请人:迈普医学专利申请数量最多

中国再生医学领域专利申请数量TOP10申请人有迈普医学、浙江大学、佰傲医学、艾尔普等企业。其中,迈普医学申请专利数量最多,达245项;其次,浙江大学共申请专利数量85项。

——技术构成:细胞类和再生材料类专利申请最多

从技术构成来看,细胞领域专利“C12N5未分化的人类、动物或植物细胞,如细胞系;组织;它们的培养或维持;其培养基”申请数量最多,达1431项;其次为再生材料领域专利“A61L27 假体材料或假体被覆材料”,专利数量为568项。

当烧烫伤深度影响表皮和超过三分之二的真皮受到损坏,属深度皮层烧伤(deep partial-thickness),伤口无法自行愈合而需要自体移植的植皮手术,而患者烧伤面积也会影响可移植的健康皮肤捐赠部位,并反映出目前人工皮肤等组织替代物的不足。

恢复皮肤创伤的关键

恢复皮肤创伤的关键是基底角质形成细胞,这些干细胞样细胞会充当不同类型皮肤细胞的前体。但在创伤严重到伤口处没有任何基底角质形成细胞的情况下,即使伤口愈合,新生细胞的主要用途也是闭合伤口和抵抗炎症,而不是重建健康的皮肤。

当皮肤有大面积烧伤的伤口时,通常需要移植患者身体其他部位的完好皮肤覆盖伤口。而当溃疡面积特别大时,医生很难找到足够的皮肤用于移植。他们需要从患者身上分离出皮肤干细胞,在实验室培养后,再将其移植回患者体内。但这样的治疗手段需要大量时间,可能使患者生命处于危险之中,而且有时还会无效。

间充质细胞转化为新皮肤的技术

美国Salk Institute for Biological Studies研究所开发出一种新技术,能够将开放性伤口处的间充质细胞直接转化为新的皮肤细胞,以治愈皮肤损伤。此技术跟以往体外培养皮肤干细胞手段不同,其研究成果发表在国际顶级期刊《Nature》(自然)杂志上。

研究团队所使用的新方法,是利用生物技术将伤口处间充质细胞转化为基底角质形成细胞,从55种可能参与定义基底角质形成细胞特性的「重编程因子」——蛋白质和RNA分子中,选出4种可以介导转化为基底角质形成细胞的因子,以之作为重建皮肤的基础,这一新技术或可使治疗大面积皮肤溃疡不再依靠复杂的整形手术。

小鼠实验显示,用这4种因子局部治疗小鼠皮肤溃疡,溃疡处会在18天内生长出健康的皮肤,也就是上皮细胞。过了一段时间,这些细胞在大面积皮肤损伤情况会逐渐扩张并与周围的皮肤相连,透过分子、遗传学和细胞测试也证明,这些新生皮肤与身体其他部位的健康皮肤没有差异。

研究人员表示,这一成果不仅有助于治疗皮肤损伤,对研究如何抗皮肤衰老和皮肤癌亦有帮助,但若要将此技术用于临床,还需对其长期安全性进行更多研究。

论文小档案: 《Nature》是世界上最早的科学期刊之一,也是全世界最权威及最有名望的学术期刊之一,首版于1869年11月4日。虽然今天大多数科学期刊都专一于一个特殊的领域,《Nature》是少数依然发表来自很多科学领域的一手研究论文的期刊。

参考文章: In vivo reprogramming of wound-resident cells generates skin epithelial tissue

首先你就是要找到你的目标期刊,就是你想投哪本,比如临床医学进展,医学诊断等等,其次就是写论文,最后就是找编辑投稿,一般是去汉斯出版社的gzh上联系编辑咨询投稿

首先,看你需要发表论文的要求,单位都有规定的,一般有级别、时间、研究方向,电子刊可以不,是否需要专刊,是否核心。然后再根据研究方向和要求选择需要投稿的杂志社,搜索官网,查看投稿方式投稿即可。一般周期较长,需要提前准备好论文投稿,同时可以跟进进度,看论文的录用情况做进一步准备。杂志社拒稿的情况时有发生,一定要注意跟进。另外,即使确定录用也会有多次修改,注意杂志社的通知。另外,杂志社很多,在发表之前选择杂志很重要,可以联系我,我来指导你一下。

再次发表医学期刊

不属于,你拥有英文和中文两份版权。

首先,登录中国期刊全文数据库、万方数据库或者 维普数据库(此为中国三大专业文献数据库)或国外Pubmed/Medline等国外专业数据库,然后搜索相关的文献,写出您的文章。其次,再去以上数据库中搜索相关专业期刊编辑部信息(国家级或是非国家级,核心或者非核心,统计源或者非统计源期刊等等),找到投稿联系方式,这样的方法避免网上很多钓鱼网站,确保您投稿的期刊是合法的。最后,祝好运。欢迎交流。静石医疗,竭诚为您服务。

通常情况下, 以下情况不属于重复投稿或重复发表: 在专业学术会议上做过口头报告, 或者以摘要或会议板报形式报道过的研究结果(但不包括以会议文集或类似出版物形式公开发表过的全文); 对首次发表的内容充实了50%或以上数据的学术论文;

有关学术会议或科学发现的新闻报道(但此类报道不应通过附加更多的资料或图表而使内容描述过于详尽)。以上再次投稿时均应事先向编辑说明, 并附上有关材料的复印件, 我个人认为:如果在后续的论文中引用一下这些前期发表的文字则更为稳妥。

另外一种在国内科学界和编辑界难得一致的是二次发表或再次发表(Secondary Publication)。由国际医学期刊编辑委员会(ICMJE)制定、已被千余种生物医学期刊采用的《生物医学期刊投稿的统一要求》指出, 以同种或另一种文字再次发表, 特别是在其他国家的再次发表, 是正当的, (对于不同的读者群)可能是有益的, 但必须满足以下所有条件:

