根据大量调查,已知健康成年男子脉搏的均数为72次/分钟,某医生在一山区随机测量了25名健康成年男子脉搏数,求得其均数为次/分钟,标准差为次/分钟,能否认为该山区成年男子的脉搏数与一般健康成年男子的脉搏数不同?(1)建立检验假设 H0:μ=μ0 ,即该山区健康成年男子脉搏均数与 一般健康成年男子脉搏均数相同; H1:μ≠μ0 ,即该山区健康成年男子脉搏均数与 一般健康成年男子脉搏均数不同。 α=(双侧) (2)计算t值 本例n=25,s= ,样本均数=,总体均数=72, 代入公式t=(3)确定P值, 作出推断结论 本例υ =25-1=24,查附表2,t界值表,得,现t=< , 故P>。按α=的水准,不拒绝H0,差异无统计学意义。 结论:即根据本资料还不能认为此山区健康成年男子脉搏数与一般健康成年男子不同。
t检验,主要运用于样本含量较少(一般n<30),总体标准差σ未知的正态分布资料。适用条件:(1) 已知一个总体均数;(2) 可得到一个样本均数及该样本标准差;(3) 样本来自正态或近似正态总体。
t检验是比较两组数据之间的差异,有无统计学意义;t检验的前提是,两组数据来自正态分布的群体,数据的方差齐,满足独立性。
独立样本t检验(各实验处理组之间毫无相关存在,即为独立样本),该检验用于检验两组非相关样本被试所获得的数据的差异性。
独立样本t检验统计量为:
S1²和 S2²为两样本方差;n₁ 和n₂ 为两样本容量。
扩展资料:
选用的检验方法必须符合其适用条件。理论上,即使样本量很小时,也可以进行t检验。(如样本量为10,一些学者声称甚至更小的样本也行),只要每组中变量呈正态分布,两组方差不会明显不同。如上所述,可以通过观察数据的分布或进行正态性检验估计数据的正态假设。
方差齐性的假设可进行F检验,或进行更有效的Levene's检验。如果不满足这些条件,可以采用校正的t检验,或者换用非参数检验代替t检验进行两组间均值的比较。
参考资料来源:百度百科-t检验
t检验种类很多,有均值检验、显著性检验等。一般来说,若总体方差未知,需要用样本方差来替代的情况,用t检验。
t检验,也称student t检验(Student's t test),主要用于样本含量较小(例如n < 30),总体标准差σ未知的正态分布。t检验是用t分布理论来推论差异发生的概率,从而比较两个平均数的差异是否显著。它与f检验、卡方检验并列。t检验是戈斯特为了观测酿酒质量而发明的,并于1908年在Biometrika上公布。下面我们主要从下面四个方面来解说:实际应用 理论思想 操作过程 分析结果 一、实际应用 在统计分析中,要检验两个相关的样本是否来自具有相同均值的总体;或者检验两个有联系的正态总体的均值是否有显著差异等。例如医学界研究一种药物对某种疾病的疗效;学生性别对身高的影响;一种化学药剂对作物害虫的杀虫效果等。T检验的主要用途: 单样本检验:检验一个正态分布的总体的均值是否在满足零假设的值之内双样本检验:其零假设为两个正态分布的总体的均值是相同的。 这一检验通常被称为学生t检验。但更为严格地说,只有两个总体的方差是相等的情况下,才称为学生t检验;否则,有时被称为Welch检验。检验同一统计量的两次测量值之间的差异是否为零。检验一条回归线的斜率是否显著不为零。二、理论思想 T检验是一种处理2个总体间计量变量比较方法, 用 t 分布理论来推论差异发生的概率,从而比较两个平均数的差异是否显著。 T检验有3种类型:单样本 T 检验 检验一个样本平均数与一个已知的总体平均数的差异是否显著。独立样本 T 检验 检验两个样本平均数与其各自所代表的总体的差异是否显著。两个样本组之间毫无相关存在,即为独立样本。配对样本 T 检验 检验两个样本平均数与其各自所代表的总体的差异是否显著。两个样本组之间存在相关,即为非独立样本。三、操作过程 T检验的数据条件: 来自正态分布总体。 随机样本。 方差齐性。 均数比较时,要求两样本总体方差相等,即满足方差齐性。 