首页 > 医学论文 > 医学论文图p值标示

医学论文图p值标示

发布时间:

医学论文图p值标示

t值和P值都用来判断统计上是否显著的指标。p值就是拒绝原假设的最小alpha值,把统计量写出来,带进去算出来之后,根据统计量的分布来算p值啊,举个例子,比如说算出来的统计量的值为z,服从的是正态分布,如果是双边检验的话那么pvalue=2*(1-probnorm(abs(Z)));单边检验的话,应该是1-probnorm(z)。

P值是采用假设检验的方法来计算的。举个例子来说明:比较两个样本的均数有没有差别,采用反证法,首先建立假设检验,H0:假设两组没有差别,H1:假设两组有差别。通过假设两组没有差别计算出其没有差别的概率,一般取P<作为临界值,若P<则代表随机抽取的两组均数没有差别的概率小于,为小概率事件,此时拒绝H0,接受H1。P>接受H0。但是P值的大小只能代表两者是否具有统计学差异,不能代表差异的大小。详细的计算方法要根据你采用的统计学方法具体计算,现在这步一般都采用统计软件SPSS、SAS等来完成。希望对你有所帮助。

你应该说的是假设检验的p值法吧p值用来确定是否拒绝原假设H0,p< 拒绝H0,否则接受。是显著性水平

P> 表示无显著性差异;

医学论文中p值怎么表示

P值即概率,反映某一事件发生的可能性大小。

统计学根据显著性检验方法所得到的P 值,一般以P < 为有统计学差异, P< 为有显著统计学差异,P<为有极其显著的统计学差异。其含义是样本间的差异由抽样误差所致的概率小于 、、。实际上,P值不能赋予数据任何重要性,只能说明某事件发生的几率。统计结果中显示Pr > F,也可写成Pr( >F),P = P{ > F}或P = P{ > F}。

假设检验是推断统计中的一项重要内容。用SAS、SPSS等专业统计软件进行假设检验,在假设检验中常见到P值( P-Value,Probability,Pr),P值是进行检验决策的另一个依据。

扩展资料:

P值由来

从某总体中抽

⑴、这一样本是由该总体抽出,其差别是由抽样误差所致;

⑵、这一样本不是从该总体抽出,所以有所不同。

如何判断是那种原因呢?统计学中用显著性检验来判断。其步骤是:

⑴、建立检验假设(又称无效假设,符号为H0):如要比较A药和B药的疗效是否相等,则假设两组样本来自同一总体,即A药的总体疗效和B药相等,差别仅由抽样误差引起的碰巧出现的。

⑵、选择适当的统计方法计算H0成立的可能性即概率有多大,概率用P值表示。

⑶、根据选定的显著性水平(或),决定接受还是拒绝H0。如果P>,不能否定“差别由抽样误差引起”,则接受H0;如果P<或P <,可以认为差别不由抽样误差引起,可以拒绝H0,则可以接受另一种可能性的假设(又称备选假设,符号为H1),即两样本来自不同的总体,所以两药疗效有差别。

P值的计算:

一般地,用X 表示检验的统计量,当H0为真时,可由样本数据计算出该统计量的值C,根据检验统计量X的具体分布,可求出P值。具体地说:

左侧检验的P值为检验统计量X 小于样本统计值C 的概率,即:P = P{ X < C}

右侧检验的P值为检验统计量X 大于样本统计值C 的概率:P = P{ X > C}

双侧检验的P值为检验统计量X 落在样本统计值C 为端点的尾部区域内的概率的2 倍:P = 2P{ X > C} (当C位于分布曲线的右端时) 或P = 2P{ X< C} (当C 位于分布曲线的左端时) 。若X 服从正态分布和t分布,其分布曲线是关于纵轴对称的,故其P 值可表示为P = P{| X| > C} 。

计算出P值后,将给定的显著性水平α与P 值比较,就可作出检验的结论:

如果α > P值,则在显著性水平α下拒绝原假设。

如果α ≤ P值,则在显著性水平α下接受原假设。

在实践中,当α = P值时,也即统计量的值C刚好等于临界值,为慎重起见,可增加样本容量,重新进行抽样检验。

参考资料:假设检验中的P值-百度百科

您好!在论文中展示t检验的p值通常可以在结果部分中进行说明。您可以将您的统计分析结果列成表格或文字形式,并在其中包括t值和p值。通常,在t检验的结果中,您应该提供足够的信息,以便读者能够理解您所研究的变量之间的显著性差异。如果您的p值小于,则表明您的结果在统计学上是显著的。您可以在结果中使用类似“t(df)=, p < .05”或“t(df)=, p=.0XX”这样的格式来展示您的t检验结果。希望这可以帮到您!