的复印件、抽印本或原稿。再次发表与首次发表至少有一周以上的时间间隔(双方编辑达成特殊协议的情况除外)。 再次发表的目的是使论文面向不同的读者群, 因此以简化版形式发表可能更好再次发表应忠实地反映首次发表的数据和论点。再次发表的论文应在论文首页应用脚注形式说明首次发表的信息。

刊名 级别 刊期 发表周期《医学信息上》 国家级 旬刊 3个月左右《医学信息下》 国家级 旬刊 2个月左右《中国社区医师》 国家级 旬刊 3-4个月《按摩与康复医学》 国家级 旬刊 1-2个月《内蒙古中医药》 省级 半月刊 2-3个月《健康必读》 省级 月刊 20之前当月《中外健康文摘》 国家级 旬刊 2-3个月《临床合理用药》 省级 半月刊 1-2个月《中外妇儿健康》 省级 月刊 2-3个月《实用心脑肺血管病》 省级 月刊 2-3个月《中国民族民间医药》 省级 半月刊 2-3个月《中国医药指南》* 国家级 半月刊 1-2个月《中国卫生产业》 国家级 月刊 1-2个月《健康研究》 省级 双月刊 2-3个月《医药前沿》 省级 半月刊 2-3个月《检验医学与临床》 省级 半月刊《中国伤残医学》* 国家级 双月刊 2-3月《亚太传统医药》 国家级(不收护理) 月刊 4个月《上海医药》* 省级 月刊 3-4个月《北方药学》 省级 月刊 《哈尔滨医药》 省级 月刊 5-6个月《中国医学工程》 国家级 月刊 1-2个月

再生医学论文

再生医学是多科学及技术的交叉融合应用

再生医学是利用生命科学、工程学、计算机科学等多学科的理论和方法,融合材料科学、细胞技术、组织工程技术、基因工程技术等多项现代生物工程技术,从而实现修复、替代和增强人体内受损、病变或有缺陷的组织和器官的技术。狭义的再生医学主要包括组织工程、再生材料、干细胞等领域。

A股上市企业研发投入超过3000万元

从我国再生医学上市企业的研发投入来看,2022年,迈普医学、正海生物等A股上市企业研发投入均在3000万元以上,冠昊生物、奥精医疗和佰仁医疗的研发投入更是超过5000万元,研发投入占公司营业收入的15%以上;瑞济生物和吉林中科企业规模体量较小,为新三板挂牌企业,研发投入在200-500万元内,研发投入占比超过10%。目前,我国再生医学行业处于发展初期,随着再生医学企业研发投入的加大、创新能力的提升,以及一系列利好政策的支持,资本的加码,再生医学行业得以快速发展。

再生医学专利申请分析

——申请时间:2020年专利申请数量最多

从专利申请时间来看,中国再生医学行业专利申请数量呈先上升后下降趋势发展,其中2020年专利申请数量最多,超过900项;2022年,中国再生医学行业专利申请数量为686项。

——热门申请人:迈普医学专利申请数量最多

中国再生医学领域专利申请数量TOP10申请人有迈普医学、浙江大学、佰傲医学、艾尔普等企业。其中,迈普医学申请专利数量最多,达245项;其次,浙江大学共申请专利数量85项。

——技术构成:细胞类和再生材料类专利申请最多

从技术构成来看,细胞领域专利“C12N5未分化的人类、动物或植物细胞,如细胞系;组织;它们的培养或维持;其培养基”申请数量最多,达1431项;其次为再生材料领域专利“A61L27 假体材料或假体被覆材料”,专利数量为568项。

搜搜分析与综合

有位专家认为,再生医学是通过研究机体的正常组织特征与功能、创伤修复与再生机制及干细胞分化机理,寻找有效的生物治疗方法,促进机体自我修复与再生,或构建新的组织与器官,以改善或恢复损伤组织和器官的功能的科学。他提出移植干细胞可优势分布于损伤局部,但数量有限(3%),将基因克隆到腺病毒表达载体能加强定向,转染干细胞使之增加基因表达,增强了促愈合作用。同时还发现了3个来源于大鼠、5个来源于人的真皮干细胞克隆、体外长期连续培养过程中全部发生恶性转化。不同干细胞克隆转化时间从50代至80代不等,建议在临床实际套用中不要用培养很多代的干细胞。

有的专家指出,再生医学是指利用生物学及工程学的理论方法创造丢失或功能损害的组织和器官,使其具备正常组织和器官的机构和功能。卢世璧院士还介绍了软骨组织工程方面的进展。

还有专家认为,再生医学的概念应有广义和狭义之分。广义上讲,再生医学可以认为是一门研究如何促进创伤与组织器官缺损生理性修复以及如何进行组织器官再生与功能重建的新兴学科,可以理解为通过研究机体的正常组织特征与功能、创伤修复与再生机制及干细胞分化机理,寻找有效的生物治疗方法,促进机体自我修复与再生,或构建新的组织与器官以维持、修复、再生或改善损伤组织和器官功能。狭义上讲是指利用生命科学、材料科学、计算机科学和工程学等学科的原理与方法,研究和开发用于替代、修复、改善或再生人体各种组织器官的定义和信息技术,其技术和产品可用于因疾病、创伤、衰老或遗传因素所造成的组织器官缺损或功能障碍的再生治疗。

组织工程最初是用来描述体外构建组织或器官的有关理论和技术,现在它的内涵也在不断扩大,凡是能引导组织再生的各种方法和技术均被列入到组织工程范畴内。组织工程的科学意义不仅在于提出了一个新的治疗手段,更主要的是提出了复制组织、器官的新理念,使再生医学面临重大机遇与挑战。

解放军总医院黄志强院士在题为“再生医学”的专题报告中,评述了通过套用组织工程及相应的综合技术研究构建组织工程化肝脏的方法。肝脏本身是再生能力很强的器官,在新的视角下,干细胞的培养、扩增与移植及整体肝脏的体外构建,已成为当前再生医学中的热点,但由于肝脏的结构和功能上的复杂性,仍然是首推的难点。

