首页 > 医学论文 > 医学杂志线粒体

医学杂志线粒体

发布时间:

医学杂志线粒体

辅酶Q10是一种脂溶性抗氧化剂,能激活人体细胞和细胞能量的营养,具有提高人体免疫力、增强抗氧化、延缓衰老和增强人体活力等功能。辅酶素Q10存在于菠菜 、花椰菜、坚果、肉和鱼类中。

单独服用辅酶素Q10或与维他命E一起服用, 会产生很强力的抗氧化剂,能够延缓皮肤衰老,被用在抗衰老化妆品中。

扩展资料

人过了35岁以后,身体合成辅酵素Q10的能力就开始降低。所谓的合成就是从其他化学元素中制造辅酵素Q10。除了老化与不良的饮食习惯之外,压力和感染也会影响我们制造足够辅酵素Q10的能力。

每天人们对如何获得足够的辅酵素Q10而面临挑战:如何选择含有这项重要营养素的食物,以及摄取其他必要营养素的能力,以便您的身体能够制造它。您必须将这两个程序合并,才能供给我们身体足够量的辅酵素Q10,以保持最佳的健康状态。

参考资料来源:百度百科-Q10 (微量元素辅酶素英文缩写)

(第一作者)1、Study of effects of different environmental temperature on Free Radical Metabolism during Exercise.第21届国际大学生运动会学术研讨会录用论文,2001,82、肥胖基因与运动.现代康复, 2001,21(5):193、冷刺激和力竭运动对小鼠LPO及抗氧化能力影响,西安体育学院学报,2002,19(2):525、间歇低氧训练对大鼠肾脏EPO基因表达的影响,沈阳体育学院学报,2003,(4)6、运动性内源自由基的产生及其基因表达的作用.沈阳体育学院学报, 2003,(3):417、间歇低氧对线粒体钙转运及能量代谢的影响,中国临床康复,2003,7(27):37788、模拟高住低练对大鼠促红细胞生成素的影响,全国第七届大学生运动会论文集,2004,89、游泳训练对高脂膳食大鼠超氧化物歧化酶基因表达的作用. 广州体育学院学报,2004,24(2)10、常压模拟高住低练对大鼠心肌低氧诱导因子1α基因表达的影响,中国运动医学杂志,2004,(2)11、低氧预适应机制及其在运动中的应用,广州体育学院学报,2005.(1)12、高住低练对大鼠心肌线粒体活性氧的影响.中国运动医学杂志,2005,(6)13、间歇低氧训练对大鼠心肌线粒体脂质过氧化水平及抗氧化能力的影响.线粒体生理学术会议论文(中国科学院动物研究所主办),2005,9 13、Effects on gene regulation by reactive oxygen species during Intermittent Hypoxic Training.线粒体生理学术会议论文(澳地利因斯布鲁克医学院主办), 2005,914、Effects of reactive oxygen species and antioxidant enzymes of ratduring Intermittent Hypoxic Training.第四届全国青年学术会议论文集.中国体育科学学会主办,2005,1115、低氧运动对大鼠促红细胞生成素的影响,广州体育学院学报,2006,(1)

线粒体:完全真实的细胞器,能将糖、脂肪和氧转化为细胞可用的能量。Midi chlorians:完全合成并广受嘲笑的微观生命形式,赋予绝地武士在《星球大战》电影中使用原力的能力。

看到区别了吗?少数“同行评论员”显然没有这样做,因为本周一篇以“midi-chlorians”代替“线粒体”的论文被四家期刊接受。这篇论文将 *** 上稍加改动的文字与《星球大战》相关的漫无边际的文字混为一谈,其中包括臭名昭著的关于达斯·普拉盖斯悲剧的独白《西斯的复仇》。

这篇论文是一个由所谓的神经学家写的,他为《发现》杂志撰写了化名博客。关键是什么?揭露“掠夺性期刊”,声称提供同行评议,开放获取的出版物,但实际上出版几乎任何东西的费用,根据神经学家。[不错的尝试:2016年前五大收回的科学研究]

“都是关于钱的,”长期致力于揭露掠夺性出版商的科罗拉多丹佛大学研究图书管理员杰弗里·比尔(Jeffrey Beall)说。Beall说,在许多情况下,审阅这些期刊的论文的同行审稿人甚至不存在,或者杂志的所有者摆在审稿人面前。[狗'科学家'坐在编辑委员会的医学杂志]

神经科的刺并不是第一次揭露这些杂志是什么。这些期刊通过收取作者的出版费来盈利;由于论文只在网上发表,出版商的成本微乎其微。他们经常向研究人员的电子邮件帐户发送垃圾邮件,要求他们发表文章。在一个案例中,一本掠夺性的杂志实际上接受了两位研究人员的论文,他们一次又一次地读到“把我从你的邮件列表上弄下来”。在另一次刺痛中,研究人员捏造了一个冒牌科学家,斯苏斯特博士(波兰人称“欺诈”),并把她带到了48个独立的掠夺性期刊的董事会上。“KDSPE”“KDSPs”的灵感来自这些刺,Neuroskeptic把一个假纸混合线粒体和MIDI ChLLIANS,甚至承认在文字中,大部分的措辞已经从 *** 窃取。一个样本:“KDSPE”“KDSPs”“MIDI”介导的氧化应激导致2型糖尿病患者的心肌病。随着更多的脂肪酸传递到心脏,并进入心肌细胞,脂肪酸在这些细胞中的氧化增加。你听说过智者达斯·普雷格斯的悲剧吗?我想不是。这不是绝地武士会告诉你的故事。

(《智者达斯·普拉格斯的悲剧》,演员伊恩·麦克迪亚米德扮演帕尔帕廷的角色的独白,2017年初成为《星球大战》粉丝中的一个迷因。

期刊的回复

神经系统科学将论文发送给了9家负责向科学家发送垃圾邮件的期刊。四-美国医学和生物研究杂志,国际分子生物学杂志:开放获取,奥斯汀药理学和治疗学杂志,以及美国生物科学研究杂志-接受了这篇荒谬的论文。后三位甚至在没有收取费用的情况下发表了这篇文章。比尔说,最有可能的是,这些期刊利用这篇论文人为地夸大了他们的出版记录,并使他们的网站看起来更合法。《奥斯汀药理学与治疗学杂志》和《国际分子生物学杂志:开放获取》后来删除了这篇论文。

翻译科学杂志,《医学与生物化学与生理学进展:开放获取》拒绝了这篇论文。JSM生物化学和分子生物学要求神经系统科学的修改并重新提交论文;读到这篇论文的人得到了一个笑话,并要求修改后的论文包括帕尔帕廷等引文。1980年。同时,《分子生物学与技术》杂志