在统计学中,P值(P value,全称Probability Value)是指在进行假设检验时,根据样本数据计算出来的一个概率值。具体来说,P值表示的是,如果总体假设为真,那么从总体中随机抽取与当前样本相同或更极端的样本,得到这些样本的概率值。

通常情况下,P值越小,表示当前样本的数据与总体假设不符的可能性就越大。在假设检验中,通常将P值与显著性水平进行比较,如果P值小于显著性水平,就拒绝原假设,否则则接受原假设。

例如,如果假设一个硬币是公平的,掷10次硬币,得到5次正面朝上,5次反面朝上。进行假设检验时,计算出来的P值为,如果显著性水平为,那么P值大于显著性水平,就无法拒绝原假设,即不能排除硬币是公平的这个可能性。

P值即概率,反映某一事件发生的可能性大小。统计学根据显著性检验方法所得到的P 值,一般以P < 为有统计学差异, P< 为有显著统计学差异,P<为有极其显著的统计学差异。

P<时,认为差异有统计学意义”或者“显著性水平α=”,指的是如果本研究统计推断得到的差异有统计学意义,那么该结果是“假阳性”的概率小于。

扩展资料:

P值的计算:

一般地,用X 表示检验的统计量,当H0为真时,可由样本数据计算出该统计量的值C,根据检验统计量X的具体分布,可求出P值。具体地说:

左侧检验的P值为检验统计量X 小于样本统计值C 的概率,即:P = P{ X < C}

右侧检验的P值为检验统计量X 大于样本统计值C 的概率:P = P{ X > C}

双侧检验的P值为检验统计量X 落在样本统计值C 为端点的尾部区域内的概率的2 倍:P = 2P{ X > C} (当C位于分布曲线的右端时) 或P = 2P{ X< C} (当C 位于分布曲线的左端时) 。

若X 服从正态分布和t分布,其分布曲线是关于纵轴对称的,故其P 值可表示为P = P{| X| > C} 。

计算出P值后,将给定的显著性水平α与P 值比较,就可作出检验的结论:

如果α > P值,则在显著性水平α下拒绝原假设。

如果α ≤ P值,则在显著性水平α下不拒绝原假设。

在实践中,当α = P值时,也即统计量的值C刚好等于临界值,为慎重起见,可增加样本容量,重新进行抽样检验。

医学论文P值计算例题示范

放到spss中,定义两个变量,第一个变量叫做:group,用1代表实验组,用2代表对照组,每个组两个数字;第二个变量叫分娩方式,分别用1、2、3代表阴道分娩、阴道助产和剖宫产。然后用描述性统计方法中的交叉列联表计算就ok了!希望对你有帮助!

P值的计算:一般地,用X 表示检验的统计量,当H0为真时,可由样本数据计算出该统计量的值C,根据检验统计量X的具体分布,可求出P值。具体地说:左侧检验的P值为检验统计量X 小于样本统计值C 的概率,即:P = P{ X < C}右侧检验的P值为检验统计量X 大于样本统计值C 的概率:P = P{ X > C}双侧检验的P值为检验统计量X 落在样本统计值C 为端点的尾部区域内的概率的2 倍:P = 2P{ X > C} (当C位于分布曲线的右端时) 或P = 2P{ X< C} (当C 位于分布曲线的左端时) 。若X 服从正态分布和t分布,其分布曲线是关于纵轴对称的,故其P 值可表示为P = P{| X| > C} 。p值的计算公式:=2[1-φ(z0)]当被测假设h1为p不等于p0时;=1-φ(z0)当被测假设h1为p大于p0时;=φ(z0)当被测假设h1为p小于p0时;其中,φ(z0)要查表得到。z0=(x-n*p0)/(根号下(np0(1-p0)))最后,当p值小于某个显著参数的时候我们就可以否定假设。反之,则不能否定假设。注意,这里p0是那个缺少的假设满意度,而不是要求的p值。没有p0就形不成假设检验,也就不存在p值统计学上规定的p值意义:p值碰巧的概率对无效假设统计意义p>碰巧出现的可能性大于5%不能否定无效假设两组差别无显著意义p<碰巧出现的可能性小于5%可以否定无效假设两组差别有显著意义p<碰巧出现的可能性小于1%可以否定无效假设两者差别有非常显著意义