“组织工程与再生医学”的专题报告,介绍了大量有关支架材料(细胞治疗的生物活性材料、生物活性因子、细胞支架材料复合体)的工作。

“心脏再生与心肌组织工程研究进展”的专题报告指出,在组织工程、生物材料、干细胞研究中近十年取得的突破性进展为“再生医学”的发展带来了新的机遇,心脏组织再生是人类面临的最大挑战。

“再生医学的崭新前沿——肝脏再生与人工制造”的专题报告,介绍了肝组织工程的国外研究现状以及国内进展。

“成体干细胞可塑性研究与组织再生”的专题报告,介绍了成体干细胞的可塑性,干细胞的诱导分化与组织的功能性修复的关系等。成体干细胞在疾病治疗中可能突破的几个方面,包括皮肤附属档案再生、心血管疾病治疗等。目前已初步观察到在特定条件下骨髓干细胞有可能变成汗腺、皮脂腺以及毛囊等。

成体干细胞是非常有价值的研究对象,其相对胚胎干细胞的优势在于可对临床套用有更实际的表现。近来又提出了亚全能干细胞学说,这种细胞刚脱离胚胎干细胞特征,但又不是成体干细胞,通过实验证明,人体亚全能干细胞能够诱导分化为各种组织细胞,通过移植给受者参与组织的再生与修复,为恶性血液病、心血管疾病、糖尿病、肝功能衰竭多种严重疾病拓展了新的治疗途径。干细胞可用于许多疾病或损伤的治疗。

“几种新技术在骨再生中的套用”的专题报告,介绍了纳米技术的套用,使我们得以在分子水平观察、干扰和模拟组织再生、计算机辅助技术的套用、基因修饰技术的套用(包括局部基因释放载体技术、局部基因释放细胞技术),对再生医学的发展有促进作用。重庆大学杨力教授认为组织工程中生物力学起著很重要的作用,这是大家都遇到的问题。干细胞研究中的分化诱导加上力学的 *** 后,新的生长因子可能出现,如果缺乏力学环境就可能只有形态而没有功能。生物材料的评价等需要生物力学的帮助,这样再生医学就为生物力学提供了新的平台。

Open Journal of Regenerative Medicine (OJRM) is an international peer-reviewed, open aess journal publishing in English original research studies, reviews and case reports in all aspects of Regenerative Medicine. Symposia or workshop papers may be published as supplements.

开源期刊再生医学(OJRM)是一个国际同行评审的专业期刊,本刊是由美国科研出版社发行的英文原版研究,评论关于再生医学的各个方面病例报告。期刊的专题讨论会或研讨会论文发表作为补充。包括以下研究领域:

Biodegradation nanomaterials再生医学研究

Bioreactors and engineering of tissues

Bone engineering

Cardiovascular implants

Cell therapies for muscle regeneration

Cell-biomaterial interaction in tissue repair

Cellular therapies within reach

Embryonic stem cell promises and limitations

Engineering of ligaments and tendons

Heart muscle engineering and other an systems

Hollow an engineering

Improving vascularity in engineered constructs

Innervations in engineered ans

Medical device and artificial an development

Microenvironments and regeneration

Nanotechnology and regenerative medicine

Naturally derived biomaterials

Neural tissue engineering

Organ replacement within reach

Peripheral nerves

Stem cell pluripotency and emerging technologies

Supporting liver and kidney function

Synthetic biomaterial development

Therapies using engineered tissues

Tissue engineering and artificial an development

再生医学(regenerative medicine, RM)原先指体内组织再生的理论、技术和外科操作;现在,它的内涵已不断扩大,包括组织工程、细胞和细胞因子治疗、基因治疗、微生态治疗等,国际再生医学基金会(IFRM)已明确把组织工程定为再生医学的分支学科。 据介绍,第一位提出“组织工程学”术语的是美籍华裔科学家冯元桢教授。组织工程学的基本原理是,从机体获取少量活组织的功能细胞,与可降解或吸收的三维支架材料按一定比例混合,植入人体内病损部位,最后形成所需要的组织混器官,以达到创伤修复和功能重建的目的。 王正国认为,组织工程的科学意义不仅在于提出了一个新的治疗手段,更主要的是提出了复制组织、器官的新理念,使再生医学面临重大机遇与挑战。 王正国说,一般情况下,组织工程学和再生医学没有严格区分。现在学术界认为,凡是能引导组织再生的各种方法和技术均被列入组织工程范畴内,如干细胞治疗、细胞因子和基因治疗。从外科学的发展历程来看,在先后经历了三个“R”阶段,即“切除(Resection)、诊疗(Repair)和替代(Replacement)”之后,组织工程学的出现,意味着外科学已经进入“再生医学”的新阶段,即第四个“R”。 “再生医学”突破“拆东墙补西墙” 据介绍,目前机体损伤和疾病康复过程中受损组织和器官的修复与重建,仍然是生物学和临床医学面临的重大难题。借助于现代科学技术的发展,使受损的组织器官获得完全再生,或在体外复制出所需要的组织或器官进行替代性治疗,已经成为生物学、基础医学和临床医学关注的焦点。 据报导,全世界每年约有上千万人遭受各种形式的创伤,有数百万人因在疾病康复过程中重要器官发生纤维化而导致功能丧失,有数十万人迫切希望进行各种器官移植。但令人遗憾的是,一方面,目前的组织器官修复无论是体表还是内脏,仍然停留在瘢痕愈合的解剖修复层面上,离人们所希望的“再生出一个完整的受损器官”差距甚远;另一方面,器官移植作为一种替代治疗方法尽管有其巨大的治疗作用,但它仍然是一种“拆东墙补西墙”的有损伤和有代价的治疗方法,而且由于受到伦理以及机体免疫排斥等方面的限制,很难满足临床救治的需要。 王正国说,上世纪90年代以来,随着细胞生物学、分子生物学、免疫学及遗传学等基础学科的迅猛发展,以及干细胞和组织工程技术在现代医学基础和临床的套用,使得现代再生医学在血液病、肌萎缩、脑萎缩等神经性疾病的治疗方面显示出良好的发展前景。 “生物科学人体时代”离我们还很远 据悉,目前再生医学的重要性已经引起我国相关决策部门和科技人员的高度重视。在10月中旬北京举行的第264次香山科学会议上,我国主要组织工程、干细胞研究中心的学术带头人以及临床学家、生物学家、生物医学工程专家和社会科学伦理学专家等41位科学家,以“再生医学”为主题专门讨论了我国再生医学研究的重点、发展方向、需要解决的重大学科问题以及需要达到的主要目标等议题。 王正国说,我国组织工程学自学科建立以来,发展速度很快,现已在许多大动物身上成功构建了多种再生组织,有些(如软骨、人工皮肤)已作为产品上市,预计不久将有更多的组织工程产品问世。但是,构建不同的具有正常生理功能的器官,特别是重要的生命器官,难度却非常大,甚至是否具有形成复杂器官的能力,目前还不清楚。所谓“生物科学人体时代”的到来,还言之过早。 11月11~14日,以“推动我国创伤骨科的发展,增进相互了解,扩大与亚洲地区各国的学术交流与技术合作”为目的的“首届亚洲创伤骨科高峰论坛”在广州举行。据介绍,亚洲创伤骨科高峰论坛今后将以年会的形式于每年11月的第二个周末在广州举行。 在论坛上,中国工程院院士、中华医学会创伤学分会主任委员王正国教授向与会人士介绍了再生医学的发展现状及前景。