辅酶Q10吗?身为外表光鲜的白领精英一族,我们肩负着工作和家庭的重重压力。在公司,我们努力工作,表现出一副充满活力,干劲十足的样子。然而,回到家中,往往我们会感到身心疲惫,想的最多的就是休息。专家指出,白领一族是最容易患上慢性疲劳综合症的人群。当疲劳过度而长期得不到休息,就会导致疾病!那么您如何才能尽早知道自己是否患上了慢性疲劳综合症呢?用慢性疲劳综合症检测表来确认一下吧!简单易行的慢性疲劳综合症检测表,可轻松了解自己的身心状况,有利于提高您的生活品质!一、小测试:1.是否经常感到精神不振甚至睡眠不足、失眠多梦2.压力很大,出现失眠3.思维没以前敏捷,记忆力减退4.情绪不稳、焦躁不安、没有耐性5.口舌干燥、声音嘶哑、腰酸腿疼等6.心情抑郁,焦虑不安或急躁7.最近常有同事说您面色不好8.思绪混乱,反应迟钝9.注意力不集中,做事缺乏信心,犹豫不决10.情绪低落、无激情、经常出差错11.全身疲惫,四肢乏力,周身不适,活动迟缓。12.食欲减退如果您符合其中2项,说明疲劳是轻微的;如果符合4项,就是中等疲劳,已经是慢性疲劳综合症了;如果符合了6项以上,那就是过度疲劳了,必须引起足够的注意,必要时需要去医院做进一步的检查。那么,您认为是什么原因导致您如此之累吗?工作压力,生活压力,经济压力?还是……其实,这一切都与辅酶Q10的缺乏有关!二、小常识1、什么是辅酶Q10?辅酶Q10又名“泛醌”,是人体内一种自行合成的辅酶素,也是人体必需的一种营养素,在人体主要存在于肝、心、肾、肾上腺等组织细胞中,主要作用为驱动人体细胞产生能量,直接参与细胞能量的供应,在强化身体制造能量的过程中扮演着十分重要的角色。辅酶Q10能辅助线粒体制造能量,帮助人体细胞设法获取能量和激发细胞释放能量,使细胞保持良好健康的状态为我们的身体提供维持生存的基本能量,是维持心脏肌肉细胞活力必不可少的物质,更有助于提升脑部功能,加强脑部神经细胞的链接,为脑部细胞供应足够的能量。同时,辅酶Q10还是一种超强抗氧化剂,能清除自由基、延缓皮肤衰老,为肌肤增添活力。2、哪些人容易流失辅酶Q10 呢?辅酶Q10是人体可自行合成的辅酶营养素,在医学上被称为“生物标记”,它的含量高低随着年龄有明显的变化。大部分30岁以上的人群,肌肤里的Q10含量都低于理想数值,造成人体自我产生骨胶原、弹性蛋白和其他重要的皮肤胶原质的能力下降,从而影响到肌肤和其他身体机能。医学研究报告表明以下六个方面也会导致辅酶Q10缺乏:1.年龄因素:20岁人体辅酶Q10达到峰值,之后便持续降减,到50岁时,人体内的辅酶Q10含量会比20岁时减少50%,年届70岁时则减少60%!2.精神压力:身体在承受精神压力下,会消耗更多的辅酶Q10。3.环境污染和毒素侵害导致辅酶Q10的消耗速度加快。4.吸烟:即使是二手烟也会造成体内的辅酶Q10快速耗尽。5.运动:常做运动能使身体保持良好状况,但同时身体也会产生自由基。所以我们的身体需要抗氧化剂如辅酶Q10,来抑制自由基的侵害。6.食用医生常开的他汀类降胆固醇药物。3、缺少辅酶Q10会导致多种疾病?人体中辅酶Q10的总含量为500-1500mg,并随着年龄的增长而不断减少。20岁人体辅酶Q10达到最高值,之后便持续降减,到50岁时人体内的辅酶Q10含量会比20岁时减少50%,到70岁时则减少60%以上。人体内辅酶Q10 含量下降25%时,许多疾病就会产生,特别是心脑血管疾病;更加可怕的是辅酶Q10 含量下降超过75%时,生命就会终止。当人体自行合成辅酶q10的能力下降后我们就不得不通过外部食物的摄入而获得不断的补充,但不正确的饮食烹饪习惯让食物中所含的绝大多数辅酶Q10都被破坏了,因此,现代人血液中的辅酶Q10浓度普遍都不高,需要额外补充来避免自身摄取的不足引发的一些列问题。人体缺少辅酶Q10,通常容易产生大脑供氧不足、容易疲倦、心脏功能不好、记忆力衰退、黑眼圈、肌肤暗哑无光泽、脸色不好等,如果不能及时补充辅酶Q10,更容易引发心力衰竭,心率失常,心肌梗塞,中风,高血压,高血脂,动脉硬化等多种心脑血管疾病同时肌肤老化速度加快,从而更加速衰老。所以,作为生命不可或缺的最重要物质之一,人体必需适时补充辅酶Q10。三、辅酶Q10作用1、辅酶Q10在人体主要集中在肝、心、肾、肾上腺、脾、横纹肌等组织中,心脏中含辅酶Q10达70mg/kg。它辅助线粒体制造能量,为我们的身体提供维持生存的基本能量。它在人体心脏中具有重要的生理和药理作用,是维持心脏肌肉细胞活力必不可少的物质。由于心肌的能量运行需要充足的辅酶Q10,因此它被欧美医学家称为心脏的能量元素。2、众所周知,人体新陈代谢的工厂是存在于每个细胞中的线粒体,它将人体消化吸收的糖类转化为三磷腺苷储存起来如同把煤炭转化为电能一样。但细胞线粒体的能量转换与储存,需要辅酶Q10的催化。辅酶Q10为一种激活剂存在于细胞的线粒体内膜,能激活细胞呼吸、加速产生具有高能量的三磷腺苷,促进各组织脏器的工作效率。3、辅酶Q10存在身体细胞内的线粒体,能有效防止自由基的形成,为细胞提供充足能量,从而达到延缓肌体衰老的目的。其作用具体归纳是:一是抗氧化作用,保护细胞不受自由基伤害,维持细胞基本功能及组织结构完整;二是作为细胞呼吸作用的主要辅助要素,为人体新陈代谢提供能量。能量的生成有两种方式:一种是代谢物脱氢后,分子内部能量重新分布,使无机磷酸酯化先形成一个高能中间代谢物,促使ADP变成ATP。这称为底物水平磷酸化。另一种是在呼吸链电子传递过程中偶联ATP的生成。生物体内95%的ATP来自这种方式。而辅酶Q10是呼吸链的重要组成之一。四、辅酶Q10的来源辅酶Q10存在于大自然中的植物、动物体内,人体可以自行合成,也可从食物中获得。人体中辅酶Q10的总含量仅为500~1500mg。饮食均衡能提供一定的辅酶Q10,但细胞吸收能力有限,所以细胞获得的辅酶Q10含量远远无法满足人体需要;虽然肝脏是辅酶Q10的制造器,但其合成辅酶Q10的量与年龄成反比;并且辅酶Q10也会不断的在细胞呼吸作用时消耗,人体中辅酶Q10的含量20岁达到高峰,之后减少,在人体各种器官中心脏中辅酶Q10的减少特别明显。如果没有足够的辅酶Q10,不足以达到临床上期望可预防疾病的标准,身体细胞将无法产生并获得能量,从而引发病变、老化最终导致死亡,而且还无法阻止细胞内破坏正常免疫系统的自由基的形成,肌肤无可避免地加速老化。五、世界科学家对辅酶Q10的研究与应用1958年,美国的卡鲁福鲁卡斯博士( Crane)发现这种物质存在于人的多个组织器官中,并把它命名为Coenzyme Q10,简称CoQ10(中文翻译过来为辅酶Q10)。并获得美国化学学会的最高荣誉----普利斯莱奖(PriestlyMedal),后人尊称卡鲁福鲁卡斯博士为“辅酶Q10的研究之父”。 他40年来一直坚持服用Q10,直到91岁去世为止。1961年,1961年英国著名的爱丁堡大学生化学家,彼得?米切尔()博士发现了辅酶Q10在人体细胞层产生能量的工作机理。彼得?米切尔博士因此重大的发现而荣获1978年诺贝尔化学(医学)奖。彼得?米切尔博士表示:“类维生素辅酶Q10可能是新世纪细胞、生化治疗的‘引路人’,它是对现行医疗方法的补充和延伸”。如今,欧美、日本等发达国家,已把人体内辅酶Q10含量的高低作为衡量身体健康与否的重要指标之一。70年代中期,Mitchell博士化学渗透假说理论,揭示了生物体内能量的转换以及辅酶 Q10在线粒体能量转换体系中重要作用。80年代初,瑞典Ernster博士揭示出类维生素物质辅酶 Q10的抗氧化作用和自由基清除作用。1972年美国Denham Harman博士阐述了线粒体的功能与衰老的关系,最新关于线粒体衰老在机体衰老过程作用的报告认为氧自由基对线粒体DNA的损伤程度较对核DNA高16倍。其原因可能与线粒体基质中DNA更易接近内源性氧自由基,并且线粒体内DNA修复机制远不如核DNA。因此推论,随着年龄的增长线粒体DNA内亚单位受自由基损伤增大。1985年,卡尔博士和苏文?摩坦森博士及其同事一起,以严谨的工作和翔实的数据证明了充血性心力衰竭(CHF)的发生和发展与人体组织中的辅酶Q10水平有强烈相关性。1986年,卡尔?福克斯博士和波?郎雄博士对辅酶Q10在心脏疾病治疗方面进行了开拓性的研究工作,并取得了有价值的数据和成果。他们发表了许多关于辅酶Q10在心血管疾病治疗方面的文章。所有收集到的数据和研究结果显示,以美国纽约心脏病学会(NYHA)的心功能评价标准,对那些被诊断为l级或II级的心脏病人,如果病程在一年之内,服用辅酶Q10将能产生最佳的治疗效果。令人瞩目的是,除了充血性心力衰竭(CHF)之外,还有其他血管系统的疾病可以通过服用辅酶Q10得到满意效果,其中包括血管舒张功能不全、心绞痛,高血压,窦性心律失常以及药物诱导的心脏毒性反应等。在多数此类研究中,辅酶Q10都被用作标准医学治疗的辅助药物。1992 年,弗克斯和克兰斯乔恩医生(美国)在医学杂志上刊登了一篇研究报告,相信这对于心脏病患者来说,是最大的福音。他们选择了11位典型的需要心脏移植的患者来服用辅酶Q10。根据纽约心脏病协会的指导标准,其中: 3名患者的病情从最严重的第四等转变为最轻的第一等; 4名患者的病情从第三和第四等减轻到第二等; 2名患者的病情从第三等减轻到第一等。根据德克萨斯大学的研究显示,心脏病患者体内的辅酶Q10水平往往低于没有心脏病的人士。超过75%的心脏病患者在服用辅酶Q10作治疗之后,病情显著改善。辅酶Q10不仅能为心肌生产能量,也能稳定心脏脉冲和心脏导电系统,减低罹患心律异常或心悸问题的风险。2006年9月25日我国国家食品药品监督管理局出台了《以辅酶Q10为原料生产的保健食品申报与审评规定的(征求意见稿)》,推动了辅酶Q10在国内市场开始广泛应用于保健食品。2007年,辅酶Q10在美国市场上年销售量达170吨,年增长率为15%~20%,辅酶Q10作为一种非处方药和功能性食品在超市、食品连锁店和药店自由出售,美国已成为发达国家中最主要的CoQ10消费国。