医学论文直方图p值

统计学中的X平方念作卡方。统计学中的P值和卡方计算方法是:先根据资料特点选择适合的卡方检验公式,将资料数据带入公式计算得到卡方值,再根据已经确定的检验水准结合自由度,通过查专用工具表即卡方值表,查得对应的接受假设的界值,将计算得到的卡方值与此值比较,从而得到接受假设的概率值,即P值。

p应该代表表达率,

P< 表示 表达率低于这个数值

论文中p值也叫检验p值是否定原假设的强度。

p值统计学意义是结果真实程度(能够代表总体)的一种估计方法,专业上P 值为结果可信程度的一个递减指标。

P 值越大,我们越不能认为样本中变量的关联是总体中各变量关联的可靠指标。 如果P值很小,说明原假设情况的发生的概率很小,而如果出现了,根据小概率原理,我们就有理由拒绝原假设,P值越小,我们拒绝原假设的理由越充分。 总之,P值越小,表明结果越显著。

p值是指在一个概率模型中,统计摘要(如两组样本均值差)与实际观测数据相同,或甚至更大这一事件发生的概率。换言之,是检验假设零假设成立或表现更严重的可能性。p值若与选定显著性水平(或)相比更小,则零假设会被否定而不可接受。

然而这并不直接表明原假设正确。p值是一个服从正态分布的随机变量,在实际使用中因样本等各种因素存在不确定性。产生的结果可能会带来争议。

医学论文p值与标准差

有影响。标准差越大,平均数的代表性就越小;反之平均数的代表性就越大。P值是根据平均数和标准差计算得出来。

医学论文统计学方法应用的错误解析论文

摘 要: 统计学方法应用正确与否直接关系到医学科研结果的可信度和有效性,在研究设计时的错误应用会否决整个科研研究方案,基于错误统计学方法上产生的结果会浪费科研人员的时间和精力。编审人员应该高度重视医学论文的统计学方法应用,提高单篇文献的质量和学术水平。

关键词: 统计学方法;医学论文;解析

一、引 言

医学由于其研究的复杂性和系统性,常需要应用严谨的统计学方法,由于有些作者对医学科研的统计学理论和方法的应用缺乏深刻了解,在医学论文中错误应用统计学方法的现象时有发生。统计学方法应用的错误直接导致统计结果的错误。例如统计学图表、统计学指标、统计学的显著性检验等。因此,正确应用统计学方法,并将所获得的结果进行正确的描述有助于单篇论著的质量提高,现将医学论文中统计学方法应用及其常见结果的错误解析如下。

二、医学论文统计学方法应用概况

医学论文的摘要是全文的高度浓缩[1],主要由目的、方法、结果、结论组成。一般要求要写明主要的统计学方法、统计学研究结果和P值。一篇医学论文的质量往往通过摘要的统计学结果部分就能判断。统计学方法的选择和结果的表达直接影响单篇论著的科研水平。

(一)材料与方法部分

正文中,材料与方法部分必须对统计学方法的选择、应用、统计学显著性的设定进行明确说明。通过对统计学方法的描述,读者应该清楚论著的统计学设计思路。材料部分要清楚说明样本或病例的来源、入组和排除标准、样本量大小、研究组和对照组的设定条件、回顾性或者前瞻性研究、调查或者实验性研究、其他与研究有关的一般资料情况,其目的是表明统计学方法应用的合理性和可靠性,他人作相关研究时具备可重复性。方法部分应详细叙述研究组和对照组的不同处理过程、观察的具体指标、采用的测量技术,要具备可比较性和科学性,