会议专家认为目前统一对再生医学概念的认识还为时过早,重要的是如何形成几个重要的科学问题。专家对再生医学将来的发展提出了以下建议:

1、需要进一步明确再生医学要解决的科学问题是什么?只有明确再生医学需要解决的科学问题,才有可能在基础理论方面获得突破和为将来的发展打下基础。专家们认为,再生医学的科学问题实际上是发育生物学所面临的问题,其核心是细胞的诱导分化与调控。将基础研究、产业化和企业生产这三阶段相衔接,才可能将目前个体化治疗进入到有统一标准的临床治疗。目前我国基础理论研究水平有限,一定程度上阻碍了临床的发展。虽然临床前景很好,但一考虑到可能会癌变就不敢做了,这不是临床的问题,说明很多理论需要研究。

2、再生医学的发展必须坚持基础理论创新与解决临床的实际问题相结合,多学科结合,走出一条以创新为基础,以服务病人为目的的科研之路。从研究总体上来说,再生医学上的问题更多的是套用研究,应多考虑临床的需求,研究的结果服务于临床。目前再生医学的一些领域中,如组织工程与干细胞治疗方面与临床的结合比较紧密,一些治疗方法和治疗产品已在临床套用并初步观察到一些成功的苗头,这是一个好的开端。但目前在再生医学基础理论尚没有完全突破的情况下需不需要开展相关的临床治疗值得考虑。鉴于目前国内外的发展,可以选择一些治疗目的明确、易于观察,治疗手段方便的适应症开展研究。

3、在临床观察中要特别注意长期效应和可能的不良反应,主要是干细胞安全性和定向分化的问题。多位专家强调,与传统医药几千年历史和化学制药几百年历史相比,再生医学中的某些治疗方法,如干细胞治疗,生物产品治疗,基因技术以及组织工程技术等的发展历史仍是很短,只有几十年或十余年,因此在这么短的时间内要确切评价一种治疗方法需要持更加慎重的态度,一方面使这种治疗方法更具科学性,同时在另一方面也切实保障病人的生命安全。

4、注意伦理和道德问题。在讨论会中,大家比较关心在开展再生医学研究中可能涉及的伦理学问题。要重视立法,伦理法规要与国际接轨,在这个问题上我们的意识是落后的,做得还不够。有人想捐赠遗体,但找不到地方接受,而且器官移植不规范、很浪费,每次只拿一个器官。在此呼吁管理部门应出台相应的伦理政策、法规,呼吁对遗体的捐赠立法。还要注意安全性和风险性。这些伦理学的问题有待我们在前进中逐步解决。

5、目前我国的团队跨度比较大,需要做大量的基础研究工作,在某些领域虽然建设发展很快,已很超前,但弱势需要加强,更需要有创新性,同时要有科学的认识过程,对发展有合理的预测。所以如何组建再生医学的优势团队,如何和各个领域的专家整合起来进行合作,以集中力量进行科学攻关和组织重大科技项目。

6、套用研究和产品概念的问题。国内对产品的概念没有很清楚的理解,如果企业能早些介入基础研究会有很好的效果,我国的科研人员也应加强对企业和产品的了解,使科研成果转化成生产力。

中国的数据显示该国如今每年培养40万科学与医学的毕业生,并从海外招募了许多高水平科学家。

中国在科技方面的研发开支额度已经从1996年的59亿美元增长到了今天的440亿美元。干细胞研究、组织工程和基因疗法是获得优先资助的关键领域,在很大程度上集中于中国主要中心城市的大学、医院和研究机构,特别是北京和上海。