辅酶Q10是人体状态的指示剂,人体需要辅酶Q10,与需要6大营养物质一样重要,人体缺乏辅酶Q10,也是不能生存的。人体辅酶Q10水平下降,健康状况必然下降,例如下降达到25%时,许多疾病就会妄行。特别是心脑血管疾病与免疫功能有关的疾病以及癌症更易产生;而且更可怕的是辅酶Q10含量下降超过75%,生命将终止。作为人体及其他多种动植物体内都含有的辅酶Q10,它的一个显著特点是无毒性、无致畸作用和无明显副作用,临床使用十分安全。人们长期食用含CoQ10的食品迄今未见任何毒副作用报道。六、心连动广赛牌辅酶Q10维E软胶囊特点:1、国食健字,保证功效:国家食品药品监督管理局批准,经功能实验证明,具有缓解疲劳的功效,功效(效果)有保证;2、GMP生产企业,安全保障:国家食品药品监督管理局批准GMP生产企业,产品质量符合国家相关标准,服用更安全;3、先进生产工艺,功效成分活性高:采用微生物细胞发酵提取辅酶Q10,最高限度保存辅酶Q10的天然活性。4、原料纯正,品质更有保证:绝非人工合成,所使用的原料纯度达到以上。原料纯正,品质有保证。5、含量合理,服用更安全:广赛牌辅酶Q10软胶囊每日服用量为40mg,符合国家“食用推荐量不宜超过50mg/日”的规定。含量合理,食用更安全。6、合理复合配方,有效更高效:特别添加维生素E,协同辅酶Q10具有更强效的抗氧化作用。维生素E具有天然抗氧化作用,其抗氧化作用是通过自身被氧化来防止细胞氧化的。而辅酶Q10不仅自身能与活性氧相抗衡,还具有令已被氧化的维生素E再次作为抗氧化物质恢复原有功效的作用。两者相互合作,具有协同增效,发挥更佳抗氧化的作用。7、 一天一粒,方便轻松:广赛牌辅酶Q10维E软胶囊的主要功效成分辅酶Q10为脂溶性化合物,每天仅需一粒餐后服用,有助于人体更好的吸收。,简单方便,性价比更高;8、 每粒独立包装,品质保护更好:每粒独立包装,开启后无需担心产品氧化,品质保护更好;七、辅酶Q10的适用范围:1、 辅酶Q10功效一:辅酶Q10强健您的“心”作为“办公一族”,常常一坐就是几个甚至十几个小时,每天紧张、繁重的工作使我们经常处于一种疲劳的状态。临床研究发现,一个人若长期处于一种压力较大,疲劳的状态,长时间就会产生焦虑、失眠、记忆力减退、精神抑郁并使机体长期处于应激反应的状态中,其循环系统、消化系统和运动系统等都会受到影响,而这种应激反应会引发人体心脏、大脑、肺脏、肾脏等疾病的发生。尤其是心脏,过度疲劳、情绪激动、过量的体力活动和脑力活动会引发一系列心脏疾病甚至心脏猝死。心脏猝死是指因心脏原因引起的短时间内突然发生的意想不到的非创伤性死亡。那么,“办公一族”怎样才能摆脱心脏疲劳的困扰呢?近年来科学家通过对心脏生物化学的深入研究,对心肌能量代谢有了更深刻的了解和认识,心肌收缩机械做功是以消耗化学能为基础的。辅酶Q10作为心肌代谢复活药在呼吸链中起递氢体的作用,可提高氧的利用率,复活心肌线粒体合成ATP,有利于心肌代谢氧化磷酸化的进行。此外,辅酶Q10还有抗氧自由基作用,可消除其细胞毒性,改善心肌能量代谢,维持兴奋-收缩偶联,减少心肌细胞的不可逆性损伤,对抗氧自由基的负性肌力作用,它不仅产生良好的血液动力学效应,而且还能保护心肌细胞,抑制心肌酶向血中游离,并能改善心功能。辅酶Q10在医学上还广泛应用于心血管疾病,如缺血性心脏病、风湿性心脏病、收窄性心包炎、心肌炎、心绞痛、心律失常及高血压,也用于充血性心力衰竭的辅助治疗。例如辅酶Q10可减轻急性缺血时的心肌收缩力的减弱和磷酸肌酸与三磷酸腺苷含量减少,保持缺血心肌细胞线粒体的形态结构,对缺血心肌有一定保护作用;辅酶Q10可以增加心输出量,降低外周阻力,有利于抗心衰治疗,可能抑制醛固酮的合成与分泌及阻断其对肾小管的效应;在缺氧条件下灌注动物离体心室肌时,辅酶Q10还可以使其动作电位持续时间缩短,产生室性心律失常阈值较对照动物高;可使外周血管阻力下降,并有抗醛固酮作用。根据德克萨斯大学的研究显示,心脏病患者体内的辅酶Q10水平往往低于没有心脏病的人士。超过75%的心脏病患者在服用辅酶Q10作治疗之后,病情显著改善。辅酶Q10不仅能为心肌生产能量,也能稳定心脏脉冲和心脏导电系统,减低罹患心律异常或心悸问题的风险。心肌一旦能生产更多能量,便能发挥更强劲的脉动能力。血液更流通,血管更具灵活弹性,使血压自然也会更健康。由于辅酶Q10显著的保护心脏的作用,盛行于欧美和日本等地,被誉为保护心脏的灵丹妙药,是日本医学界最广为使用的心脏保养剂,被列为健康食品行列中最珍贵的心脏保健产品。2、辅酶Q10功效二:辅酶Q10“抗缺氧、疲倦”辅酶Q10具有抗氧化效应,在缺氧和再灌注期间对细胞起到保护作用。心肌需依赖辅酶Q10以生产足够的能量。由于人体内的辅酶Q10量会随着年龄的增长而持续降低,当您的心脏缺乏辅酶Q10时,您的心脏就会因为匮乏能量而出现状况,无法正常的把足够的氧份和重要的营养素输送至身体各个器官和组织。如此一来,细胞就无法生产足够的能量好让身体保持活力,随之出现疲倦和健康衰退的现象。因此,要是您经常感觉疲惫,很可能是您的心脏在渴求辅酶Q10。3、辅酶Q10功效三:辅酶Q10“抗脑部疲劳、失眠”现代的上班族似乎更容易受到智力性疲劳的困扰。智力性疲劳,也即脑疲劳,主要由持续而紧张的脑力劳动引起,其特点为头昏脑胀、全身无力、嗜睡或失眠、记忆力减退、易激动、肌肉松弛。一天的工作结束后最常说的一句话就是好累啊!脑疲劳如长期得不到完全恢复,如频繁的过度紧张、劳逸安排不当等,使大脑皮层机能受到破坏,神经—体液调节机能紊乱,各器官、系统的机能状态发生异常变化,从而使疲劳转入过度疲劳,发展为病理状态。主要表现为注意力涣散、记忆力减退、食欲不良、体重减轻、困倦而失眠、头昏脑胀,久之则可引起神经衰弱、安静时心率加快,甚至出现心脏扩大、病理杂音等。脑部是人类智慧与意志的中枢,脑部结构紧致,一旦发生疾病,很容易累及脑部神经,导致人运动障碍和意识障碍。在医学实验中,特别是西方医学中得到临床证明的营养补充剂,提升脑部功能,加强神经细胞的链接,对脑部神经系统的帮助,是卓有成效的。在欧美和日本流行的辅酶Q10对于受损的脑部神经有很好的恢复作用,已经成为脑病患者的新希望。美国学者Kidd PM博士2005年报告指出,辅酶Q10的缺乏通常会引起中枢神经系统功能失调,小脑萎缩、从而引起步态不稳、手脚发抖、智力障碍等症状,通过补充辅酶Q10后这些现象都有好转。辅酶Q10给脑部细胞供应足够的能量,能够改善脑部微循环,对于脑梗塞以及出血性脑病遗留的淤血有改善作用。酶Q10作为一种强抗氧化剂物质,可以抵制血液中低密度脂蛋白的氧化功效,减少动脉硬化形成,也是预防心肌梗塞及脑血栓形成最重要的一道防线。4、辅酶Q10功效四:辅酶Q10“减轻帕金森症”研究表明,辅酶Q10可改善帕金森病患者的线粒体功能障碍,减慢帕金森症发展同时减轻症状。外源性的辅酶Q10能改善病变组织的辅酶Ql0缺乏,能通过血脑屏障,减少细胞凋亡,稳定细胞膜,维持钙离子通道完整以减少细胞损伤。减缓多巴胺对线粒体的损伤,起到保护神经的作用。5、辅酶Q10功效五:辅酶Q10是您的“补脑丹”由于辅酶Q10能够携带氧份,使脑细胞得到有氧呼吸,西方国家不仅把它作为脑部疾病患者的康复产品,还把它当成一种脑部营养补充剂给一些脑力劳动者使用。如果您的头脑不如以往般的敏锐,或者常觉得精神疲倦,难以清晰地思考,这可能只因您体内缺乏辅酶Q10之故。您的脑部细胞需要大量能量以维持最佳运作状态。只要这些细胞能取得无穷的能量供应,您必能感觉头脑敏捷,思维清晰,判断力提高。6、辅酶Q10功效六:辅酶Q10的美容原理身为白领丽人的您,每天上班时充满青春活力,光彩夺目。然而,下班后,卸下妆,显示我们的“真”面目时,是否发现眼睛周围容易表现出疲劳症状、劳累时经常出现黑眼圈,肤色不均匀或肤色整体晦暗,总感觉油兮兮的。同时,感到平常使用的化妆品难以被肌肤吸收,部分或全体皮肤干燥,不知为什么老感觉皮肤痒痒的。洗完脸后、有酸胀感或刺痛感。甚至连公司同事也对您说您脸色不好?您知道吗,您该补充辅酶Q10了!人体是由60兆个细胞组成,存在着一种叫线粒体的器官,就是它为我们的身体提供维持生存的基本能量。辅酶Q10能辅助线粒体制造能量,是维持细胞活力必不可少的辅酶。在人体肌肉等处存在大量的辅酶Q10,在肌肤组织里,角质细胞丰富的表皮中含有的辅酶Q10为真皮层的10倍以上。辅酶Q10一天24小时不断为细胞创造活动的能量,随着年龄增长而逐渐减弱的合成力,给肌肤带来巨大的变化,使肌肤粗糙并增加皱纹,肌肤弹力下降、滋润度不足,因此皮肤表皮更易受年龄的影响,出现老化现象。而且由于外在的原因,例如紫外线或精神压力等也会使表皮中含有的辅酶Q10减少。辅酶Q10的减少,会减弱身体的抗氧化能力、制造能量的能力与血液循环,对于肌肤,特别是透明质酸的量减少,容易形成色斑与皱纹。辅酶Q10是制造胶原蛋白、透明质酸、细胞组织液等的动力来源,正是由于这些物质在不断的生成,才使得我们的肌肤嫩白丰润。及时补充辅酶Q10就显得很有必要。目前,美国和欧洲的一些健康专家认为这种营养物质对于人体健康是必需的,提倡要广泛使用。同时很多高档化妆品中也应用了辅酶Q10。辅酶Q10的抗氧化作用是维生素E的40倍,它更是自由基的清道夫,通过加速细胞的分裂和更新,促进肌肤细胞的新陈代谢,改善肌肤干燥粗糙。而且,它还能促进细胞摄取营养,使发黄,缺乏活力的肌肤充满了弹性和健康的光泽,令肌肤“活起来”。人体以酪氨酸为原料,自行合成部分辅酶Q10,但是,在20岁后便开始不断减少,到60岁时只剩下20岁时的一半左右,肌肤也因此而逐渐失去弹性与紧致度,留下的只有时间在皮肤上刻下的残酷痕迹。岁月令肌肤的弹力与水分渐渐消失、令肌肤变得僵硬,原因之一正在于辅酶Q10含量的不足。要想使细胞恢复活力,增强皮肤抗紫外线侵害的能力并减少皱纹等,就需要补充辅酶Q1O,您不妨试试看!