如果不满足这些条件,可以采用校正的 t 检验,或者换用非参数检验代替 t 检验进行两组间均值的比较。 独立样本 T 检验案例: 题目:甲、乙两所学校各40名高三学生的高考数学成绩。试用独立样本T检验方法研究两所学校被调查的高三学生的高考数学成绩之间有无明显的差别。 一、数据输入 二、操作步骤 1.进入SPSS,打开相关数据文件,选择“分析”|“比较平均值”|“独立样本T检验”命令 2.选择进行独立样本T检验的变量。在“独立样本T检验”对话框的左侧列表框中,选择“高考数学成绩”进入“检验变量”列表框。 3.选择分组变量。在“独立样本T检验”对话框的左侧列表框中,选择“学校”进入“分组变量”列表框。然后单击“定义组”按钮,其中“组1”“组2”分别表示第一、二组类别变量的取值。在“组1”中输入1,在“组2”中输入2。4.置信区间和缺失值的处理方法。单击“独立样本T检验”对话框中的“选项”按钮,在“置信区间百分比”文本框中输入“95”,即设置显著性水平为5%。在“缺失值”选项组中选中“按具体分析排除个案”单选按钮,单击“继续”按钮,返回“独立样本T检验”对话框。5.其余设置采用系统默认值即可 6.单击“确定”按钮,等待输出结果。四、结果分析 1. 数据基本统计量表参与分析的样本中,甲组的样本容量是40,样本平均值是,标准差是,标准误差平均值是;乙组的样本平均值是,标准差是,标准误差平均值是。 2.独立样本T检验结果表F统计量的值是,对应的置信水平是,说明两样本方差之间不存在显著差别,采用的方法是两样本等方差T检验。T统计量的值是,自由度是78,95%的置信区间是(,),临界置信水平为,远小于5%,说明两所学校被调查的高三学生的高考数学成绩之间有着明显的差别。分析结论: 综上所述,T检验检验结果拒绝原假设,说明两所学校被调查的高三学生的高考数学成绩之间有着明显的差别。 (获取更多知识,前往wx 公z号 程式解说) 原文来自
大家好,欢迎来到MedSPSS小课堂。
上几期内容,我们分享了位置检验中的单样本t检验、独立样本t检验的使用案例。本期内容,我们为大家带来位置检验中使用较多的 配对样本 t 检验 使用案例。
配对样本 t 检验
1. 概念
配对样本t 检验(paired t test):用于配对计量资料均值的比较,以检验两组配对样本均值所代表的未知总体均值是否有差异。
2. 用法
用于配对定量资料之间的差异对比,可用在很多研究领域,如:
3. 使用条件
4. 案例描述
对38名高血压患者进行非药物干预实验。实验开始前,高血压患者连测三天血压,每天测一次,将最高的一次作为干预前的血压记录。通过对患者加强非药物干预(加强有氧运动、低钠低脂饮食、全面生活方式改变),三个月后随访时以同样的方式再次测量患者的血压。
那么通过三个月的非药物干预,患者的血压显著降低了吗?
5. 案例分析
通过干预前后患者的血压数据,采用配对样本t检验,比较干预前后患者收缩压(SBP)的均值。如果非药物干预对降压无效果,理论上前后血压数据应该基本一致,即干预前后血压的差异不显著。
6. 基于 MedSPSS 案例分析步骤
以下通过MedSPSS的 配对样本 t 检验 来验证干预前后血压的差异情况。
Step1 :上传数据
操作步骤: 基于 MedSPSS,通过【数据管理】-【文件】-【上传文件】,上传整理好的“高血压干预前后数据”,用作接下来的配对t检验。
Step2 :配对样本和配对差值正态性检验
在进行配对样本t检验之前,需检验配对样本和配对差值是否满足正态性 。
操作步骤: 选择 【假设检验】-【分布检验】-【正态检验】,将 干预前的收缩压 、 干预后的收缩压 、 配对差值 作为检验变量,这里采用shapiro-wilk进行正态性检验。
正态检验结果
正态检验智能分析结果
Step3 :配对样本 t 检验
操作步骤: 选择【假设检验】-【位置检验】-【配对样本t检验】,将 干预前的收缩压 作为配对样本1, 干预后的收缩压 作为配对样本2,对比值填写0,显著水平α为5%,判断条件为=,点击开始分析,输出结果。