中国再生医学研发资助的约78%被用于产品开发,另外约用于套用研究。而中国已经开发出了大量灵长类动物群用于临床前测试,而且一系列疗法开始了临床测试。

根据MRC,中国对临床套用的迫切要求——这让它可以迅速产生新的科学知识——是以损害一些基础研究为代价的,这些基础研究旨在克服控制干细胞行为和分化等技术挑战。

中国研发预算只有分配给了基础研究,相比之下日本、韩国和美国的比例是13%到19%。即便是那些分配给支持“战略基础研究”的基础研究资助也被设计成鼓励套用。

管理中国研究的指导方针是自由的,但是与其他国家的指导方针类似。

中国的规定禁止生殖性克隆、使用受精超过14天的人类胚胎、人类与非人类配子(在受精过程中结合的细胞)融合或把研究胚胎植入人类或动物子宫。

科学家被要求获得实验对象的知情同意,而研究机构必须拥有批准涉及人类胚胎干细胞研究的伦理审查委员会。

中国的生殖诊所成为了一些研究所使用的废弃的胚胎干细胞的来源,而脐带血库可能成为临床套用的干细胞来源。

治疗性克隆是允许的,使用多余胚胎或来自流产的废弃胎儿细胞以及人工辅助培育的胚胎也是允许的。

海鞘研究引导人类再生医学革命美国科学家进行的一项最新研究发现,一种与人类关系密切的远古生物——海鞘(sea squirt)能够在经历几代繁殖之后,修复原有的身体缺陷。这一发现迈出了人类再生医学革命的重要一步,人类有望在未来实现高级组织器官的自我修复。该研究成果将发表在5月版的美国实验生物学学会联合会FASEB Journal期刊上。海鞘对现代科学的研究论文第一作者、美国斯坦福大学Ayelet Voskoboynik博士表示,“我们希望通过该现象的深层机制,最终能够使科学家对人体细胞与组织的重建和再生潜力产生新的认识。”当人们的肢体、心脏以及脊柱经受巨大创伤后,受伤的组织都会努力进行自我修复,但结果往往并不理想。不过,如果将海鞘相关的基因序列应用于人类,就有望对再生医学产生革命性的影响。海鞘外表看起来有些像海绵、蠕虫或者某些植物,但其实与这些物种相去甚远。超乎许多人想象的是,海鞘与人类的关系要亲密得多。海鞘与人类相同,都是脊索动物,海鞘具有很原始的脊索,这使得它在进化过程中占有重要的位置。许多科学家认为,海鞘十分接近亿年前人类最早的脊索动物祖先。因此,科学家确定出海鞘自我修复和组织再生等复杂过程的根本机制,有望为人类再生治疗奠定基础。FASEB Journal期刊的主编Gerald Weissmann表示,“生物医学的目标就是了解生命,从而使我们的身体能够抵御伤害、残缺和疾病。医学治疗最终将使我们损坏的组织器官恢复常态。而这项最新的研究可谓再生医学的里程碑,斯坦福研究小组此次在生物医学上完成的工作就好比使‘朽木’变成‘美器’。”研究发现海鞘神经细胞生成机制日本研究人员在新一期《自然》杂志网络版上发表论文说,他们发现一种无脊椎动物——海鞘的神经细胞生成机制,该成果有助于研究干细胞的分化过程。海鞘是尾索动物亚门海鞘纲的总称,与脊椎动物亚门同属脊索动物门。日本筑波大学下田临海实验中心副教授笹仓靖德等研究人员报告说,他们应用转基因技术,让海鞘幼体中枢神经系统的细胞在紫外线照射下发出红光,然后观察海鞘幼体发育为成体的整个过程。他们发现,海鞘幼体中枢神经系统中的一种神经胶质细胞会一直留存到成体中,并在成体中制造神经细胞。神经胶质细胞具有支持并滋养神经细胞,吸收和调节某些活性物质等作用。哺乳动物的中枢神经系统中存在能分化成神经细胞的干细胞,它们有望用于修复受损的神经。笹仓靖德指出,海鞘在遗传上与脊椎动物有相近之处,而前者中枢神经系统的细胞只有大约300个。对这类拥有简单中枢神经系统的动物进行研究,有助于人们研究从干细胞分化生成神经细胞的整套机制。

cgf治疗头发再生医学论文

脱发有多痛苦,经历的人都知道,不需要多说。

以前医学上也没有很好的办法,只能任由脱到秃顶。

后来整形美容有了植发技术,一定程度上解决了很多人的难言之瘾。

然而,一些植发的朋友发现,渐渐的移植的头发又重复脱发的流程,然后又是寸草不生。

植发再脱的打击远超脱发,曾经重拾的信心,第二次被击得粉碎,实在有够难受。

但,为什么会再脱发这个问题,您真的清楚吗?

头发生长与植物生长道理相同,土地(头皮)、种子(毛囊)二者缺一不可。

想要植物粗壮、健康生长,土地必须肥沃,能持续不断供给营养。

营养不良植物即会细小、发黄、萎蔫、枯死、掉落,这也就是脱发的原理过程。

绝大多数人脱发的原因即是如此,土壤(头皮)环境出了问题。

因此,在头皮营养供给不稳定的情况下,实施头发移植是不可能解决脱发问题的,因为头皮问题依然存在,头发即便移植上去,也不能长久存活,还是难逃脱落的命运。

那么怎么才能从根源上解决脱发的问题?生发。

让已经脱掉的头发再生,想想也不是容易的事,但并非不可能。

虽然人体器官几乎都不具备再生功能,但头发在某种程度上是个例外,只要种子(毛囊)仍在!

一粒玉米扔在土中,条件合适便会破土而出茁壮成长,但如果土壤达不到发芽的条件,这粒玉米便能在土壤中沉睡,直到条件成熟。

毛囊亦是如此,脱发的前期、中期,毛囊仍然是存在于头皮上的,如果此时改善头皮环境,恢复营养供给,毛囊便会焕发精神,实现再生。而当头发大部分脱光已呈现在面积秃顶时,毛囊基本彻底消失,已彻底失去重新长回头发的可能。

所以,在脱发初呈现的时候,要做的不是慌张,苦恼,而是通过改善头皮,控制脱发状况,实现止脱,然后生发。

如何生发?CGF毛发再生疗法。

做么是CGF毛发再生疗法?通俗来说,人体血液中富含大量生长因子,CGF疗法就是将这些生长因子分离出后,再作用到脱发部位,凭借强大的促进再生能力,促使头发再生。

CGF毛发再生疗法和效果如何?

CGF疗法一个疗程5次,一般2次后就会有明显效果:脱发情况被控制,部分脱发部位出现新生的头发。一个疗程后,基本实现毛发全部再生。

是不是所有头发问题都能用CGF疗法解决?不是的!