线粒体病论文

Editorial (Thematic Issue: Mitochondrial Biogenesis: Pharmacological Approaches) 社论(专题:线粒体生物发生:药理学方法) 【作 者】Teresa Valero 【刊 名】Current Pharmaceutical Design 【出版日期】2014 【卷 号】 【期 号】 细胞器生物发生伴随细胞分裂过程中的细胞器遗传。细胞器的大小必须加倍并分裂,以产生两个相同的子细胞。线粒体的生物发生是通过原有细胞器的生长和分裂而发生的,并且在时间上与细胞周期事件有关[1]。然而,线粒体的生物发生不仅与细胞分裂有关。它可以响应于氧化刺激,细胞能量需求的增加,运动训练,电刺激,激素,发育过程中的某些线粒体疾病等而产生[2]。因此,线粒体的生物发生被定义为细胞增加其单个线粒体质量的过程[3]。最近的发现引起人们对线粒体生物发生的关注,将其作为治疗迄今为止尚未有效治愈的疾病的潜在靶标。线粒体作为主要的ROS生产者和主要的抗氧化剂生产者,在细胞介导的过程中发挥着至关重要的作用,例如凋亡,排毒,Ca2 +缓冲等。这种关键作用使线粒体成为治疗多种疾病的潜在靶标。 线粒体的生物发生可以通过药理学来操纵。本期试图涵盖通过触发线粒体生物发生来治疗多种疾病的多种方法。它包含了这一新领域的最新发现,重点在于针对慢性和退行性疾病,线粒体疾病,寿命延长,线粒体增生,细胞内信号传导,新的药理目标和天然疗法。它通过涵盖和收集线粒体生物发生的新颖而有希望的领域中鲜有报道的药理学方法,为该领域做出了贡献。 有几种具有线粒体起源的疾病,例如慢性进行性眼外肌麻痹(CPEO)和Kearns-Sayre综合征(KSS),带有红血丝的肌阵挛性癫痫(MERRF),线粒体脑脊髓病, 乳酸性酸中毒和中风样发作(MELAS) ,莱伯(Leber)的遗传性视神经病变(LHON),神经源性肌肉无力,共济失调和色素性视网膜炎(NARP)综合征和利氏综合征。同样,线粒体功能异常起重要作用的其他疾病包括神经退行性疾病,糖尿病或癌症。 通常,在线粒体疾病中,线粒体DNA的突变会导致OXPHOS系统功能丧失,从而导致ATP的消耗和ROS的过度产生,进而会导致进一步的mtDNA突变。吴玉婷,吴世蓓和魏友辉(台湾国立阳明大学生物化学与分子生物学系)的工作[4]专注于上述线粒体疾病,并特别关注其代偿机制。提示线粒体即使在线粒体缺损的情况下也能产生更多的能量。这些补偿机制包括抗氧化酶的过表达,线粒体的生物发生和呼吸系统复杂亚基的过表达,以及代谢向糖酵解的转变。描述了与线粒体生物发生相关的途径,作为对线粒体疾病中能量缺乏的补偿性适应(PGC-1α,Sirtuins,AMPK)。这些作者认为,触发这些信号级联反应的几种药理策略是使用苯扎贝特来激活PPAR-PGC-1α轴,白藜芦醇对AMPK的激活以及Sirt1激动剂(如槲皮素或白藜芦醇)的使用。 当前使用的其他策略包括在饮食中添加抗氧化剂补充剂(饮食中添加抗氧化剂) ,例如L-肉碱,辅酶Q10,MitoQ10和其他针对线粒体的抗氧化剂,N-乙酰半胱氨酸(NAC),维生素C,维生素E维生素K1 ,维生素B,丙酮酸钠或 α-硫辛酸。 如上所述,其他疾病并非仅起源于线粒体,但它们在发病和发展中可能都具有重要的线粒体成分。2型糖尿病或神经退行性疾病就是这种情况。2型糖尿病的特征是周围胰岛素抵抗,伴随着胰岛素分泌的增加(作为代偿系统)。在关于胰岛素抵抗起源的解释中,莫妮卡·萨莫拉(MónicaZamora)和何塞普·A·维伦纳(Josep A. Villena)(庞培法布拉大学实验与健康科学系/西班牙巴塞罗那自治大学代谢与肥胖实验室)[5]考虑了线粒体功能障碍的假说。例如,细胞或组织的(线粒体)氧化能力受损,是胰岛素抵抗和2型糖尿病的主要原因之一。尽管由于2型糖尿病发作期间事件顺序的不确定性(例如,线粒体功能障碍是胰岛素抵抗的原因还是后果)的不确定性,这一假设并非没有争议,但已广泛观察到改善线粒体功能还可以改善胰岛素敏感性并预防2型糖尿病。因此,通过增加线粒体质量来恢复氧化能力似乎是治疗胰岛素抵抗的合适策略。研究人员尝试了解介导线粒体生物发生的信号传导途径,从而发现了新的潜在药理学靶标,并为设计合适的胰岛素抵抗治疗方法开辟了前景。此外,当前使用的一些策略可用于治疗胰岛素抵抗,例如生活方式干预(热量限制和耐力运动)和药理干预(噻唑烷二酮和其他PPAR激动剂,白藜芦醇和其他卡路里限制模拟物,AMPK激活剂,ERR激活剂)。 线粒体生物发生在现代神经化学中尤为重要,因为线粒体离子和ROS稳态,能量产生和形态的缺陷引起了人类疾病的广泛发展[1]。帕金森氏病(PD)是神经退行性疾病中重要的线粒体成分的一个很好的例子。Anuradha Yadav,Swati Agrawal,Shashi Kant Tiwari和Rajnish (CSIR-印度毒理学研究所/科学与创新研究院,印度[6]在他们的综述中评论了线粒体功能障碍在PD中的作用,特别关注氧化应激和生物能缺乏的作用。这些改变可能起源于重要基因如DJ-1,α-syn,parkin,PINK1或LRRK2中的致病基因突变。这些突变反过来可能导致线粒体动力学缺陷(关键事件,如裂变/融合,生物发生,逆行和顺行方向的运输以及线粒体)。这项工作回顾了增强线粒体生物能量学以改善神经退行性过程的不同策略,重点是表明其潜力的临床试验报告。据报道,在肌酸中,辅酶Q10和线粒体靶向的抗氧化剂/肽在临床试验中具有最显着的作用。他们强调了PGC-1α表达对PD预后的双重影响。尽管该转录共激活因子的适度表达会产生积极影响,但过度过度表达则可能产生有害后果。作为诱导PGC-1α激活的策略,这些作者指出了使用白藜芦醇激活Sirt1的可能性,可以使用PPAR激动剂,如吡格列酮,罗格列酮,非诺贝特和苯扎贝特。 其他策略包括通过三萜类化合物(齐墩果酸的衍生物)或Bacopa monniera触发Nrf2 /抗氧化反应元件(ARE)途径,肉碱和α-硫辛酸增强ATP的产生。 线粒体功能障碍是神经退行性疾病和神经发育障碍的主要来源。在神经分化的背景下,Martine Uittenbogaard和Anne Chiaramello(美国乔治华盛顿大学医学院和健康科学学院解剖与再生生物学系)[7]全面描述了线粒体生物发生对神经元分化,其时机,其通过特定信号传导途径的调控和新途径的意义。潜在的治疗策略。线粒体稳态的维持对于神经元发育至关重要。线粒体融合,裂变和质量控制系统与线粒体生物发生之间需要线粒体动态平衡。关于导致线粒体生物发生的信号传导途径,本综述着重介绍了不同调节剂(如AMPK,SIRT1,PGC-1α,NRF1,NRF2,Tfam等)对神经元发育的具体情况的影响,提供了其中这些途径被改变且缺乏这些调节剂的转基因小鼠模型的疾病实例。几种神经退行性疾病(亨廷顿氏病,阿尔茨海默氏病和帕金森氏病)的共同标志是PGC-1α(线粒体生物发生的主要调节剂)的功能或表达受损。在改善线粒体疾病的有希望的策略中,这些作者强调了通过激活PPAR受体(罗格列酮,苯扎贝特)或通过AMPK(AICAR,二甲双胍,白藜芦醇)或SIRT1(SRT1720和几种异黄酮-)来诱导PGC-1α的活性。衍生化合物)。本文还介绍了可用于研究线粒体发生的当前动物和细胞模型的综述。尽管已知许多神经退行性疾病和神经发育疾病起源于线粒体,但线粒体生物发生的调控尚未得到广泛研究。为了找到针对这些最新未治愈疾病的有效治疗方法,因此有必要对线粒体生物发生的控制机制,线粒体动态平衡(融合,裂变,线粒体吞噬和运输)以及不同生物过程之间的潜在串扰进行全面研究。正如作者所表达的,以及开发新型动物模型以适当研究这种线粒体发生的方法。 生物能学的改变对于癌症的发展是必要的。因此,线粒体生物能和动力学的控制可作为潜在的癌症治疗手段。皮拉尔·罗卡(Pilar Roca),Jorge Sastre-Serra,Mercedes Nadal-Serrano,Daniel Gabriel Pons,Mªdel MarBlanquer-Rosselló和Jordi Oliver(Institut d'InvestigacióenCiènciesde la Salut(IUNICS),Universitat de les Illes Balears,西班牙)[8]描述了雌激素受体的调控,它们对乳腺癌,线粒体生物发生,线粒体功能和ROS产生的影响。它对与雌激素受体,类黄酮密切相关的天然化合物及其在癌症治疗和研究中的应用,它们的作用机理等进行了深入的综述,并着重强调了根据剂量,时间,吸收,代谢和荷尔蒙状况,以设计治疗乳腺癌的新策略。 在寻找新的靶向线粒体生物发生疗法的靶点时,了解涉及的途径以及促进这些信号通路的介体至关重要。Fabian Sanchis-Gomar,JoséLuisGarcía-Giménez,Mari CarmenGómez-Cabrera和Federico ó(瓦伦西亚大学生理学系/ CIBERER / INCLIVA,西班牙)[9]对这一领域的当前知识进行了广泛的评论。以及有关线粒体生物发生途径改变的疾病。尽管基于线粒体发生的特定治疗的知识仍然很贫乏,但目前市场上存在的几种药物具有潜在的特征,可用于触发线粒体发生以治疗特定疾病。这篇评论汇编了其中大部分内容,由于线粒体发生是普遍存在的事实,因此着重介绍了这些药物的观察到的副作用以及这些策略的选择性不足。远非落后,这可能构成设计更多组织特异性治疗方法的挑战。线粒体生物发生的研究由于该细胞器的内共生进化起源而特别复杂。线粒体是最复杂和独特的细胞器:真核和原核机制共存,它们具有内膜和外膜,拥有小的基因组,并且遭受连续的融合和裂变事件。此外,伴随着内共生,新的线粒体生物发生途径已经发展[1]。为了扩展我们对诱导不同组织中线粒体发生的潜在机制的了解,使用适当的技术测量线粒体质量至关重要。在活细胞中,线粒体含量或线粒体质量的调节取决于线粒体生物发生,线粒体降解(线粒体)和线粒体动力学(融合,裂变)之间的微妙平衡。Karl J. Tronstad,Marco Nooteboom,Linn IH Nilsson,Julie Nikolaisen,Maciek Sokolewicz,Sander Grefte,Ina KN Pettersen,Sissel Dyrstad,Fredrik Hoel,Peter HGM Willems和Werner JH Koopman(挪威卑尔根大学生物医学系,挪威)拉德布德大学医学中心生物化学系 荷兰[10]描述了维持这种平衡的机制以及量化线粒体形态和含量的可用技术。在回顾了最常见的技术和策略(测量耗氧量,生化生物标志物或通过电子显微镜)的利弊之后,我们可以在这项工作中发现对荧光显微镜的深入分析,用于检测线粒体含量,其可视化,定量和解释2D和3D成像中的结果,以及该小组和其他人员开发的可用软件和策略。这项工作在选择一种研究特定细胞类型中线粒体生物发生的技术时可能会很有帮助。此外,我们还可以找到包含已知影响线粒体发生的几种药物的表格。 自由基已被广泛认为对衰老的细胞结构和启动子有害。然而,它们还通过触发诱导基因表达的信号而充当第二信使。 实际上,内源性自由基可以触发线粒体发生。Hagir B. Suliman和Claude A. Piantadosi(美国杜克大学医学中心,杜克癌症研究所,医学和病理学,麻醉学系,美国)[11]广泛地综述了这些自由基对炎症过程中线粒体发生的影响。在活动性炎症期间,由于急性组织损伤,线粒体经常被氧化和亚硝化应力破坏。内源性自由基的水平升高以补偿方式触发线粒体发生和线粒体吞噬。NO / cGMP /PGC-1α轴就是这种情况,CO / HO-1系统和HS2 / Akt / NRF-1 / -2轴。几种众所周知的药物可以与那些和其他信号传导途径相互作用,以诱导线粒体发生,例如NO供体,CO释放分子,三萜类,促红细胞生成素,噻唑烷二酮类药物,二甲双胍,AICAR和几种天然化合物(包括营养物质和清除剂)。因此,诱导线粒体的生物发生和质量控制代表了开发针对那些伴随线粒体损伤和/或炎症而发展的疾病的新疗法的潜在有价值的方法。 最近的发现指出线粒体生物发生是延长寿命的关键过程,引起了人们的极大关注,例如,在这两个过程中都发现了相似的分子和途径以及相似的干预措施。恩佐·尼索利(Enzo Nisoli)和亚历桑德拉·瓦莱里奥(Alessandra Valerio)(肥胖症研究中心/米兰大学医学生物技术和转化医学系/意大利布雷西亚大学分子转化医学系)[12]回顾了线粒体和其他细胞器的贡献关于衰老和抗衰老策略的研究,指出细胞器之间的相互作用是设计针对年龄相关疾病的新治疗措施并延长寿命和健康寿命的潜在目标。一些干预措施包括通过热量限制,耐力运动和饮食补充富含支链氨基酸(BCAAs)的必需氨基酸混合物来控制线粒体生物发生和动力学的非药理作用。但是,新的药理策略似乎非常有希望,例如新的小型SIRT1激活剂(SRT1720,SRT2183,SRT1460),其他瑟土因激活剂,如恶唑并[4,4-b]吡啶和咪唑并[1,2-b]噻唑衍生物,较小的GSK-3抑制剂SB216763和ZLN005(作用机理未知)或eNOS激活剂,例如AVE化合物。值得强调的最新证据指出,低浓度的自由基是线粒体生物发生和寿命延长的促进剂。 这些发现与线粒体兴奋或线粒体兴奋的新概念密切相关。兴奋剂是定义对轻度应激作出反应的积极作用的术语,如果以较高的强度或浓度施用,对细胞或生物体将是有害的[13]。有许多进化保守过程的例子,其中细胞或生物体暴露于低剂量的一种应激源下会触发适应性反应,从而保护细胞或生物体免受中等或严重压力。实际上,已被证明传统上被认为是有害的自由基在低浓度下可充当第二信使,从而触发不同的信号传导途径。科学界已使用了几个术语,例如自保护,杂合保护,预处理,适应性反应,补偿机制,激素,异激素等。以同样的方式,已经使用了广泛的术语来描述剂量的形状-在低浓度下获得的响应曲线,如双相,双相,双音,钟形,U形,倒U形等[14]。尽管有关此问题的信息被不同的术语所稀释,但已广泛观察到了这类现象。特别是考虑到线粒体,已观察到该细胞器适度产生的自由基可作为第二信使触发线粒体发生[15]。因此,线粒体作用是由于线粒体适度产生自由基而在细胞中产生的有益作用,并且与线粒体生物发生和寿命延长现象密切相关。 本期专刊试图涵盖有关触发线粒体发生的药理学方法,所涉及的信号传导途径,其调控以及线粒体发生对几种疾病的影响的大多数当前知识。但是,该领域仍处于起步阶段。