配对样本 t 检验结果
配对样本 t 检验智能分析结果
结果说明 :MedSPSS给出了配对样本t检验的智能分析结果,在95%置信水平下,因(p =≤),呈现显著性,因此拒绝原假设,接受备选假设H1(干预前的收缩压的平均值 - 干预后的收缩压的平均值 ≠ 0),即干预前的收缩压的平均值≠干预后的收缩压的平均值,说明干预前后收缩压存在差异性差异。
结合干预前后的收缩压均值分别为141和131,干预后低于干预前的,说明非药物干预有助于降压。
本期内容分享就到这里,MedSPSS将持续地为大家带来案例教学,大家在学习的过程中有任何想法,欢迎积极留言。
t检验,主要运用于样本含量较少(一般n<30),总体标准差σ未知的正态分布资料。适用条件:(1) 已知一个总体均数;(2) 可得到一个样本均数及该样本标准差;(3) 样本来自正态或近似正态总体。
t检验是用于可以计数的样本 t检验有单样本t检验,配对t检验和两样本t检验。 单样本t检验:是用样本均数代表的未知总体均数和已知总体均数进行比较,来观察此组样本与总体的差异性。 配对t检验:是采用配对设计方法观察以下几种情形,1,两个同质受试对象分别接受两种不同的处理;2,同一受试对象接受两种不同的处理;3,同一受试对象处理前后。
1、单样本检验:检验一个正态分布的总体的均值是否在满足零假设的值之内,例如检验一群军校男生的身高的平均是否符合全国标准的170公分界线。
2、独立样本t检验(双样本):其零假设为两个正态分布的总体的均值之差为某实数,例如检验二群人之平均身高是否相等。若两总体的方差是相等的情况下(同质方差),自由度为两样本数相加再减二;若为异方差(总体方差不相等),自由度则为Welch自由度,此情况下有时被称为Welch检验。
3、配对样本t检验(成对样本t检验):检验自同一总体抽出的成对样本间差异是否为零。例如,检测一位病人接受治疗前和治疗后的肿瘤尺寸大小。若治疗是有效的,我们可以推定多数病人接受治疗后,肿瘤尺寸将缩小。
4、检验一回归模型的偏回归系数是否显著不为零,即检验解释变量X是否存在对被解释变量Y的解释能力,其检验统计量称之为t-比例(t-ratio)。
由来
学生t检验是威廉·戈塞为了观测酿酒品质于1908年所提出的,“学生 (student)”则是他的笔名。
基于克劳德·健力士(Claude Guinness)聘用从牛津大学和剑桥大学出来的最好的毕业生,以将生物化学及统计学应用到健力士工业流程的创新政策,戈塞受雇于都柏林的健力士酿酒厂担任统计学家。戈塞提出了t检验以降低啤酒重量监控的成本。
戈塞于1908年在《Biometrika》期刊上公布t检验,但因其老板认为其为商业机密而被迫使用笔名,统计学论文内容也跟酿酒无关。实际上,其他统计学家是知道戈塞真实身份的。
应用条件
1、已知一个总体均数;
2、可得到一个样本均数及该样本标准差;
3、样本来自正态或近似正态总体。
注意事项
1、选用的检验方法必须符合其适用条件(注意:t检验的前提:来自正态分布总体; 随机样本 ;均数比较时,要求两样本总体方差相等,即具有方差齐性)。
理论上,即使样本量很小时,也可以进行t检验。(如样本量为10,一些学者声称甚至更小的样本也行),只要每组中变量呈正态分布,两组方差不会明显不同。如上所述,可以通过观察数据的分布或进行正态性检验估计数据的正态假设。
方差齐性的假设可进行F检验,或进行更有效的Levene's检验。如果不满足这些条件,可以采用校正的t检验,或者换用非参数检验代替t检验进行两组间均值的比较。
2、区分单侧检验和双侧检验。单侧检验的界值小于双侧检验的界值,因此更容易拒绝,犯第Ⅰ错误的可能性大 。t检验中的p值是接受两均值存在差异这个假设可能犯错的概率。在统计学上,当两组观察对象总体中的确不存在差别时,这个概率与我们拒绝了该假设有关。
一些学者认为如果差异具有特定的方向性,我们只要考虑单侧概率分布,将所得到t-检验的P值分为两半。另一些学者则认为无论何种情况下都要报告标准的双侧t检验概率。