CGF疗法适用于遗传性、激素性、分泌性、营养性、精神性、神经性等脱发状况,通俗地说就是曾经有头发,现在脱发的。

不适用于先天性、化学性、接触辐射物等状况。如果先天发际线靠后,属于头皮没有毛囊,土地培育得再肥沃,没有种子依然是不可能长出头发的,这时就要靠植发。

CGF毛发再生疗法的真实效果如下。

希望能给你帮助。

最近网络上流传一个说法,以特定方式拔头发可以治疗脱发,并声称是来自发表在Cell杂志上的一篇科学研究报告[1]。

这是真的吗?

答案是否定的。这种说法只是媒体对Cell上发表的一项动物实验研究的误读。

一项什么样的研究

这是一项由南加州大学研究人员,与中国台湾和苏格兰的合作者共同完成的动物实验研究,在线发表在2015年4月9日的Cell杂志上,论文标题为“器官水平的群体感应介导毛发干细胞群再生“(Organ-Level Quorum Sensing Directs Regeneration in Hair Stem Cell Populations)[2]。

在这项研究中,以小鼠作为研究对象,研究人员从小鼠背部以不同模式拔掉一定数量毛发作为刺激因素,通过检测拔毛这种伤害性刺激产生的化学分子信号研究了皮肤细胞的生物反应。

方法很简单,就是以不同的密度间隔拔毛,即拔除的毛发之间间距或者接近,或距离较远,检测皮肤细胞产生和释放的一些生物分子来评价毛发修复反应情况。

结果,研究人员发现,拔毛可以刺激毛发重新生长。当拔毛密度达到一定的阈值范围,甚至可以刺激生长出超过原先拔除数量最高达倍的毛发;如果低于这个阈值,则不能产生足够的信号启动的毛发再生系统。

通常小鼠皮肤毛发密度约每平方毫米45~60根,远远高过人类头皮每平方厘米70~120头发的密度。研究发现,每平方毫米拔掉超过10条毛发才能刺激再生,如果把所有毛发全部拔除,则只能长出同样数量的新毛发。

当从3mm直径区域拔掉20根毛发,研究者发现能生长回约450根毛发,这些新毛发不仅位于被拔毛区域,还存在于邻近区域。当从5mm直径范围拔毛200根,再生毛发多达1300,即刺激了多达倍数量的毛发再生。

基于这些观察结果,研究人员认为每个毛囊可以作为一个感受器感受到更广泛皮肤区域毛发拔除造成的伤害性刺激。

每个毛囊感受到的刺激信号输入一个共同的生物回路,这个回路可以对区域性伤害刺激作出一个综合性量化评估。一旦这种伤害达到一定阈值,危及到群体的生存延续,再生机制就会被激活。

对细胞信号的检测研究揭示拔毛刺激毛发再生的机制和过程为(如下图所示):

(1)微伤害阶段:拔除毛发损伤毛囊导致角质形成凋亡;

(2)危机信号释放阶段:这种损害对于皮肤毛囊构成一种压力危机,受拔除毛发损伤的毛囊释放一种被称为CCL2的炎症因子,这种分子可以趋化TNF-α(肿瘤坏死因子,一种炎症因子)分泌型巨噬细胞聚集于“危机”发生区域,并释放TNF-α;

(3)群体感应阶段:TNF-α通过免疫反应激活整个“危机”区域受到拔毛损害以及没有被拔毛的毛囊再生;

(4)再生阶段:拔毛作为一种微伤害诱导的毛发再生信号在整个“危机”区域的传播导致整个区域以及周边毛发的再生。

简单来说,拔除毛发这种伤害虽然仅仅作用于个体性毛囊,但是当区域内遭受伤害毛囊达到一定阈值,受伤害毛囊通过产生和释放系列分子信号诱导整个区域内的无论是否遭受伤害的毛囊再生,生长出更多的毛发。

研究者认为,他们的研究中小鼠皮肤对于拔毛刺激做出的反应符合群体感应(quorum sensing)的概念要素。因此,他们宣称发现并证实了生物组织或者器官水平的群体感应现象。

什么是群体感应?

在生物学上,个体对于环境刺激因素的感受通过分子信号引发群体集体产生效应的现象被称为群体感应。

不同于人类个体之间语言作为主要交流方式,很多生物个体之间主要通过分子信号传递实现信息交流,这类信号分子也称为信息素。人类虽然也保留了某些信息素交流方式,比如挥发性分子散发的体味,但是已经非常次要的途径。

目前研究较多的是细菌的群体感应,单个细菌对于环境因素的刺激可以通过释放分子信号(革兰氏阳性菌和阴性菌信号分子不同)来影响群体的数量。这个效应的生物学意义在于维持一定空间区域内细菌群体大小,从而避免空间和营养物质不足而危及群体的生存,有点类似人类计划生育的意味。

另外,群体感应也“指导”蚂蚁、蜜蜂等社会性昆虫巢穴的选址和筑巢空间“设置”,以与群体个体数量相适应。

此前,尚没有研究证据证明生物体内存在组织和器官水平的群体感应现象。

在人类拔毛能刺激更多毛发再生吗?

动物实验是现代医学基础研究的主要方式之一,但是动物实验研究的结果并不一定适用于人类,那些在动物实验研究中获得可靠的理想的效果,并预计可能会适用于人类的研究才进行人体试验研究,以验证在人类的作用和效果。

Cell杂志上上发表的这项研究没有任何涉及人体试验的内容,完全不能证明实验结果是否适用于人类,因此从这项动物实验研究不能推出这种方法可以用于治疗或治愈人类脱发的结论,作者在论文中也完全没有这类表述。

但是,作者在接受某些公共媒体采访时却把结果“延伸”到了人类,暗示可能是一种治疗人类脱发的一种潜力方法,并被某些媒体过度渲染。比如,世界著名的英国每日邮报报道标题中就用了“治愈秃头”的文字[3],构成了对于公众的误导。

从理论上讲,这项研究结果能不能适用于人类呢?