日本东京大学Umeharu Ohto和日本京都大学Norimichi Nomura团队共同合作近期取得重要工作进展。他们研究发现胆汁酸转运蛋白NTCP的结构对乙型肝炎病毒进入至关重要。该项研究成果2022年5月17日在线发表于《自然》杂志上。 在这里,研究人员报告了人类、牛和大鼠NTCPs在apo状态下的低温电子显微镜(cryo-EM)结构,它揭示了跨膜隧道的存在和底物的可能运输途径。 此外,人类NTCP在LHBs的肉豆蔻酰化preS1结构域存在下的低温电镜结构以及突变和运输试验分析表明了一种结合模式,即preS1和底物竞争NTCP中细胞外通道的开口。重要的是,preS1域相互作用分析能够对人类NTCP中自然发生的HBV不敏感突变进行机理解释。综上所述,他们的研究结果为HBV识别和哺乳动物NTCPs对钠依赖性胆汁酸易位的机制的理解提供了结构框架。 据介绍,慢性乙型肝炎病毒 (HBV) 感染在全球影响超过亿人,是肝硬化和肝细胞癌的主要原因,估计每年导致82万人死亡。HBV感染的建立需要病毒包膜糖蛋白L(LHBs)与宿主进入受体钠-牛磺胆酸共转运多肽(NTCP)之间的分子相互作用,NTCP是一种从血液到肝细胞的钠依赖性胆汁酸转运蛋白。然而,目前对于病毒-转运蛋白相互作用分子基础尚不清楚。 Source: 美国加州大学Arash Komeili研究小组在研究中取得进展。他们发现不同基因簇诱导细菌铁小体细胞器的形成。2022年5月18日出版的《自然》发表了这项成果。 在本研究中,研究人员发现一个与铁结合的隔室,在此命名为“铁小体”,是之前在厌氧细菌磁性脱硫弧菌中发现的。使用蛋白质组学方法,研究人员鉴定了三种铁小体相关(Fez)蛋白,它们在D. magneticus中参与形成铁小体。Fez蛋白由特定的操纵子编码,包括FezB,FezB是在系统发育和代谢不同的细菌和古细菌中发现的P1B-6-ATP酶。研究人员揭示了另外两种细菌物种,Rhodopseudomonas palustris和Shewanella putrefaciens,通过其六基因fez操纵子产生铁小体。 此外,研究发现fez操纵子还可以在外来宿主中形成铁小体。使用S. putrefaciens作为模型,研究表明铁小体可能在厌氧适应铁饥饿中发挥作用。总体而言,该工作发现铁小体可能是一类新的铁储存细胞器,并为研究它们在多种微生物中的形成和结构奠定了基础。 据了解,细胞内铁稳态对于机体至关重要,通过严格调节铁的输入、流出、储存和代谢来维持铁稳态。最常见的铁储存模式使用蛋白质隔室,例如铁蛋白和相关蛋白质。尽管发现了脂质结合的铁隔室,但它们的形成和功能基础仍然未知。 Source: 美国德克萨斯大学西南医学中心Peter M Douglas研究组发现小G蛋白香叶酰化可监测细胞内脂质稳态。2022年5月18日出版的《自然》杂志发表了这项成果。 他们描述了一种在秀丽隐杆线虫中进行细胞内脂质监测的机制,该机制涉及核激素受体 NHR-49 的转录失活,其通过与小 G 蛋白 结合的香叶基香叶酯结合到内吞囊泡进行胞质隔离。由脂质消耗引起的有缺陷的从头类异戊二烯合成限制了 香叶基香叶酰化,这促进了 NHR-49 的核易位和 转录的激活,以增强转运蛋白在质膜上的驻留。因此,他们鉴定了一种细胞可感知的关键脂质,及与其相连 G 蛋白和核受体,它们的动态相互作用使细胞能够感知由于脂质消耗引起的代谢需求,并通过增加营养吸收和脂质代谢来做出反应。 据悉,脂质稳态失衡会对健康产生有害影响。然而,细胞如何感知由于脂质消耗导致的代谢需求并通过增加营养吸收做出反应仍不清楚。 Source: 英国牛津大学Sebastian M. Shimeld研究组探明Hmx基因保留确定了脊椎动物颅神经节的起源。2022年5月18日出版的《自然》杂志发表了该项成果。 他们表明同源盒转录因子 Hmx 是脊椎动物感觉神经节发育的组成成分,并且在小肠绦虫中,Hmx 是驱动双极尾神经元分化程序所必要且充分的,这些细胞以前被认为是神经嵴的同源物。使用绦虫和七鳃鳗转基因,他们证明了茎-脊椎动物谱系中,一个独特的、串联重复的增强子对调节的 Hmx 表达。他们还在绦虫中展示了明显强大的脊椎动物 Hmx 增强子功能,表明上游调控网络的深度保留跨越了脊椎动物的进化起源。这些实验证明了绦虫和脊椎动物 Hmx 之间的调节和功能保护,并指出双极尾神经元是颅感觉神经节的同源物。 研究人员表示,脊椎动物的进化起源包括与掠夺性生活方式的获得相关的感官处理方面的创新。脊椎动物通过由颅感觉神经节服务的感觉系统感知外部刺激,其神经元主要来自颅基板;然而,由于活体谱系之间的解剖学差异以及细胞类型和结构之间的同源性分配困难,阻碍了对基板和颅感觉神经节进化起源的理解。 Source: 美国斯坦福大学Anthony E. Oro团队近期取得重要工作进展。他们研究发现Gibbin中胚层调节模式上皮细胞的发育。该项研究成果2022年5月18日在线发表于《自然》杂志上。 在这里,研究人员鉴定了由Xia-Gibbs AT-hook DNA-binding-motif-containing 1(AHDC1)疾病基因编码的蛋白质Gibbin,它是早期上皮形态发生的关键调节因子。他们发现增强子或启动子结合的Gibbin与数十种序列特异性锌指转录因子和甲基-CpG 结合蛋白相互作用,以调节中胚层基因的表达。Gibbin的缺失导致GATA3依赖性中胚层基因的DNA甲基化增加,导致发育中的真皮和表皮细胞类型之间的信号通路的缺失。 值得注意的是,Gibbin突变的人类胚胎干细胞衍生的皮肤类器官缺乏真皮成熟,导致表达p63的基底细胞具有缺陷的角质形成细胞分层。体内嵌合CRISPR小鼠突变体揭示了一系列Gibbin依赖性发育模式缺陷,这些缺陷影响了反映患者表型的颅面结构、腹壁闭合和表皮分层。他们的结果表明,在Xia–Gibbs和相关综合征中看到的模式表型源于基因特异性 DNA甲基化决定而导致的异常中胚层成熟。 据介绍,在人类发育过程中正确的外胚层模式需要先前确定的转录因子,如GATA3和p63,以及来自区域中胚层的位置信号。然而,外胚层和中胚层因子对稳定基因表达和谱系定型的机制仍不清楚。 Source: 美国纪念斯隆-凯特琳癌症中心Vinod P. Balachandran等研究人员合作发现,新抗原质量可预测胰腺癌幸存者的免疫编辑。相关论文于2022年5月19日在线发表在《自然》杂志上。 研究人员表示,癌症免疫编辑是癌症的一个标志,它预示着淋巴细胞会杀死更多的免疫原性癌细胞,使免疫原性较低的克隆体在群体中占主导地位。虽然在小鼠身上得到证实,但免疫编辑是否在人类癌症中自然发生仍不清楚。 为了解决这个问题,研究人员调查了70个人类胰腺癌在10年内是如何演变的。研究人员发现,尽管有更多的时间积累突变,但罕见的胰腺癌长期幸存者在原发肿瘤中具有更强的T细胞活性,其复发肿瘤的遗传异质性较低,免疫原性突变(新抗原)较少。为了量化免疫编辑是否是这些观察结果的基础,研究人员通过两个特征来推断了新抗原是否具有免疫原性(高质量),这基于新抗原与已知抗原相似性的"非自体性",以及基于新抗原与野生型肽相比不同地结合到MHC或激活T细胞所需的抗原性距离的"自体性"。利用这些特征,研究人员估计癌症克隆的适应性是T细胞识别高质量新抗原的总成本被致癌突变的收益所抵消。 通过这个模型,研究人员预测了肿瘤的克隆进化,并发现胰腺癌的长期幸存者会发展出具有较少高质量新抗原的复发性肿瘤。因此,研究人员展示了人类免疫系统自然编辑新抗原的证据。此外,研究人员提出了一个模型来预测免疫压力是如何诱导癌细胞群随时间演变的。更广泛地说,这些研究结果表明,免疫系统从根本上监督宿主的基因变化来抑制癌症。 Source: 美国斯坦福大学Mark J. Schnitzer、Sadegh Ebrahimi等研究人员合作揭示感觉皮质编码和区域间通信的新兴可靠性。2022年5月19日,国际知名学术期刊《自然》在线发表了这一成果。 研究人员对小鼠执行视觉辨别任务的8个新皮层区域的神经元活动同时进行了5天的成像,产生了超过21000个神经元的纵向记录。分析显示,整个新皮层的事件序列从静止状态开始,到感知的早期阶段,并通过任务反应的形成。在静止状态下,新皮层有一种功能连接模式,通过共享活动共变的区域组来识别。在感觉刺激开始后约200毫秒内,这种连接重新排列,不同区域共享共变和任务相关信息。 在这个短暂的状态中(大约持续300毫秒),区域间的感觉数据传输和感觉编码的冗余都达到了顶峰,反映了任务相关神经元之间相关波动的短暂增加。刺激开始后约秒,视觉表征达到一个更稳定的形式,其结构对单个细胞反应中突出的、逐日的变化是强大的。在刺激出现约1秒后,一个全局波动模式传达了小鼠对每个受检区域即将作出的反应,并与携带感觉数据的模式正交。 总的来说,新皮层通过在感知开始时感觉编码冗余的短暂提升、对细胞变异性稳健的神经群体编码以及广泛的区域间波动模式来支持感觉性能,这些模式以不干扰的渠道传递感觉数据和任务反应。 据了解,可靠的感觉辨别必须来自高保真的神经表征和脑区之间的交流。然而,新皮层感觉处理如何克服神经元感觉反应的巨大变异性仍未确定。 Source: 近日,美国斯坦福大学Jesse M. Engreitz及其团队的最新研究揭示人类增强子和启动子序列的相容性规则。相关论文于2022年5月20日在线发表在《自然》杂志上。 研究人员设计了一种名为ExP STARR-seq(增强子x启动子自转录活性调节区测序)的高通量报告试验,并应用它来研究人类K562细胞中1000个增强子和1000个启动子序列的组合相容性。研究人员确定了增强子-启动子兼容性的简单规则:大多数增强子以类似的数量激活所有启动子,内在的增强子和启动子的活动以倍数结合来决定RNA输出(R2=)。 此外,有两类增强子和启动子显示出微妙的偏好效应。管家基因的启动子含有GABPA和YY1等因子的内置激活模体,这降低了启动子对远端增强子的反应性。表达不一的基因的启动子缺乏这些模体,对增强子表现出更强的反应性。总之,这种对增强子-启动子兼容性的系统评估表明,在人类基因组中,有一个由增强子和启动子类型调整的乘法模型来控制基因转录。 据了解,人类基因组中的基因调控是由远端增强子控制的,它能激活附近特定的启动子。这种特异性的一个模型是,启动子可能对某些增强子有序列编码的偏好,例如由相互作用的转录因子组或辅助因子介导。这种"生化兼容性"模型已被个别人类启动子的观察和果蝇的全基因组测量所支持。然而,人类增强子和启动子内在兼容的程度还没有得到系统的测量,它们的活动如何结合起来控制RNA的表达仍不清楚。 Source: 美国华盛顿大学医学院David J. Pagliarini和美国摩根里奇研究所Joshua J. Coon共同合作,近期取得重要工作进展。他们通过深度多组学分析来确定线粒体蛋白的功能。该项研究成果2022年5月25日在线发表于《自然》杂志上。 在这里,为了建立更完整的人类线粒体蛋白功能纲要,研究人员使用基于质谱的多组学分析方法分析了200多个CRISPR介导的HAP1敲除细胞系。这项工作产生了大约 830 万个不同的生物分子测量值,提供了对线粒体扰动的细胞反应的深入调查,并为蛋白质功能的机制研究奠定了基础。在这些数据的指导下,他们发现PIGY 游开放阅读框(PYURF)是一种S-腺苷甲硫氨酸依赖性甲基转移酶伴侣,它支持复合物I组装和辅酶Q生物合成,并且在以前未解决的多系统线粒体疾病中被破坏。 研究人员进一步将推定的锌转运蛋白SLC30A9与线粒体核糖体和OxPhos完整性联系起来,并将RAB5IF确定为第二个含有导致脑面胸腔发育不良的致病变异的基因。他们的数据可以通过交互式在线资源进行探索,表明许多其他孤儿线粒体蛋白的生物学作用仍然缺乏强大的功能表征,并定义了线粒体功能障碍的丰富细胞特征,可以支持线粒体疾病的基因诊断。 据了解,线粒体是真核生物新陈代谢和生物能学的中心。近几十年来的开创性努力已经确定了这些细胞器的核心蛋白成分,并将它们的功能障碍与150多种不同的疾病联系起来。尽管如此,数以百计的线粒体蛋白仍缺乏明确的功能,约40%的线粒体疾病的潜在遗传基础仍未得到解决。 Source: 美国加州大学洛杉矶分校Alcino J. Silva和Miou Zhou研究组合作揭示,C-C 趋化因子受体 5 (CCR5)可关闭记忆链接的时间窗口。相关论文发表在2022年5月25日出版的《自然》杂志上。 他们展示了CCR5(一种免疫受体,众所周知是 HIV 感染的共同受体)的表达延迟(12-24 小时)增加在环境记忆形成后决定时间窗口的持续时间,以便将该记忆与后续记忆关联或链接。小鼠背侧 CA1 神经元中 CCR5 的这种延迟表达导致神经元兴奋性降低,进而负调节神经元记忆分配,从而减少背侧 CA1 记忆集合之间的重叠。降低这种重叠会影响一个记忆触发另一个记忆的召回能力,因此关闭记忆链接的时间窗口。 他们的研究结果还表明,与年龄相关的 CCR5 及其配体 CCL5 的神经元表达增加会导致老年小鼠的记忆连接受损,这可以通过 Ccr5 敲除和美国食品和药物管理局(FDA)批准的药物逆转。抑制这种受体具有临床意义。总而言之,这里报道的研究结果提供了对塑造记忆链接时间窗口的分子和细胞机制的见解。 据介绍,现实世界的记忆是在特定的环境下形成的,通常不是孤立地获得或回忆的。时间是记忆组织中的一个关键变量,因为时间接近的事件更有可能有意义地关联,而间隔较长的事件则不是。大脑如何区分时间上不同的事件尚不清楚。 Source: 德国海德堡大学Rohini Kuner研究组发现错误连接和终末器官靶向异常可引起神经性疼痛。2022年5月25日出版的《自然》杂志在线发表了这项成果。 研究人员在神经损伤后超过10个月的时间里,以纵向和非侵入性地方式对基因标记的纤维群进行成像,这些纤维群在皮肤周围感知有害刺激(伤害感受器)和轻柔触摸(低阈值传入),同时跟踪这些小鼠与疼痛相关的行为。完全去神经支配的皮肤区域最初失去感觉,逐渐恢复正常敏感性,并在受伤几个月后出现明显的异常性疼痛和对轻触的厌恶。这种神经再支配引起的神经性疼痛与伤害感受器有关,这些伤害感受器延伸到去神经支配的区域,精确地再现神经支配的初始模式,由血管引导,在皮肤中显示出不规则的终端连接,并降低了模拟低阈值传入的激活阈值。 相比之下,低阈值传入神经(通常在损伤后完整神经区域中介导触觉以及异常性疼痛)没有重新建立神经支配,导致仅具有伤害感受器的迈斯纳小体等触觉末端器官受异常神经支配。敲除与伤害感受器有关的基因完全消除了神经再支配异常性疼痛。因此,该研究结果揭示了一种慢性神经性疼痛的发生机制,这种疼痛是由结构可塑性、异常末端连接和神经再支配过程中伤害感受器受损造成的,并为在临床观察到的对病人产生沉重负担的矛盾感觉提供了机制框架。 据了解,神经损伤会导致慢性疼痛和对轻柔触摸的过度敏感(异常性疼痛)以及受伤和未受伤神经聚集区域的感觉丧失。改善这些混合和矛盾症状的机制尚不清楚。 Source: 星形胶质细胞在不同疾病中的反应性转录调控不同,这一成果由美国加州大学Michael V. Sofroniew、Joshua E. Burda研究组经过不懈努力而取得。2022年5月25日出版的《自然》杂志发表了这项成果。 研究人员通过将生物学和信息学分析(包括RNA测序、蛋白质检测、转座酶可及染色质测定与高通量测序(ATAC-seq)和条件基因缺失)相结合的方法来预测转录调节因子,这些调节因子调控了超过12,000个与小鼠和人不同中枢神经系统疾病中星形胶质细胞反应有关的差异表达基因(DEGs)。与星形胶质细胞反应相关的DEG在疾病中表现出明显的异质性。转录调节因子也具有疾病特异性差异,但研究人员发现了一个在这两个物种多种疾病中常见的由61个转录调节因子组成的核心组。实验表明,DEG多样性是由不同转录调节因子与特定细胞内环境之间相互作用决定的。 值得注意的是,相同反应性转录调节因子可以调节不同疾病中显著不同的DEG队列。转录调节因子对DNA结合基序的可及性变化在不同疾病之间存在明显差异;对DEG变化至关重要的调控可能需要多个反应性转录调节因子。通过调节反应性,转录调节因子可以显著改变疾病结果,并可以将其作为治疗靶点。该研究提供了与疾病相关反应性星形胶质细胞DEG及可搜索的预测转录调节因子资源。该研究结果表明,与星形胶质细胞反应性相关的转录变化是高度异质的,并且可通过特定于细胞内环境的转录调节因子组合产生大量潜在的DEG。 据悉,星形胶质细胞对中枢神经系统疾病和损伤作出反应,反应性变化会影响疾病进展。这些变化包括DEGs,然而对DEGs背景多样性和调控知之甚少。 Source: 近日,以色列魏茨曼科学研究所Karina Yaniv、Rudra N. Das等研究人员合作发现,淋巴管转分化可产生专门的血管。相关论文于2022年5月25日在线发表在《自然》杂志上。 研究人员利用斑马鱼臀鳍的循环成像和系谱追踪,从早期发育到成年,发现了一种通过淋巴管内皮细胞(LECs)的转分化形成专门血管的机制。此外,研究人员证明了从淋巴与血液内皮细胞(EC)衍生出的臀鳍血管在成年生物体中的功能差异,揭示了细胞本体和功能之间的联系。研究人员进一步利用单细胞RNA测序分析来描述了转分化过程中涉及的不同细胞群和过渡状态。 最后,结果表明,与正常发育相似,在臀鳍再生过程中,血管从淋巴管中重新衍生出来,表明成年鱼的LEC保留了生成血液EC的效力和可塑性。总的来说,这项研究强调了通过LEC转分化形成血管的先天机制,并为EC的细胞个体发生和功能之间的联系提供了体内证据。 据了解,细胞的谱系和发育轨迹是决定细胞身份的关键因素。在血管系统中,血液和淋巴管的EC通过分化和特化来满足每个器官的独特生理需求。虽然淋巴管被证明来自多种细胞来源,但LEC不知道会产生其他细胞类型。 Source: 德国马克斯·普朗克免疫生物学和表观遗传学研究所Thomas Boehm、Dominic Grün等研究人员合作揭示两种双潜能胸腺上皮细胞祖先类型的发育动态。相关论文于2022年5月25日在线发表于国际学术期刊《自然》。 研究人员结合单细胞RNA测序(scRNA-seq)和一个新的基于CRISPR-Cas9的细胞条形码系统,在小鼠中确定胸腺上皮细胞随时间变化的质和量。这种双重方法使研究人员能够确定两个主要的祖先群体:一个早期双潜能祖先类型偏向皮质上皮,一个产后双潜能祖先群体偏向髓质上皮。研究人员进一步证明,连续提供Fgf7的自分泌导致胸腺微环境的持续扩张,而不会耗尽上皮祖细胞池,这表明有一种策略可以调节胸腺造血活动的程度。 据介绍,胸腺中的T细胞发育对细胞免疫至关重要,并取决于器官型的胸腺上皮微环境。与其他器官相比,胸腺的大小和细胞组成是异常动态的,例如在发育的早期阶段快速生长和高T细胞输出,随后随着年龄的增长,胸腺上皮细胞的功能逐渐丧失,初始T细胞的产量减少。scRNA-seq发现了年轻和年老的成年小鼠胸腺上皮细胞的意外异质性;然而,推定的产前和产后上皮祖细胞的身份和发育动态仍未得到解决。 Source: 美国西奈山伊坎医学院Filip K. Swirski、Wolfram C. Poller等研究人员合作发现,大脑运动和恐惧回路在急性应激期间调节白细胞。2022年5月30日,《自然》杂志在线发表了这项成果。 研究人员发现,在小鼠急性应激期间,不同的大脑区域塑造了白细胞的分布和整个身体的功能。利用光遗传学和化学遗传学,研究人员证明运动回路通过骨骼肌来源的吸引中性粒细胞的趋化因子诱导中性粒细胞从骨髓快速动员到周围组织。相反,室旁下丘脑通过直接的、细胞内的糖皮质激素信号控制单核细胞和淋巴细胞从二级淋巴器官和血液向骨髓排出。这些压力诱导的、反方向的、全群体的白细胞转移与疾病易感性的改变有关。 一方面,急性应激通过重塑中性粒细胞并引导它们被招募到损伤部位来改变先天免疫力。另一方面,促肾上腺素释放激素(CRH)神经元介导的白细胞转移可防止获得自身免疫,但会损害对SARS-CoV-2和流感感染的免疫力。总的来说,这些数据显示,在心理压力期间,不同的大脑区域会不同地、迅速地调整白细胞景观,从而校准免疫系统对身体威胁的反应能力。 据了解,神经系统和免疫系统有着错综复杂的联系。尽管人们知道心理压力可以调节免疫功能,但将大脑中的压力网络与外周白细胞联系起来的机制途径仍然不为人知。 Source:

线粒体:完全真实的细胞器,能将糖、脂肪和氧转化为细胞可用的能量。Midi chlorians:完全合成并广受嘲笑的微观生命形式,赋予绝地武士在《星球大战》电影中使用原力的能力。

看到区别了吗?少数“同行评论员”显然没有这样做,因为本周一篇以“midi-chlorians”代替“线粒体”的论文被四家期刊接受。这篇论文将 *** 上稍加改动的文字与《星球大战》相关的漫无边际的文字混为一谈,其中包括臭名昭著的关于达斯·普拉盖斯悲剧的独白《西斯的复仇》。

这篇论文是一个由所谓的神经学家写的,他为《发现》杂志撰写了化名博客。关键是什么?揭露“掠夺性期刊”,声称提供同行评议,开放获取的出版物,但实际上出版几乎任何东西的费用,根据神经学家。[不错的尝试:2016年前五大收回的科学研究]

“都是关于钱的,”长期致力于揭露掠夺性出版商的科罗拉多丹佛大学研究图书管理员杰弗里·比尔(Jeffrey Beall)说。Beall说,在许多情况下,审阅这些期刊的论文的同行审稿人甚至不存在,或者杂志的所有者摆在审稿人面前。[狗'科学家'坐在编辑委员会的医学杂志]

神经科的刺并不是第一次揭露这些杂志是什么。这些期刊通过收取作者的出版费来盈利;由于论文只在网上发表,出版商的成本微乎其微。他们经常向研究人员的电子邮件帐户发送垃圾邮件,要求他们发表文章。在一个案例中,一本掠夺性的杂志实际上接受了两位研究人员的论文,他们一次又一次地读到“把我从你的邮件列表上弄下来”。在另一次刺痛中,研究人员捏造了一个冒牌科学家,斯苏斯特博士(波兰人称“欺诈”),并把她带到了48个独立的掠夺性期刊的董事会上。“KDSPE”“KDSPs”的灵感来自这些刺,Neuroskeptic把一个假纸混合线粒体和MIDI ChLLIANS,甚至承认在文字中,大部分的措辞已经从 *** 窃取。一个样本:“KDSPE”“KDSPs”“MIDI”介导的氧化应激导致2型糖尿病患者的心肌病。随着更多的脂肪酸传递到心脏,并进入心肌细胞,脂肪酸在这些细胞中的氧化增加。你听说过智者达斯·普雷格斯的悲剧吗?我想不是。这不是绝地武士会告诉你的故事。

(《智者达斯·普拉格斯的悲剧》,演员伊恩·麦克迪亚米德扮演帕尔帕廷的角色的独白,2017年初成为《星球大战》粉丝中的一个迷因。

期刊的回复

神经系统科学将论文发送给了9家负责向科学家发送垃圾邮件的期刊。四-美国医学和生物研究杂志,国际分子生物学杂志:开放获取,奥斯汀药理学和治疗学杂志,以及美国生物科学研究杂志-接受了这篇荒谬的论文。后三位甚至在没有收取费用的情况下发表了这篇文章。比尔说,最有可能的是,这些期刊利用这篇论文人为地夸大了他们的出版记录,并使他们的网站看起来更合法。《奥斯汀药理学与治疗学杂志》和《国际分子生物学杂志:开放获取》后来删除了这篇论文。

翻译科学杂志,《医学与生物化学与生理学进展:开放获取》拒绝了这篇论文。JSM生物化学和分子生物学要求神经系统科学的修改并重新提交论文;读到这篇论文的人得到了一个笑话,并要求修改后的论文包括帕尔帕廷等引文。1980年。同时,《分子生物学与技术》杂志

线粒体肌病论文

线粒体脑肌病属线粒体遗传病,呈母系遗传方式,主要分为4种临床类型:①慢性进行性眼外肌瘫痪(CPEO):多在儿童期起病,以眼睑下垂为首发症状,缓慢进展为全眼外肌瘫痪,眼球运动障碍,但因两侧对称性受累,复视并不常见;部分患者可有咽部肌肉和四肢近端肌无力;②Kearns-Sayre综合征(KSS):20岁以前发病,进展较快,表现CPEO和视网膜色素变性,常伴心脏传导阻滞、小脑性共济失调、脑脊液蛋白增高、神经性耳聋和智能减退等;③线粒体脑肌病伴高乳酸血症和卒中样发作(MECAS)综合征:40岁前起病,儿童期发病较多,表现突发的卒中样发作,如偏瘫、偏盲或皮质盲、反复癫痫发作、偏头痛和呕吐等,病情逐渐加重;CT/MRI可见枕叶脑软化,病灶范围与主要脑血管分布不一致,常见脑萎缩、脑室扩大和基底节钙化;血和脑脊液乳酸增高;④肌阵挛性癫痫伴肌肉蓬毛样红纤维(MERRF)综合征:多在儿童期起病,表现肌阵挛性癫痫、小脑性共济失调和四肢近端肌无力等,可伴多发性对称性脂肪瘤。

线粒体肌病是DNA缺乏由于线粒体DNA缺陷导致线粒体结构和功能障碍ATP合成不足导致的疾病。表现为骨骼肌不能耐受疲劳,而导致轻度活动就会出现疲乏的症状,休息后好转。

常伴有肌肉酸疼及压痛,治疗起来比较困难,主要使用一些增加肌肉供血和供氧的药物来缓解症状,也可以酌情使用一些维生素类的食物,能够很好的缓解症状。也可以使用一些中药当中的补益类的药物,能够很好的缓解疾病的症状。

线粒体疾病注意事项

应避免使用的药物:抗逆转录病毒药(叠氮胸苷),全麻药,丙戊酸钠,四环素,巴比妥类,氯霉素。对有多系统受累的患者应避免氨基糖甙类抗生素。避免用二甲双胍,容易酸中毒。

饮食:需要注意丙酮酸脱氢酶缺乏患者应该生酮饮食,即高脂肪低碳水化合物饮食。线粒体脂肪代谢异常的患者建议高碳水化合物和中链甘油三脂饮食,少用长链脂肪酸。评价患者的基础代谢率。增加就餐次数,避免饥饿,当患有感冒或其他影响进食的疾病时应及时静脉营养,可静脉输注葡萄糖。