3、假设检验的结论不能绝对化。当一个统计量的值落在临界域内,这个统计量是统计上显著的,这时拒绝虚拟假设。当一个统计量的值落在接受域中,这个检验是统计上不显著的,这是不拒绝虚拟假设H0。因为,其不显著结果的原因有可能是样本数量不够拒绝H0 ,有可能犯第Ⅰ类错误。
4、正确理解P值与差别有无统计学意义 。P越小,不是说明实际差别越大,而是说越有理由拒绝H0 ,越有理由说明两者有差异,差别有无统计学意义和有无专业上的实际意义并不完全相同。
5、假设检验和可信区间的关系结论具有一致性差异:提供的信息不同区间估计给出总体均值可能取值范围,但不给出确切的概率值,假设检验可以给出H0成立与否的概率。
6、涉及多组间比较时,慎用t检验。科研实践中,经常需要进行两组以上比较,或含有多个自变量并控制各个自变量单独效应后的各组间的比较,(如性别、药物类型与剂量),此时,需要用方差分析进行数据分析,方差分析被认为是t检验的推广。
在较为复杂的设计时,方差分析具有许多t-检验所不具备的优点。(进行多次的t检验进行比较设计中不同格子均值时)。
由来
学生t检验是威廉·戈塞为了观测酿酒品质于1908年所提出的,“学生 (student)”则是他的笔名。
基于克劳德·健力士(Claude Guinness)聘用从牛津大学和剑桥大学出来的最好的毕业生,以将生物化学及统计学应用到健力士工业流程的创新政策,戈塞受雇于都柏林的健力士酿酒厂担任统计学家。戈塞提出了t检验以降低啤酒重量监控的成本。
戈塞于1908年在《Biometrika》期刊上公布t检验,但因其老板认为其为商业机密而被迫使用笔名,统计学论文内容也跟酿酒无关。实际上,其他统计学家是知道戈塞真实身份的。
应用
1、单样本检验:检验一个正态分布的总体的均值是否在满足零假设的值之内,例如检验一群军校男生的身高的平均是否符合全国标准的170公分界线。
2、独立样本t检验(双样本):其零假设为两个正态分布的总体的均值之差为某实数,例如检验二群人之平均身高是否相等。若两总体的方差是相等的情况下(同质方差),自由度为两样本数相加再减二;若为异方差(总体方差不相等),自由度则为Welch自由度,此情况下有时被称为Welch检验。
3、配对样本t检验(成对样本t检验):检验自同一总体抽出的成对样本间差异是否为零。例如,检测一位病人接受治疗前和治疗后的肿瘤尺寸大小。若治疗是有效的,我们可以推定多数病人接受治疗后,肿瘤尺寸将缩小。
4、检验一回归模型的偏回归系数是否显著不为零,即检验解释变量X是否存在对被解释变量Y的解释能力,其检验统计量称之为t-比例(t-ratio)。
以上内容参考 百度百科-t检验
根据大量调查,已知健康成年男子脉搏的均数为72次/分钟,某医生在一山区随机测量了25名健康成年男子脉搏数,求得其均数为次/分钟,标准差为次/分钟,能否认为该山区成年男子的脉搏数与一般健康成年男子的脉搏数不同?(1)建立检验假设 H0:μ=μ0 ,即该山区健康成年男子脉搏均数与 一般健康成年男子脉搏均数相同; H1:μ≠μ0 ,即该山区健康成年男子脉搏均数与 一般健康成年男子脉搏均数不同。 α=(双侧) (2)计算t值 本例n=25,s= ,样本均数=,总体均数=72, 代入公式t=(3)确定P值, 作出推断结论 本例υ =25-1=24,查附表2,t界值表,得,现t=< , 故P>。按α=的水准,不拒绝H0,差异无统计学意义。 结论:即根据本资料还不能认为此山区健康成年男子脉搏数与一般健康成年男子不同。
t检验是比较两组数据之间的差异,有无统计学意义;t检验的前提是,两组数据来自正态分布的群体,数据的方差齐,满足独立性。
独立样本t检验(各实验处理组之间毫无相关存在,即为独立样本),该检验用于检验两组非相关样本被试所获得的数据的差异性。
独立样本t检验统计量为:
S1²和 S2²为两样本方差;n₁ 和n₂ 为两样本容量。
扩展资料:
选用的检验方法必须符合其适用条件。理论上,即使样本量很小时,也可以进行t检验。(如样本量为10,一些学者声称甚至更小的样本也行),只要每组中变量呈正态分布,两组方差不会明显不同。如上所述,可以通过观察数据的分布或进行正态性检验估计数据的正态假设。
方差齐性的假设可进行F检验,或进行更有效的Levene's检验。如果不满足这些条件,可以采用校正的t检验,或者换用非参数检验代替t检验进行两组间均值的比较。
参考资料来源:百度百科-t检验
t检验方法如下:
t分布的发现使得小样本统计推断成为可能,并且以t分布为基础的检验称为t检验。在医学统计学中,t检验是应用较多的一类假设检验方法。对于计量资料的假设检验中,t检验是最为简单、常用的方法。
单样本资料的t检验,实际上是推断该样本来自的总体均数与已知的某一总体均数μ0(常为理论值或标准值)有无差别。零假设为H0:μ=μ0。而对立假设要视问题的背景而定:双侧的对立假设为H1:μ≠μ0;单侧的对立假设可以是H1:μ>μ0或H1:μ<μ0。
t检验的统计量计算,服从自由度为v=n-1的t分布。因此,可以根据t值来计算相应的P值,进行统计推断的。事先规定一个“小”的概率α作为检验水准,如果P值小于α,就拒绝零假设,如P值不小于α,则不拒绝零假设。
在医学科学研究中的配对设计主要适用于以下情况:第一,异体配对设计,包括同源配对设计和条件相近者配对设计(两同质受试对象配成对子分别接受两种不同的处理)。第二,自身配对设计(同一受试对象分别接受两种不同处理)。
两独立样本配对t检验:
两样本t检验又称成组t检验,或两独立样本t检验,医学研究中常见用于完全随机设计两样本均数的比较,即将受试对象完全随机分配到两个不同处理组,研究者关心的是两样本均数所代表的两总体均数是否不等。
此外,在观察性研究中,独立从两个总体中进行完全随机抽样,获得的两样本均数的比较,也可采用两样本t检验。此检验基于t分布,必须假定两个总体服从正态分布,根据是否符合方差齐性。
秋风送爽,也给我们送来了刘岭教授的统计说说第五期。这一期的统计学方法之选择大家一定要认真学起来,说不定马上你就会用到了。编者语针对常用的基本统计学方法,一般而言说的就是t检验、单因素方差分析和卡方检验,这也是大家在写论文、阅读论文时经常遇到的统计学方法(几乎每篇文章都会涉及这一种或几种方法),那到底该采用何种统计学方法呢?今天我们就此来聊聊。一、拿到数据开始分析之前,一定要进行数据类型的划分(图1),因为不同数据类型资料,描述的方式不一样,统计学方法也不一样。图1 统计资料的类型举个例子(表1):表1 某地2002年735例65岁以上老年人健康检查记录二、各种类型资料的统计分析(描述与统计推断)1.计量资料特点:每个观察单位的观察值之间有量的区别,有单位;描述形式:最常见采用“X±S”(一般文献中经常见到),用算数均数描述其平均水平,用标准差描述其离散程度。如果遇到数据“特别变态”(特别是标准差大于算数均数),就采用Md(P25,P75)(Md为中位数,P25和P75为四分位数)(表2)。正态分布检验请大家复习:医学科研课堂丨统计说说(三):你所应该了解的正态、方差齐性检验表2 计量资料常用统计指标的特点及其应用场合统计推断方法:一般分为单因素和多因素两种。单因素分析方法分析要点:一是划清数据类型(计量资料);二是明确试验设计类型(完全随机设计?几组样本?);三是注意所用方法的应用条件;四是满足正态方差齐性时采用t检验(注意t检验有三种形式哦!)或单因素方差分析,不满足时采用秩和检验(图2)。图2 计量资料统计方法的正确选择提醒两点:① 如果样本数据不服从正态分布的话,那就只能用非参数检验(秩和检验),但其检验效能低于参数检验(t检验或方差分析)。所谓检验效能低就是本身有差异,却没有能力发现其差异。② 如果是两组以上样本的数据时,不能采用t检验(会导致假阳性错误概率增加),应该采用方差分析。若方差分析的P<,需再进一步两两比较,常用的方法为LSD法或SNK法(注意依旧不能采用t检验)。