方法部分还要专门介绍统计分析方法及其采用的统计软件。不同的数据处理要采用不同的方法,必须清楚的说明计数或者计量资料、两组或者多组比较、不同处理因素的关联性研究。常用的有两组间计量资料的t检验,多组间计量资料的F检验,计数资料的卡方检验,不同因素之间的相关分析和回归分析。有些遗传学研究方法还有专门的统计学方法,要在这里简要说明并给出参考文献,还要简单叙述统计方法的原理。统计学软件要清楚的说明软件的名称和版本号,如基于家系资料研究的版本。

(二)论文结果部分

论文结果部分要显示应用统计学方法得到的统计量[2],所采用的统计学指标较多时,往往分开叙述。分组比较多时还要借助统计图表来准确表达统计结果。对于数据的精确度,除了与测量仪器的精密程度有关外,还与样本本身的均数有关,所得值的单位一般采用紧邻均数除以三为原则。均数和标准差的有效位数要和原始数据一致。标准差或标准误差有时需要增加一个位数,百分比一般保留一个小数。在统计软件中,分析结果往往精确度比较高,一般要采用四舍五入的方法使其靠近实验的实际情况,否则还会降低论文的可信度和可读性。

结果部分的统计表采用统一的“三线”表,表题中要注明均数、标准差等数据类型。表格中的数值要按照行和列进行顺序放置,要求整齐美观,不能出现错行现象。要明确标注观察的例数,得到的检验统计量。统计图可以直观的表达研究结果,如回归和相关分析的散点图可以显示个体值的散布情况。曲线图表达个体均值在不同组别随时间变化的情况或者不同条件下重复测量的结果。误差条图由均数加减标准误绘出,描述的是67%的置信区间,不是95%,提倡在误差条图采用95%的置信区间。

关于统计量,一般采用均数与标准差两个指标,均数不宜单独使用。使用均数的时候要明确变异指标标准差或者精确性指标标准误。关于百分比,分母的确定必须要符合逻辑,过小的样本会导致分母过小而出现百分比过大的情况。百分率的比较要写清两者中不同的变化,可以采用卡方检验。

1.假设检验的结果中,常见只写P值的情况,有时候会误导读者,也会隐藏计算失误的情况,因此写出具体的统计值,如F值、t值,可以增强可信度。对于率、相关系数、均数这类描述统计量,要清楚写明进行过统计学检验并将结果列出。P值一般取与作为检验显著性,对于结果的计算要求具体的P值,如P=或P=。

2.在对论文进行讨论时,作为统计学方法产生的结果往往要作为作者的主要观点支持其科学假设,对统计结果的正确解释至关重要。P值很大表明两组间没有差别属于大概率事件,P值很小表明两组间没有差别的概率很小。当P<;,表明差异具有统计学意义。P值与观察的样本量的大小有关联,当样本量小的时候,数据之间的差别即使很大,P值也可能很大;当样本量大时,数据之间的差别即使很小,P值也可能显示有显著性差异。相关系数统计学意义的显著性也与相关系数的大小没有绝对的关联,有统计学意义的样本相关系数可能很小。因此,有统计学差异的描述并不一定意味着两组间差别很大,错判的危险性很大,显著性的检验为定性的结果,结合统计量大小方可判断是否具有专业意义。

变量间虚假的相关关系与变量随时间变化而变化相关,统计学意义的关联并不表示变量间一定存在因果关系。因果关系的确定要根据专业知识和采用的'研究方法的不同来考量。使用回归方程进行分析,当两变量间具有显著性关系,但是从自变量推测因变量仍然不会很精确。相关或回归系数不能预测推测结果的精确程度,而只是预测一个可信区间。诊断性检验应用于人群发病率很低的疾病,灵敏度、特异度的高低对于明确疾病诊断并不能很肯定。“假阳性率”与“假阴性率”根据实际的需要不同要求并不一致,在疾病患病率很低时,出现假阳性也是正常的,要确诊疾病必须要与临床症状体征相结合。因此,这两个率的计算方法必须交待清楚。