线粒体脑病论文

Beneficial effects of creatine, CoQ10, and lipoic acid in mitochondrial disorders. 肌苷,辅酶Q10和硫辛酸对线粒体疾病的有益作用 【作 者】M Christine Rodriguez;Jay R MacDonald;Douglas J Mahoney;Gianni Parise;M Flint Beal;Mark A Tarnopolsky 【刊 名】Muscle & nerve 【出版日期】2007 【卷 号】 【页 码】235-242 【doi】 【影响因子】(2007)  (2015) 摘要: 线粒体疾病具有共同的细胞后果:(1)ATP产生减少;(2)增加对替代厌氧能源的依赖;(3)增加活性氧的产生。本研究的目的是确定联合治疗的效果(肌酸一水合物,辅酶Q 10,以及针对上述细胞后果的硫辛酸,使用线粒体细胞病患者的随机,双盲,安慰剂对照,交叉研究设计,针对多个结果变量。 3例患有线粒体脑病,乳酸性酸中毒和中风样发作(MELAS),4例存在线粒体DNA缺失(3例慢性进行性眼外肌麻痹患者和1例Kearns-Sayre综合征患者),还有9例其他非线粒体疾病分为前两组。 联合疗法可降低所有患者组的静息血浆乳酸和尿8-异前列腺素,并减轻峰值踝背屈强度的下降,而仅MELAS组观察到较高的无脂肪量。一起,这些结果表明,针对线粒体功能障碍的多个最终共同途径的联合疗法可有利地影响细胞能量功能障碍的替代标志物。将来需要在相对均一的人群中进行更大样本量的研究,以确定这种联合疗法是否影响功能和生活质量。 线粒体疾病代表一组影响线粒体能量传导的疾病,其特征是临床,生化和遗传异质性。 18 尽管表型表达差异很大,但大多数患者合并有乳酸性酸中毒,中风或癫痫发作,头痛,色素性视网膜炎,上睑下垂,运动耐力低下,眼肌麻痹,心肌病,神经病和视力减退。 16 , 29 , 38 线粒体功能障碍导致许多细胞后果,包括:(1)ATP生成减少;(2)增加对替代厌氧能源的依赖;(3)增加活性氧(ROS)的产生。 16 , 37 没有疗效的治疗线粒体疾病,大多数策略的目的是为了缓解上述蜂窝后果。 16 , 18 上的患者的线粒体疾病的治疗策略的报告已经检查的单一化合物的效果,如辅酶Q 10(辅酶Q 10) 2 , 4 , 21 或肌酸(CRM)。 13 ,  14 ,  38 基于的概念,即线粒体功能障碍导致一些细胞的病理生理学后果,  33个 为线粒体疾病大多数治疗策略具有相对于单一疗法使用的联合治疗(或治疗“鸡尾酒”)。某些研究已经评估了针对上述三种方法中的一种以上的联合疗法的疗效。然而,这些是任何一种情况下报告,  8 ,  25次 开放试验中,  1 ,  19 ,  20 ,  27 ,  32 或回顾性研究。 26 基于线粒体疾病人体试验的潜在功效证据或人体试验或体外研究的证据显示拟议的化合物可以缓解线粒体功能障碍的一种或多种最终常见途径,我们建议评估联合用药的潜在疗效下列化合物:(1)CrM(替代能源 36 和抗氧化剂 30 ); (2)α-硫辛酸(抗氧化剂 17 和可增加CrM的吸收 6 ) ;(3)辅酶Q 10 [作为抗氧化剂 21 并绕过电子传输链(ETC) 19的配合 物I ]。我们在这里报告了一项随机,双盲,安慰剂对照,交叉试验的结果,该试验研究了这种靶向联合治疗性鸡尾酒联合CrM,CoQ 10和α-硫辛酸对线粒体细胞病变患者的影响。 患者: 从麦克马斯特大学的神经肌肉和神经代谢诊所招募了17位具有明确或可能的线粒体疾病的患者。结合临床症状,空腹血清乳酸浓度,肌肉活检结果(红色的纤维状或细胞色素 c 氧化酶阴性纤维)和线粒体DNA(mtDNA)分析。仅8、9和13号患者未鉴定出DNA突变,对于线粒体神经胃肠道脑病的患者,仅进行确认试验(胸苷升高,胸苷磷酸化酶活性降低);然而,他们的乳酸浓度升高,组织学异常,运动耐力低下,有氧能力低,被认为具有“可能的线粒体细胞病变”。一名患者由于个人原因未完成研究的一部分;因此,该患者的数据被排除在分析之外。最终分析基于16位患者(10位女性和6位男性),根据他们的诊断分为三组。表中显示了患者人群的特征 1 。 第一组包括三位线粒体脑病,乳酸性酸中毒和中风样发作的患者(MELAS组)。第二组包括三名被诊断为慢性进行性眼外肌麻痹(CPEO)的患者和一名被诊断为Kearns-Sayre综合征(KSS)的患者,所有患者均在肌肉来源的mtDNA中被检测出缺失(CPEO / KSS组)。第三组包括各种线粒体疾病的患者:六名线粒体细胞病变患者,两名Leber遗传性视神经病变患者和一名线粒体神经胃肠道脑病患者(其他组) 。该研究获得了我们机构伦理委员会的道德批准,所有患者均提供了知情的书面同意。 CPEO,慢性进行性眼外肌麻痹;细胞病变,线粒体细胞病变;KSS,Kearns–Sayre综合征;LHON,Leber的遗传性视神经病变;MELAS,线粒体脑病,乳酸性酸中毒和中风样发作;MNGIE,线粒体神经胃肠道脑病(无胸苷磷酸化酶活性,胸腺嘧啶核苷水平高)。 设计/干预。 患者参加了一项随机,双盲,安慰剂对照,交叉研究,其中每个参与者均接受了2个月的治疗和安慰剂治疗,两次试验之间有5周的清除期。治疗阶段包括3 g CrM + 2 g葡萄糖+调味剂(新碱;加利福尼亚州帕洛阿尔托的Avicena),300 mgα-硫辛酸(Tishcon,Westbury,纽约)和120 mg CoQ 10(Qgel; Tishcon)每天的0:900和21:00。在安慰剂阶段,将外观相同,品尝相同的粉末(5 g葡萄糖+调味剂; Avicena)和凝胶胶囊(大豆油; Tishcon)用作安慰剂。 禁食4小时后,两个试验的患者在大约每天同一时间(2-3小时内)在每个干预阶段之前和之后完成测试。 测量。 仅在首次访问时记录参与者的身高和体重。所有其他访视均采取了其他所有结果指标。参与者使用定制的力传感器设备进行了握力,踝背屈(关节角度为90°)和膝盖伸展强度测试,数据已直接输入包含数据采集和分析软件的计算机中,如前所述。 38 对于所有力量测量,参与者都在右侧进行测试,并根据手的大小进行个性化设置,并在每次访问之间保持恒定。为了达到峰值强度,参与者进行了3个5s试验,相隔约30 s。记录具有最佳结果的试验值。参与者还进行了1分钟的等距握力和踝背屈疲劳测试(9秒钟工作时间:1秒钟休息周期)。使用肺活量计(Koko; PDS Instrumentation,路易斯维尔,科罗拉多州)进行肺功能测试,包括1秒内的强制肺活量和强制呼气量。每位患者每次访视均至少完成两次肺活量测定,以确保该值与他们的首次尝试一致。进行生物电阻抗(Prism BIA 101A; RJL Systems,Clinton Twp,密歇根州)以确定身体成分。 静脉血液采样和尿液采集。 从肘前静脉将全血收集到预先冷却的,装有肝素(用于乳酸分析)或EDTA(用于测定CoQ 10)的真空管中,并以2500 rpm离心10分钟。将血浆储存在-80℃。每位患者都提供了尿液样本样品,将其约10 ml快速冷冻并保存在-80°C下用于肌酸,肌酐,8-羟基-2'-脱氧鸟苷(8-OHdG)和8-异前列腺素的后续分析( 8-IsoP)。 乳酸 使用YSI 2300 Stat Plus乳酸分析仪(YSI,Yellow Springs,俄亥俄州)测定血浆乳酸浓度。乳酸的批内和批内变异系数分别为%和%。 辅酶Q 10。 使用电化学检测器通过高效液相色谱(HPLC)测定血浆CoQ 10浓度。将血浆( ml)等分到装有1 ml 1-丙醇和 ml辅酶Q 9的10 ml真空容器中,混合5分钟,然后在300  g下 离心5分钟。使用μM注射器过滤器过滤样品,然后将其转移到色谱瓶中,以进行HPLC直接分析。将辅酶Q 9添加到混合物中以作为内标,作为辅酶Q 9的水平在人体血液中微不足道。将所得样品注入装有3μm填料的反相不锈钢色谱柱(150×3 mm)RP‐C18中,该色谱柱带有一个电化学检测器(ESA,贝德福德,马萨诸塞州),该检测器连接到带有单个电极的保卫室(5020型) ; E = +350 mV)和带有双电极的库仑分析池(5011型; E1 = -400 mV,E2 = +300 mV)。使用混合和脱气的甲醇,1-丙醇和乙醇(70:20:10)的流动相,其中含有50 mM乙酸锂作为电导盐,流速为 ml / min,总运行时间少于15分钟 首先通过还原泛醌(E = -400 mV),然后氧化所得泛醇(E = +300 mV)测量辅酶Q 10。辅酶Q 10和辅酶Q 10 H 2在最后一个电极上以最高灵敏度检测到。标准曲线的相关系数为。变异系数确定为<2%。 肌酸和肌酐。 使用HPLC测定尿液中的肌酸浓度,肌酐和肌酸:肌酐的比例。将尿液(1 ml)等分到微量离心管中,并以10,000 rpm离心10分钟。使用ddH 2 O 将尿液上清液稀释至十分之一稀释( ml上清液至 ml ddH 2O)。使用冷藏自动进样器将稀释的尿液上清液保持在10°C。使用Hewlett Packard LC1100系列HPLC(Agilent,Mississauga,Ontario),将紫外检测器设置为λ= 210 nm,将样品注入250× mm C18 Phenomenex10-μHydro-RP 80色谱柱中。Hewlett Packard LC1100数据分析程序会生成校准曲线并分析所得数据。流动相是使用氢氧化钾以 ml / min的流速将磷酸二氢钾(20 mM)调节至pH 。变异系数为%。 8-IsoP。 按照制造商的说明,使用商业酶联免疫吸附测定法(MediCorp,蒙特利尔,魁北克)测定尿中的8-IsoP浓度。标准曲线的相关系数为。变异系数为%。8-IsoP值相对于肌酐(g)表示。 8-OHdG。 如前所述,使用HPLC测定尿液中8-OHdG的浓度。 3  8-OHdG值相对于肌酐(g)表示。 统计。 使用三向(组×处理×时间)或双向(组×处理)重复测量方差分析(ANOVA)进行统计分析。鉴于先前的假设,即由于三种成分中的每一种都具有抗氧化特性,因此联合疗法可减少乳酸盐并降低氧化应激,我们对氧化应激标志物使用了单尾检验。当发现重要结果时,将运行Tukey HSD事后测试。所有分析均使用Statistica v。5软件(StatSoft,Tulsa,俄克拉荷马州)进行。 P  <的值被认为具有统计学意义。所有数据均以平均值±SD给出。 辅酶Q 10和肌酸:肌酸酐。 如预期的那样,与安慰剂阶段相比,联合治疗的血浆辅酶Q 10和尿肌酸:肌酐的比率明显更高。联合治疗后(±μg/ ml)的血浆CoQ 10浓度比安慰剂(±μg/ ml)高172%( P  <;  n  = 14),肌酸:肌酐比高600% (±)比安慰剂(±)( P <)。 血浆乳酸盐。 在血浆乳酸中发现显着的治疗×时间相互作用( P  <,单尾),在联合治疗阶段血浆乳酸浓度较低,在安慰剂阶段未观察到效果(图 1 )。*  P  <,单尾。COMB,联合疗法;CPEO,慢性进行性眼外肌麻痹;KSS,Kearns–Sayre综合征;MELAS,线粒体脑病,乳酸性酸中毒和中风样发作。黑柱,联合疗法;开列,安慰剂。 观察到FFM,TBW和%BF的显着三向相互作用(组×治疗×时间)( P  <)(图 2 ),FFM和TBW升高,%BF降低仅对MELAS集团。(A) 三组中每个治疗阶段之前和之后的无脂质量(FFM), (B) 全身水(TBW)和 (C) 身体脂肪百分比(%BF)。*  P  <;**  P  <,单尾。COMB,联合疗法;CPEO,慢性进行性眼外肌麻痹;KSS,Kearns–Sayre综合征;MELAS,线粒体脑病,乳酸性酸中毒和中风样发作。黑柱,联合疗法;开列,安慰剂。 肺功能。 在1 s内未观察到治疗,组或时间对强制肺活量或强制呼气量的影响(表 2 )。 表2. 肺功能( n  = 11)。 CPEO,慢性进行性眼外肌麻痹;FEV 1,用力呼气量1 s;FVC,强制肺活量;KSS,Kearns–Sayre综合征;MELAS,线粒体脑病,乳酸性酸中毒和中风样发作。 强度措施。 尽管对于每个阶段的结束,无论采用何种治疗方法,峰值握力都降低的趋势不明显( P  = ),但对于峰值握力的处理,组别或时间均无影响。对于握把或脚踝背屈疲劳(表示为峰值疲劳或区域疲劳)或峰值伸膝力量,也没有任何治疗,组或时间效应。但是,观察到踝背屈峰值强度存在显着的双向相互作用(治疗×时间),安慰剂后,踝背屈峰值强度显着下降(从± Nm降至± Nm),但未观察到组合治疗(从± Nm到± Nm)( P <, n  = 16)。 尿液8-OHdG和8-IsoP。 尿8-OHdG没有治疗或组作用;然而,与安慰剂相比,联合治疗后降低8-OHdG /肌酐的趋势无统计学意义(分别为3,±1, ng / g肌酐与4,165±1, ng / g肌酐; P  = )。观察到8-IsoP的治疗效果,因此与安慰剂相比较,联合治疗后观察到较低的尿8-IsoP /肌酐含量(分别为6,±3, ng / g肌酐与7,±3, ng / g肌酐。 ; P <)。 CrM,CoQ 10和硫辛酸 的联合治疗 可降低静息乳酸浓度,防止峰值踝背屈强度降低和氧化应激降低,这可通过尿中8-IsoP排泄和尿液的显着减少来体现。 所有组中8-OHdG排泄的方向性趋势。此外,在MELAS组中,患者的身体成分发生了积极变化(FFM和TBW增加,%BF降低)。联合疗法对肺功能,峰值握力或膝盖伸展力量,或握力或脚踝背屈百分比或区域疲劳没有影响。 从突变线粒体疾病的结果导致在氧化磷酸化的缺陷,导致在nonaerobic能源的依赖性增加 16 , 38 和一个升高的血浆乳酸浓度。 16 , 29 , 38 无论是磷酸肌酸(PCR)系统,腺苷酸激酶/ AMP脱氨酶,或糖酵解/糖原分解可以被用来提供ATP; 但是,由于对糖酵解/糖酵解的依赖性增加,导致乳酸升高 38 CrM被包括在本研究中用于增强PCr系统的联合治疗中。联合治疗后尿肌酸:肌酐的升高和血浆乳酸浓度的降低间接表明联合治疗中的CrM成分可能为肌肉收缩提供了另一种厌氧能源。 从线粒体疾病患者的肌肉中观察到总肌酸 36 和PCr  14的 水平较低,进一步支持了在此类患者中补充CrM的潜在益处。Kornblum等人的最新研究。 14 研究了补充CrM对CPEO或KSS患者肌内PCr的影响。相反,先前在健康受试者中,观察到的结果 6 , 11 没有导致CrM工作在补充尽管肌酸的血浆浓度显著随着由磷- 31核磁共振光谱法测量增加肌内肌酸浓度。 14 当前研究的局限性在于未在大脑或骨骼肌中测量肌酸或PCr含量。然而,伯克等。 6 表明,在健康志愿者中,将CrM与硫辛酸联合使用时,肌肉PCr和总肌酸浓度显着高于单独补充CrM时。 因此,硫辛酸在我们的患者中可能会增加CrM的摄取,从而导致观察到的静息血浆乳酸浓度降低。 乳酸浓度较低的另一种或其他解释可能是联合治疗改善了线粒体ATP的产生。辅酶Q 10是ETC中的电子受体,它将电子从络合物I和II转移到络合物III。 16 , 18 , 33 的CoQ的目标10的补充是旁路缺陷在ETC最大化ATP产生。 16 一项使用来自线粒体细胞病变患者的培养淋巴细胞的研究发现,结合CoQ 10的联合疗法可增加线粒体ATP的产生,其中约49%归因于CoQ 10。 19 相比之下,人类研究的结果不是决定性的,对于一些报道报道辅酶Q的有益效果10在降低血浆休息乳酸浓度患者的线粒体疾病, 1 , 2 ,而另一些则没有。 19 , 20 , 38 不同于以往的报道中,病人在我们的研究也给予硫辛酸。 硫辛酸天然存在于线粒体内,是丙酮酸脱氢酶和α-酮戊二酸脱氢酶的重要辅助因子。 33 硫辛酸用作有效的抗氧化剂 31 , 33 ,并且降低氧化应激在健康志愿者的标记。 17 硫辛酸对ROS的清除作用增加,可能会减慢线粒体疾病中的“恶性循环”,在这种情况下,ROS的产生会导致mtDNA突变,从而加剧氧化磷酸化的缺陷,从而导致更多的ROS产生 。 16 因此, 辅酶Q 10与硫辛酸结合使用,可能具有增加ATP产生的能力,从而导致替代能源的利用率下降,血浆血浆乳酸浓度降低。 安慰剂治疗后,联合疗法减轻了峰值踝背屈强度的下降。据推测,在联合治疗CRM的成分会导致与安慰剂相比改进的强度值,如CRM有被证实可以改善患者强度与线粒体疾病 35 , 38 或杜氏肌营养不良症, 34 和中老年健康志愿者。 5 鉴于我们没有直接测量肌肉中的肌酸或PCr含量,因此我们不能得出结论说联合疗法中的CrM成分会导致踝背屈峰值强度下降。其他研究表明,使用CoQ可以改善线粒体疾病患者的强度10补充。 4 , 9 先前的研究表明,补充CrM可以改善人体成分。 5 , 34 的MELAS组在体本研究中证实的改善的组合物,增加FFM和TBW,和降低的%BF-以下组合疗法; 但是,CPEO / KSS或其他组的患者未见这些改善。与本研究其他两组中代表的其他形式的线粒体疾病患者相比,MELAS患者表现出更严重的临床表型。因此,患有MELAS的患者在本研究中测量的所有变量(包括身体组成)方面都有更大的改善空间。 高水平的ROS和氧化应激与线粒体疾病的病理生理有关。氧化应激的更高水平已报告患者的线粒体疾病与对照组相比 21 , 39 和患者的线粒体DNA突变更高程度的异质性。 7 联合疗法中的所有三种化合物均具有降低氧化应激的特性。 肌酸在无细胞系统中具有直接的抗氧化特性 15, 并为与多种氧化剂孵育的哺乳动物细胞提供细胞保护作用。 30 辅酶Q 10充当脂质的抗氧化剂和线粒体膜 10 , 33 并且还可以通过绕过氧化磷酸化中的缺陷来减少ETC的电子泄漏。 10 最后, 补充硫辛酸后,健康志愿者的尿中异前列腺素水平较低 。 17 我们观察到,与安慰剂相比,联合治疗后的8-IsoP浓度更低;但是,仅观察到了8-OHdG含量降低的趋势。异前列腺素是由花生四烯酸的过氧化作用形成的类似于前列腺素的化合物。 22  -  24 它们是化学稳定的,在体内形成的,并且是一个过氧化特异性产物可检测在稳态水平在多种人类组织和体液中的 24 ;  所有这些特征都使8-IsoP被认为是评估体内氧化应激的最可靠标记。 23 , 24 的8-OHdG由鸟苷残基的羟基化形成,并且经常被用来作为对DNA损伤ROS的生物标志物。 28 , 39 由于的8-OHdG是用于向所有的DNA,不仅线粒体DNA的氧化损伤的生物标记物,它是可能的核DNA的存在可能掩盖或稀释用于降低氧化性损伤的mtDNA的联合治疗的有益效果。 很少有随机对照试验检查了营养药物在线粒体疾病患者中的作用。那些已经进行了严格的检查,单一化合物的唯一的效果,如CRM的 12 , 13 , 38 或辅酶Q 10, 9 已审查。其他的研究,审查的联合治疗效果 1 , 19 , 20 , 26 , 27 , 32 没有使用与我们的研究相同的严格研究设计。结果,与这些研究进行直接比较非常困难,特别是当结合不同线粒体疾病人群中检查了不同的化合物,组合和结果指标这一事实时。考虑到几乎无限的组合,在将来进行临床试验评估之前,必须采用多种筛选方法,基于合理的首要原则测试潜在疗法。方法论,例如使用转基因动物模型或杂种动物,可能被证明可用于评估“线粒体混合物”中目前使用的十几种化合物的许多潜在组合。 我们的结果表明,与安慰剂相比, 针对线粒体功能障碍的三种后果的CrM,CoQ 10和硫辛酸的联合疗法可改善静息血浆乳酸浓度,身体成分,踝背屈强度和氧化应激。 但是,由于一个患者组比其他患者具有更大的获益 (MELAS> CPEO / KSS =其他) ,因此一种治疗策略可能并不普遍适用于所有线粒体疾病。 这项研究由沃伦·拉默特(Warren Lammert)及其家人慷慨捐赠。辅助酶Q 10和硫辛酸由Tishcon捐赠,肌酸一水合物由Avicena捐赠。 8-IsoP,8-异前列腺素; 8-OHdG,8-羟基-2'-脱氧鸟苷; %BF,身体脂肪百分比;辅酶Q 10,辅酶Q 10 ; CPEO,慢性进行性眼外肌麻痹;CrM,肌酸一水合物;ETC,电子传输链;FFM,无脂肪物质;HPLC高效液相色谱;KSS,Kearns–Sayre综合征;MELAS,线粒体脑病,乳酸性酸中毒和中风样发作;mtDNA,线粒体DNA;PCr,磷酸肌酸;ROS,活性氧;TBW,全身水 略