在上两讲内容中我们已经学过t检验(医学科研课堂丨统计说说(二):你的t检验做对了吗?)和方差分析(医学科研课堂丨统计说说(四):统计学方法之灵魂—方差分析)了,至于秩和检验,我们以后会逐步介绍滴。多因素分析一般采用回归分析,主要是线性回归分析,以后会给大家介绍此方法。2.计数资料特点:无序分类,同类别中各观察单位之间没有量的差别,但各类别间有质的不同,各类别互不相容。其中二分类一定是计数资料(例如性别只有男/女之分,是否继发某种疾病只有继发/未继发之分),而多分类满足分类在性质上没有程度等级上的差别,即为计数资料(例如婚姻状况包括未婚、已婚、离异、丧偶,就属于多分类,但各分类没有程度等级差别,因此为计数资料,尿糖定性检测结果包括-、+、++、+++、++++,属于具有程度等级差别的多分类资料,就不属于计数资料,属于等级资料了)。描述形式:最常见采用“例数(%)”(一般文献中经常见到),主要要分清构成比(结构相对数)和率(强度相对数)的差别(表3)。而且在应用时,分母(就是样本量啦)一般不宜过小,分母太小不足以反映数据的客观事实,也不稳定。表3 计数资料常用统计指标的特点及其应用场合比如说:1.某地肺癌患者中男性A例,女性B例,则当地肺癌患者的性别比为A/B就是“比”。2.某次研究共检出了致病菌3种,总株数为A+B+C,其中一种致病菌检出株数为A,那么A/(A+B+C)就是构成比,即该种致病菌占总致病菌的比重或分布。3.某研究对患者(总例数为B)进行治疗,结果治愈的患者例数为A,则A/B即为率(可以理解为治愈率)。统计推断方法:一般分为单因素和多因素两种。单因素分析方法分析要点:一是划清数据类型(计数资料);二是明确试验设计类型(完全随机设计?几组样本?);三是注意所用方法的应用条件;四是多样本率比较,若卡方检验的P<,需再进一步两两比较,并进行Bonferroni校正,以控制假阳性(图3)。图3 计数资料统计方法的正确选择提醒两点:① 构成比是以100作为基数,各构成部分所占的比重之和必须为100%,故某组成部分所占比重的增减必影响其它组成部分的比重;② 构成比和率在实际应用时容易混淆,主要区别在分母上,所以应正确选择分母。多因素分析一般采用回归分析,主要是Logistic回归分析,以后会给大家介绍此方法。3.等级资料特点:属于多分类资料,满足多分类在性质上有程度等级上的差别,各分类属性按一定顺序排列(有序),即为等级资料。描述形式:最常见采用“例数(%)”(一般文献中经常见到),这和计数资料的描述大体相同,主要区别在于多个分类排列时一定要按照顺序进行(从小到大或从弱到强)。统计推断方法:等级资料的统计分析方法在单因素分析中采用非参数检验(秩和检验),当然对于双向有序R×C资料,也就说分组变量和结局变量都是有序(等级)的情况,构成比的比较采用卡方检验,程度的比较采用秩和检验,趋势关联性的比较用秩相关(也称等级相关)。多因素分析中采用有序Logistic回归。注意:分类变量(计数资料和等级资料)在软件分析操作时,要适当数量化处理(赋值),赋值情况会直接影响统计分析结果的解释。最后用下面这张图来总结基本统计学方法的选择(图4)。图4 常用基本统计学方法的正确选择今天的内容就到这里,同学们多多复习,有什么问题和不懂的可以在下面留言,我们会请刘岭教授一一解答。好了,让我们期待下一期吧!撰稿:刘岭 约稿编辑:刘芹排版:毕丽 审核:王东专家简介刘岭:陆军军医大学卫生统计学教研室副教授,主要从事卫生统计学教学、科研工作。担任中华卫生信息学会第八届统计理论与方法专业委员会委员,重庆市预防医学卫生统计专业委员会副主任委员,并担任《第三军医大学学报》等多家杂志的编委、统计审稿专家。历史推荐医学科研课堂丨统计说说(四):统计学方法之灵魂—方差分析 医学科研课堂丨统计说说(三):你所应该了解的正态、方差齐性检验 医学科研课堂丨统计说说(二):你的t检验做对了吗? 医学科研课堂丨统计说说(一):样本量估算是个什么东东?