回答这个问题首先需要搞清楚人类与动物毛发的生物学意义,以及毛发生长、脱落和再生方面的异同。

虽然身体表面被覆毛发是哺乳动物的特征之一,但人类的毛发大部分已经退化,残存的部分也似乎失去作为热传导绝缘体这一最主要的生理意义。比如,头发,似乎也仅关乎外表形象心理影响作用。因此人类体毛可以说基本上是一种遗传学遗迹。

也因此人类毛发已经几乎不受外界环境因素的影响,性状和生长仅仅受遗传和激素的调控。以头发为例,毛发直径的粗细、毛体的卷曲还是笔直、硬度和发色等均受遗传控制;而生长、脱落和再生则由遗传和激素共同控制。

研究已知,一个人共约有500万个毛囊,其中100万位于头皮。这些毛囊在出生之前已经完全形成,出生后不再形成新的毛囊。毛囊也具有一定寿命:每个毛囊通常完成10~20生长周期,产生出10~20根头发。每个周期主要经历增生期(2~8年)、退行期(2~4周)和休止期(2~4个月)三个阶段。头皮共约有10万到15万根头发,约10%的毛囊处于休止期,由休止期转入增生期新生出毛发时,原先老死的毛发会脱落,每天约50~100根,称为休止期脱发,是一种正常生理现象。

当然,毛发脱落也受身体内部因素,如年龄、激素或营养状况,皮肤病和精神压力,以及外部因素,如癌症化疗药物,电离辐射,和解除某些化学品等的影响。

激素是调控毛发的另一个重要因素,最为突出的就是性激素睾酮的影响,比如体毛分布也是所谓第二性征的性别特征。不同区域毛发对于男性性激素睾酮的反应性也是造成男性型脱发的原因。

在动物,体毛最主要生物意义是作为导热绝缘体的保温效应,因此除了受遗传和激素影响外,有别于人类的最大不同就是响应于外界环境温度变化的季节性“换毛”。毛发脱落的群体感应在动物季节性换毛这种频繁的、整体性的毛发脱落和再生过程中或许更具有生物学意义。

而在人类,毛发脱落和再生是受基因控制的、一个“换毛”周期长达2~8年,脱毛诱发的毛发再生的群体感应不存在生物学意义上的需求。

而且如前文所述,研究已经证明,人体所有毛囊形成与出生之前,正常生理状态下毛囊干细胞不会发育生成新的毛囊。

因此,人类脱发很多时候是永久性的,不会自发形成新的毛囊再生出新发。

目前解决脱发秃头问题的研究前沿包括采用细胞学方法重新编程诱导干细胞,或者结合干细胞和基因学方法刺激毛囊再生,但也仅仅处于实验研究阶段。

最后,人类包括拔毛在内的人工脱发实践中也没有发现过可以刺激再生的现象。

综上,一方面,动物实验结果不能直接用于人类;另一方面,人类毛发的生物学意义和生长控制不同于动物,基本不受外界温度环境影响,不存在频繁、整体性换毛的现象。

因此不能从这项动物研究直接推导出拔毛可以用于治疗或者治愈脱发的说法。

【参考文献】

[1] 拔头发可逆转脱发?专家表示怀疑

[2] Organ-Level Quorum Sensing Directs Regeneration in Hair Stem Cell Populations.

[3] At last, a cure for baldness! Scientists discover how to regrow hair (as long as you're prepared to pull it all out first)

CGF是目前根本上治疗脱发的有效方法。. CGF是良好的人体组织再生剂,它能够应用于多项治疗,包括生发疗法。. CGF生法疗法使用的血清生长因子均从自体血液中提取

这位朋友,头发焦虑看来很严重呀!首先可以肯定地告诉你,用完AGF生发,可以改善头发秃、谢顶等有问题;AGF是易文赛生物公司推出的头发再生技术,通过采集外周血中的细胞功能因子,经体外扩增培养后回输体内,通过细胞再生⌄营养发根,促进秀发再生。

再生医学期刊

再生骨质疏松症大多没有明显的症状,有些中高龄患者,可能出现身高变矮、驼背的外观变化,这些患者平常不会觉察到它的存在,但是只要一个轻微跌倒,或是突然过猛外力,例如弯腰搬运物品,就可能造成骨折。骨折后引发严重的疼痛、无法行动、可能长期残疾,影响健康生活品质,甚至死亡。而科学家一直寻找可以发育成骨骼和软骨的生物材料。

美国史丹佛大学Michael Longaker教授的研究团队利用基因工程,让实验老鼠体内的干细胞染上不同颜色,变成「彩虹老鼠」来追踪那些干细胞会生成骨骼细胞,并且利用流产的胎儿组织中的人类胎儿骨骼证实与小鼠干细胞有相似的遗传特征,而且这些细胞用分离的方法,可以在实验室培养皿中稳定地形成新骨和软骨的细胞。

研究团队进一步用成人骨骼碎片研究,他们找到了标志性的干细胞,培养于培养皿中,细胞在一次形成了新的骨骼和软骨。而Michael Longaker表示,细胞不会变成脂肪,肌肉或其他任何东西,这些都是真正的骨骼干细胞。

Michael Longaker把自己形容为「被困在整形外科医生体内的干细胞生物学家」,因为研究团队尝试着利用患者进行抽脂手术后的脂肪或髋关节和膝关节置换手术过程中被切除的成人骨骼碎片来进行干细胞的生物研究。抽脂手术中的多功能细胞会转变为多能性干细胞,或被诱导为能转变成脂肪、骨骼或肌肉的细胞。这一过程要比从皮肤细胞提取干细胞更为容易。

为了找到可稳定量产骨骼干细胞的方法,研究团队培养了从脂肪血管内的干细胞分离出来,加上骨骼生长因子蛋白一起培养在培养皿中的骨骼干细胞。Michael Longake表示,每年约有50万美国公民进行抽脂手术,被抽出的脂肪被当作医疗废弃物,但它们也可被回收再利用成为制造骨骼干细胞材料。虽然实际应用还需要几年的时间,但他设想这些细胞可以用来替代受损的骨骼和关节组织,或治疗骨质疏松症等退行性骨骼疾病。