三、医学论文统计学方法应用的常见错误分析

(一)“材料与方法”中的统计学方法应用的常见错误

“材料与方法”中统计学方法常见的问题主要为:对样本的选择或者研究对象的来源和分组描述很少或者过于简单。例如,临床入组病例分组只采用简单的随机分组,未描述随机分组的方法,未描述是否双盲双模拟,未设置空白对照组,分组后对性别、年龄、文化程度的描述未进行统计学检验,对于特殊的统计学方法没有详细交代;动物实验分组的随机化原则描述过于简单,没有具体说清完全随机、配对或分层随机分组等;统计分析方法没有任何说明采用的分析软件,有的只说明采用的分析软件而不交代在软件中采用的统计方法;没有说明原因的情况下出现样本量过于小等情况。

(二)“结果”统计学方法应用的常见错误

1.应用正确的统计学方法出现的结果表达并不一定正确。例如前文所述数据的精确度要求。医学论文常见错误中包括均数、标准差、标准误等统计学指标与原始数据应保留的小数位数不同;对于率、例数、比值、比值比、相对危险度等统计学指标保留的小数点位数过多;罕见疾病的发病率、患病率、现患率等指标没有选择好基数,导致结果没有整数位;相关系数、回归系数等指标保留的小数位数过多或者过少;常用的一些检验统计量,如F值、t值保留的位数不符合要求。

2.对统计学指标进行分析和计算时,一般采用计数资料和计量资料进行区分。计量资料常用三线表,在近似服从正态分布的前提下采用均数、标准差进行说明,如果不符合正态分布时,可以采用加对数或其他的处理方式使其近似正态分布,否则只能采用中位数和四分位数间距等指标进行描述。医学论文中常见未对数据进行正态分布检验的计算,影响统计结果的真实性和可信度。对于率、构成比等常用的计数资料指标,常见样本量过小的问题,采用率进行描述会影响统计结果的可靠性,采用绝对数进行说明会显得客观一些。还有一些文献将构成比误用为率,也是不可取的。

3.在判断临床疗效之一指标时,两组平均疗效有差别并不意味着两组的每一个个体都有效或无效,必须通过计算有效率进行计算。如比较某药物治疗糖尿病的疗效,服药一周后,研究组和对照组的对血糖降低值分别为 ± 和 ± ( P = 1) 。按空腹血糖值低于的疗效判定有效率,研究组和对照组的有效率分别为和 ,尽管平均疗效相差较多,但也要注意到该药物对部分患者无效()。对假设检验结果的统计学分析结果,P 值的表达提倡报告精确P值,如P = 或P = 等。目前的统计学分析软件均可自动计算精确的P 值。例如常用的SAS,SPSS等,只要提供原始数据,就可以计算出t值、F值和相应的自由度,并可获得精确的P值。

四、小 结

提高医学论文中统计学方法的使用质量是编辑部值得重视的一项长期而又艰巨的工作[3],医学论文中统计方法应用和统计结果的表达正确与否,不仅体现了论文的科学性和严谨性,而且对于提高期刊整体的学术质量,促进医学科学的发展和传播也有着重要作用[4]。

参考文献:

[1] 李敬文,吕相征,薛爱华.医学期刊评论性文章摘要的添加对期刊被引频次的影响[J].编辑学报,2011(23).

[2] 陈长生.生物医学论文中统计结果的表达及解释[J].细胞与分子免疫学杂志,2008(24).

[3] 潘明志.新时期复合型医学科技期刊编辑应具备的素质和能力[J].中国科技期刊研究,2011 (22).

[4] 张春军,董凯.网络信息时代加强医学期刊编辑的信息素养[J].牡丹江医学院学报,2011(32).

  • 索引序列
  • 医学论文图p值标示
  • 医学论文中p值怎么表示
  • 医学论文P值计算例题示范
  • 医学论文直方图p值
  • 医学论文p值与标准差
  • 返回顶部