1. 检验有单样本t检验,配对t检验和两样本t检验。 单样本t检验 :是用样本均数代表的未知总体均数和已知总体均数进行比较,来观察此组样本与总体的差异性。 配对t检验:是采用配对设计方法观察以下几种情形,1,两个同质受试对象分别接受两种不同的处理;2,同一受试对象接受两种不同的处理;3,同一受试对象处理前后。 F检验又叫方差齐性检验。在两样本t检验中要用到F检验。 从两研究总体中随机抽取样本,要对这两个样本进行比较的时候,首先要判断两总体方差是否相同,即方差齐性。若两总体方差相等,则直接用t检验,若不等,可采用t'检验或变量变换或秩和检验等方法。 其中要判断两总体方差是否相等,就可以用F检验。2. t检验和方差分析的前提条件及应用误区 用于比较均值的t检验可以分成三类,第一类是针对单组设计定量资料的;第二类是针对配对设计定量资料的;第三类则是针对成组设计定量资料的。后两种设计类型的区别在于事先是否将两组研究对象按照某一个或几个方面的特征相似配成对子。无论哪种类型的t检验,都必须在满足特定的前提条件下应用才是合理的。 若是单组设计,必须给出一个标准值或总体均值,同时,提供一组定量的观测结果,应用t检验的前提条件就是该组资料必须服从正态分布;若是配对设计,每对数据的差值必须服从正态分布;若是成组设计,个体之间相互独立,两组资料均取自正态分布的总体,并满足方差齐性。之所以需要这些前提条件,是因为必须在这样的前提下所计算出的t统计量才服从t分布,而t检验正是以t分布作为其理论依据的检验方法。 值得注意的是,方差分析与成组设计t检验的前提条件是相同的,即正态性和方差齐性。 t检验是目前医学研究中使用频率最高,医学论文中最常见到的处理定量资料的假设检验方法。t检验得到如此广泛的应用,究其原因,不外乎以下几点:现有的医学期刊多在统计学方面作出了要求,研究结论需要统计学支持;传统的医学统计教学都把t检验作为假设检验的入门方法进行介绍,使之成为广大医学研究人员最熟悉的方法;t检验方法简单,其结果便于解释。简单、熟悉加上外界的要求,促成了t检验的流行。但是,由于某些人对该方法理解得不全面,导致在应用过程中出现不少问题,有些甚至是非常严重的错误,直接影响到结论的可靠性。将这些问题归类,可大致概括为以下两种情况:不考虑t检验的应用前提,对两组的比较一律用t检验;将各种实验设计类型一律视为多个单因素两水平设计,多次用t检验进行均值之间的两两比较。以上两种情况,均不同程度地增加了得出错误结论的风险。而且,在实验因素的个数大于等于2时,无法研究实验因素之间的交互作用的大小。
正确的统计学分析一定要建立在明确的研究目的和研究设计的基础之上,那些事先没有研究目的和研究设计,事后找来一堆数据进行统计分析都是不可取的。 在医学论文的撰、编、审、读过程中经常遇到的问题是研究的题目与课题设计、论文内容不符,包括文章的方法解决不了论文的目的、文章的结果说明不了论文的题目、文章的讨论偏离了论文的主题;还有是目的不明确、设计不合理。如题目过小,论文不够字数,而一些无关紧要的变量指标或结果被分析被讨论;又如题目过大,论文的全部内容不足以说明研究的目的,使论文的论点难以立足。 所以,合理明确的论文题目或目的以及研究设计方案是撰、编、审、读者应当关注的首要问题。此外,样本含量是否满足,抽样是否随机,偏倚是否控制等,也是不可忽视的问题。2、建好分析用的数据库建好数据库是正确统计分析的前提和基础,甚至决定了论文分析结果的成败。对于编、审、读者来讲,一般由于篇幅的限制,往往得不到数据库数据,而只有作者在数据库数据基础上经统计描述计算后给出的诸如各指标均数 x、标准差 s 或中位数 M、百分位数 Px 的“二手”数据,或将研究对象小或特征属性分组,清点各组观察单位出现的个数或频数的频数表数据等。 无论是否能够得到数据库数据,作者在统计分析过程中一定依据数据库数据进行计算,得出结果。如果对“二手”数据或频数表数据的结果等存在疑惑,编辑、审稿专家或读者有权要求作者提供数据库数据以检查其完整性、准确性和真实性,确保研究数据的质量。假若在投稿须知中对数据库数据作出必要的要求,无疑对于保证刊物的发表质量有着积极的意义