参考文章: Identification of the Human Skeletal Stem Cell

Skeletal stem cells found in humans for first time, promising new treatments for fractures and osteoporosis

期刊小档案: 《细胞》《cell》为1974 年由Benjamin Lewin(Genes的作者)创立,30多年来,顶尖的国际研究人员依靠Cell发表了高影响力的论文,这些论文已经成为当代生命科学研究的基础。《细胞》的内容,包括在分子生物学,生物化学,癌症研究,细胞生物学,发育生物学,遗传学,免疫学,微生物学,神经生物学,植物生物学,结构生物学和病毒学等领域具有特殊意义的原创研究论文。并刊登过许多重大的生命科学研究进展,与《自然》和《科学》并列,是全世界最权威的学术杂志之一。

再生医学是多科学及技术的交叉融合应用

再生医学是利用生命科学、工程学、计算机科学等多学科的理论和方法,融合材料科学、细胞技术、组织工程技术、基因工程技术等多项现代生物工程技术,从而实现修复、替代和增强人体内受损、病变或有缺陷的组织和器官的技术。狭义的再生医学主要包括组织工程、再生材料、干细胞等领域。

A股上市企业研发投入超过3000万元

从我国再生医学上市企业的研发投入来看,2022年,迈普医学、正海生物等A股上市企业研发投入均在3000万元以上,冠昊生物、奥精医疗和佰仁医疗的研发投入更是超过5000万元,研发投入占公司营业收入的15%以上;瑞济生物和吉林中科企业规模体量较小,为新三板挂牌企业,研发投入在200-500万元内,研发投入占比超过10%。目前,我国再生医学行业处于发展初期,随着再生医学企业研发投入的加大、创新能力的提升,以及一系列利好政策的支持,资本的加码,再生医学行业得以快速发展。

再生医学专利申请分析

——申请时间:2020年专利申请数量最多

从专利申请时间来看,中国再生医学行业专利申请数量呈先上升后下降趋势发展,其中2020年专利申请数量最多,超过900项;2022年,中国再生医学行业专利申请数量为686项。

——热门申请人:迈普医学专利申请数量最多

中国再生医学领域专利申请数量TOP10申请人有迈普医学、浙江大学、佰傲医学、艾尔普等企业。其中,迈普医学申请专利数量最多,达245项;其次,浙江大学共申请专利数量85项。

——技术构成:细胞类和再生材料类专利申请最多

从技术构成来看,细胞领域专利“C12N5未分化的人类、动物或植物细胞,如细胞系;组织;它们的培养或维持;其培养基”申请数量最多,达1431项;其次为再生材料领域专利“A61L27 假体材料或假体被覆材料”,专利数量为568项。

1、Nature子刊名

(1)Nature Cell Biology

(2)Nature Immunology

(3)Nature Medicine (03年创刊)

(4)Nature Genetics (03年创刊)

(5)Nature Structural & Molecular Biology (Nature Structural Biology)

(6)Nature Materials

(7)Nature Biotechnology

(8)Nature Chemical Biology (05年创刊)

(9)Nature Physics (05年创刊)

(10)Nature Neuroscience

(11)Nature Methods (04年创刊)

临床医学类期刊

(1)Nature Clinical Practice Cardiovascular Medicine

(2)Nature Clinical Practice Endocrinology & Metabolism

(3)Nature Clinical Practice Gastroenterology & Hepatology

(4)Nature Clinical Practice Nephrology

(5)Nature Clinical Practice Neurology

(6)Nature Clinical Practice Oncology

(7)Nature Clinical Practice Rheumatology

(8)Nature Clinical Practice Urology

2、Science子刊名

(1)Science Advances

(2)Science Translational Medicine

(3)Science Signaling

(4)Science Immunology

(5)Science Robotics

3、CELL子刊名

(1)Molecular Cell:1997年创刊。细胞生物学、分子生物学。

(2)Developmental Cell:2001年创刊。发育生物学。

(3)Cancer Cell:2002年创刊。癌症领域。

(4)Cell Metabolism:2005年创刊。代谢领域。

(5)Cell Host & Microbe:2007年创刊。感染症领域、微生物学。

(6)Cell Stem Cell:2007年创刊。干细胞领域、再生医学。

扩展资料

Science期刊发展历程:

1880年,纽约新闻记者约翰·迈克尔斯(英语:John Michaels)创立了《科学》,这份期刊先后得到了托马斯·爱迪生以及亚历山大·格拉汉姆·贝尔的资助。但由于从未拥有足够的用户而难以为继,《科学》于1882年3月停刊。

一年后,昆虫学家Samuel Hubbard Scudder使其复活并取得了一定的成功。然而到了1894年,《科学》重新陷入财政危机,随后被以500美元的价格转让给心理学家James McKeen Cattell。

1900年,Cattell与美国科学促进会秘书Leland Ossian Howard达成协议,《科学》成为美国科学促进会的期刊。

在20世纪早期,《科学》发表的重要文章包括托马斯·亨特·摩根的果蝇遗传、阿尔伯特·爱因斯坦的引力透镜以及埃德温·哈勃的螺旋星系。1944年Cattell去世后,AAAS成为《科学》新主人。

参考资料来源:百度百科-nature

百度百科-CELL (《细胞》期刊)

百度百科-科学 (美国科学促进会官方刊物)

从20世纪末开始,细胞出版社在《细胞》之后陆续推出一系列学术期刊,包括:Molecular Cell:1997年创刊。细胞生物学、分子生物学。Developmental Cell:2001年创刊。发育生物学。Cancer Cell:2002年创刊。癌症领域。Cell Metabolism:2005年创刊。代谢领域。Cell Host & Microbe:2007年创刊。感染症领域、微生物学。Cell Stem Cell:2007年创刊。干细胞领域、再生医学。

  • 索引序列
  • 再生医学论文发表
  • 再次发表医学期刊
  • 再生医学论文
  • cgf治疗头发再生医学论文
  • 再生医学期刊
  • 返回顶部