报道一例伴有颈髓病变的、迅速进展恶化的MELAS/Leigh叠加综合征,描述其临床病理特点、病情演变经过和基因突变特点。方法:患者女性,13岁,于2012年3月爬山后出现双下肢麻木,紧绷感,左下肢体频繁抽搐,伴意识丧失发作1次,走路不稳,当地医院MRI提示右侧大脑脚、额叶皮层异常信号,C2-C6颈髓条状异常信号;脑脊液正常;按“播散性脑脊髓炎”予甲强龙冲击、丙种球蛋白治疗好转出院。2012年12月突发恶心呕吐、四肢抽搐伴小便失禁,右侧肢体麻木无力。MR提示左侧小脑半球、双侧丘脑、双侧额叶皮层见新增病灶,大脑脚及右侧额叶皮层病灶扩大。当地医院按“多发性硬化”予甲强龙冲击治疗缓解出院。2013-2-22出现右侧肢体无力、右侧肢体和面部抽搐。我院脑脊液生化、常规、IgG指数正常,脑脊液寡克隆带、水通道蛋白4阴性。3-17因左侧口角抽搐,MRI示双侧顶叶新病灶。4-13因抽搐伴意识不清、呼吸急促来我院急诊,血气分析Ph ,PO2 , 血乳酸18 mmol/L,予气管插管,纠酸等治疗,次日拔管,MRI示双侧中脑、小脑、顶叶多发新病灶。4月24日出现肌阵挛、兴奋、易激惹,双眼下视障碍、共济失调,双眼水平眼震。MRI示脑干小脑新病灶,部分好转出院。7-28出现头痛恶心,血压80/45mmHg,眼球运动障碍,进展到呼吸困难、嗜睡、反应迟钝、GCS评分7分,MRI提示双侧小脑、脑桥、延髓、中脑新病灶。8月11日突发呼吸微弱,血压下降,神志不清,氧饱和度60%,予气管插管,呼吸机辅助呼吸。8月20转当地医院时呈浅昏迷,自主呼吸存在,偶见肢体自发躁动,双侧巴氏征阳性。9-22日脱机回家时,患者意识清,不能言语,能睁眼,右侧肢体痛刺激有回缩。2013-10-26再次出现抽搐、昏迷于当地医院死亡。结果:2013-2-28行肌肉活检,酶染见破碎红纤维,电镜提示线粒体数量和形态异常。全血mtDNA测序提示13094T>C突变,肌肉DNA结果13094T>C近乎纯合突变,确诊线粒体病。开始给予辅酶Q10、左卡尼汀、维生素B2等线粒体保护药物维持治疗。结论:本篇为国内首例13094T>G突变致MELAS/Leigh综合征的报道;出现颈髓病变为线粒体病所罕见;线粒体保护性药物治疗下仍频繁复发、加重甚至死亡的病程不同于3243A>G突变患者。

弟弟,有你就没有,这是可能的

线粒体DNA(mtDNA)是细胞的能量转换系统,在细胞合成、物质转运及信息传递中起重要作用。线粒体可存在于哺乳动物及人类真核细胞内,代谢旺盛的脏器、组织和细胞含量较多:如心脏、肝脏、肌肉、肾小管上皮细胞,含线粒体极为丰富便于提供能量,淋巴细胞含量较少,成熟红细胞则不含线粒体,每个线粒体含有3~10个DNA分子。mtDNA是由16565个碱基对构成的双股环状DNA,分子量约为×107,mtDNA是由重链和轻链构成的双链超螺旋结构,并有特殊遗传特征,mtDNA是母系遗传,1个卵细胞含数十万个mtDNA,而1个精细胞仅含数百个mtDNA,因此发生生殖系遗传以母系遗传为主。mtDNA未受组蛋白保护,易受氧自由基袭击及某些药物副反应损伤,所以是脆弱易损的。由于mtDNA不具有核校读作用故错误率高,其突变率是细胞核DNA的10~100倍,随增龄等因素又使mtDNA突变累积,线粒体氧化磷酸化(OXPHOS)能力降低,细胞产生ATP的量越来越少,这是发生衰老和疾病基础〔1~3〕。线粒体病(mitochondrial disorders)是遗传缺损引起线粒体代谢酶缺陷,致使ATP 合成障碍、能量来源不足导致的一组异质性病变。多在20 岁时起病,也有儿童及中年病,男女均受累。线粒体脑肌病的不同类型发病年龄不同。症状:线粒体病(mitochondrial disorders)是遗传缺损引起线粒体代谢酶缺陷,致使ATP 合成障碍、能量来源不足导致的一组异质性病变。 线粒体是密切与能量代谢相关的细胞器,无论是细胞的成活(氧化磷酸化)和细胞死亡(凋亡)均与线粒体功能有关,特别是呼吸链的氧化磷酸化异常与许多人类疾病有关。 Luft 等(1962)首次报道一例线粒体肌病,生化研究证实为氧化磷酸化脱耦联引起。Anderson(1981)测定人类线粒体DNA(mtDNA)全长序列,Holt(1988)首次发现线粒体病患者mtDNA 缺失,证实mtDNA 突变是人类疾病的重要病因,建立了有别于传统孟德尔遗传的线粒体遗传新概念。 根据线粒体病变部位不同可分为: 1.线粒体肌病(mitochondrial myopathy) 线粒体病变侵犯骨骼肌为主。 2.线粒体脑肌病(mitochondrial encephalomyopathy) 病变同时侵犯骨骼肌和中枢神经系统。 3.线粒体脑病 病变侵犯中枢神经系统为主。

线粒体与医学论文

在一项新的研究中,来自美国普林斯顿大学的研究人员惊奇地发现,他们以为是对癌症如何在体内扩散---癌症转移---的直接调查却发现了液-液相分离的证据:这个生物学研究的新领域研究生物物质的液体团块如何相互融合,类似于在熔岩灯或液态水银中看到的运动。相关研究结果作为封面文章发表在2021年3月的Nature Cell Biology期刊上,论文标题为“TGF-β-induced DACT1 biomolecular condensates repress Wnt signalling to promote bone metastasis”。

论文通讯作者、普林斯顿大学分子生物学教授Yibin Kang说,“我们相信这是首次发现相分离与癌症转移有关。”

他们的研究不仅将相分离与癌症研究联系在一起,而且融合后的液体团块产生了比它们的部分之和更多的东西,自组装成一种以前未知的细胞器(本质上是细胞的一个器官)。

Kang说,发现一种新的细胞器是革命性的。他将其比作在太阳系内发现一颗新的星球。“有些细胞器我们已经认识了100年或更久,然后突然间,我们发现了一种新的细胞器!”

论文第一作者、Kang实验室博士后研究员Mark Esposito说,这将改变人们对细胞是什么和做什么的一些基本看法,“每个人上学,他们都会学到‘线粒体是细胞的能量工厂’,以及其他一些有关细胞器的知识,但是如今,我们对细胞内部的经典定义,对细胞如何自我组装和控制自己的行为的经典定义开始出现转变。我们的研究标志着在这方面迈出了非常具体的一步。”

这项研究源于普林斯顿大学三位教授实验室的研究人员之间的合作。这三位教授是Kang、Ileana Cristea(分子生物学教授,活体组织质谱学的领先专家);Cliff Brangwynne(普林斯顿大学生物工程计划主任,生物过程中相分离研究的先驱)。

Kang说,“Ileana是一名生物化学者,Cliff 是一名生物物理学者和工程师,而我是一名癌症生物学家和细胞生物学者。普林斯顿大学刚好是一个让人们联系和合作的美妙地方。我们有一个非常小的校园。所有的科研部门都紧挨着。Ileana实验室实际上与我的实验室在Lewis Thomas的同一层楼! 这些非常紧密的关系存在于非常不同的研究领域之间,让我们能够从很多不同的角度引入技术,让我们能够突破性地理解癌症的代谢机制--它的进展、转移和免疫反应--也能想出新的方法来靶向它。”

这项最新的突破性研究,以这种尚未命名的细胞器为特色,为Wnt信号通路的作用增加了新的理解。Wnt通路的发现导致普林斯顿大学分子生物学教授Eric Wieschaus于1995年获得诺贝尔奖。Wnt通路对无数有机体的胚胎发育至关重要,从微小的无脊椎动物昆虫到人类。Wieschaus已发现,癌症可以利用这个通路,从本质上破坏了它的能力,使其以胚胎必须的速度生长,从而使肿瘤生长。

随后的研究揭示,Wnt信号通路在 健康 的骨骼生长以及癌症转移到骨骼的过程中发挥着多重作用。Kang和他的同事们在研究Wnt、一种名为TGF-b的信号分子和一个名为DACT1的相对未知的基因之间的复杂相互作用时,他们发现了这种新的细胞器。

Esposito说,把它想象成风暴前的恐慌购物。事实证明,在暴风雪前购买面包和牛奶,或者在大流行病即将到来时囤积洗手液和卫生纸,这不仅仅是人类的特征。它们也发生在细胞水平上。

下面是它的作用机制:惊慌失措的购物者是DACT1,暴风雪(或大流行病)是TGF-ß,面包和洗手液是酪蛋白激酶2(CK2),在暴风雪面前,DACT1尽可能多地抓取它们,而这种新发现的细胞器则把它们囤积起来。通过囤积CK2,购物者阻止了其他人制作三明治和消毒双手,即阻止了Wnt通路的 健康 运行。

通过一系列详细而复杂的实验,这些研究人员拼凑出了整个故事:骨肿瘤最初会诱导Wnt信号,在骨骼中传播(扩散)。然后,骨骼中含量丰富的TGF-b激发了恐慌性购物,抑制了Wnt信号传导。肿瘤随后刺激破骨细胞的生长,擦去旧的骨组织。( 健康 的骨骼是在一个两部分的过程中不断补充的:破骨细胞擦去一层骨,然后破骨细胞用新的材料重建骨骼)。这进一步增加了TGF-b的浓度,促使更多的DACT1囤积和随后的Wnt抑制,这已被证明在进一步转移中很重要。

通过发现DACT1和这种细胞器的作用,Kang和他的团队找到了新的可能的癌症药物靶点。Kang说,“比如,如果我们有办法破坏DACT1复合物,也许肿瘤会扩散,但它永远无法‘长大’成为危及生命的转移瘤。这就是我们的希望。”

Kang和Esposito最近共同创立了KayoThera公司,以他们在Kang实验室的合作为基础,寻求开发治疗晚期或转移性癌症患者的药物。Kang说,“Mark所做的那类基础研究既呈现了突破性的科学发现,也能带来医学上的突破。”

这些研究人员发现,DACT1还发挥着许多他们才开始 探索 的其他作用。Cristea团队的质谱分析揭示了这种神秘细胞器中600多种不同的蛋白。质谱分析可以让科学家们找出在显微镜玻片上成像的几乎任何物质的确切成分。

Esposito说,“这是一个比控制Wnt和TGF-b更动态的信号转导节点。这只是生物学新领域的冰山一角。”

Brangwynne说,相分离和癌症研究之间的桥梁仍处于起步阶段,但它已经显示出巨大的潜力。

他说,“生物分子凝聚物在癌症---它的生物发生,特别是它通过转移进行扩散---中发挥的作用仍然不甚了解。这项研究为癌症信号转导通路和凝聚物生物物理学之间的相互作用提供了新的见解,它将开辟新的治疗途径。”(生物谷 )

参考资料: Esposito et al. TGF-β-induced DACT1 biomolecular condensates repress Wnt signalling to promote bone metastasis. Nature Cell Biology, 2021, doi:. D. Patel et al. Condensing and constraining WNT by TGF-β. Nature Cell Biology, 2021, doi:.

(第一作者)1、Study of effects of different environmental temperature on Free Radical Metabolism during Exercise.第21届国际大学生运动会学术研讨会录用论文,2001,82、肥胖基因与运动.现代康复, 2001,21(5):193、冷刺激和力竭运动对小鼠LPO及抗氧化能力影响,西安体育学院学报,2002,19(2):525、间歇低氧训练对大鼠肾脏EPO基因表达的影响,沈阳体育学院学报,2003,(4)6、运动性内源自由基的产生及其基因表达的作用.沈阳体育学院学报, 2003,(3):417、间歇低氧对线粒体钙转运及能量代谢的影响,中国临床康复,2003,7(27):37788、模拟高住低练对大鼠促红细胞生成素的影响,全国第七届大学生运动会论文集,2004,89、游泳训练对高脂膳食大鼠超氧化物歧化酶基因表达的作用. 广州体育学院学报,2004,24(2)10、常压模拟高住低练对大鼠心肌低氧诱导因子1α基因表达的影响,中国运动医学杂志,2004,(2)11、低氧预适应机制及其在运动中的应用,广州体育学院学报,2005.(1)12、高住低练对大鼠心肌线粒体活性氧的影响.中国运动医学杂志,2005,(6)13、间歇低氧训练对大鼠心肌线粒体脂质过氧化水平及抗氧化能力的影响.线粒体生理学术会议论文(中国科学院动物研究所主办),2005,9 13、Effects on gene regulation by reactive oxygen species during Intermittent Hypoxic Training.线粒体生理学术会议论文(澳地利因斯布鲁克医学院主办), 2005,914、Effects of reactive oxygen species and antioxidant enzymes of ratduring Intermittent Hypoxic Training.第四届全国青年学术会议论文集.中国体育科学学会主办,2005,1115、低氧运动对大鼠促红细胞生成素的影响,广州体育学院学报,2006,(1)

  • 索引序列
  • 医学杂志线粒体
  • 线粒体病论文
  • 线粒体肌病论文
  • 线粒体脑病论文
  • 线粒体与医学论文
  • 返回顶部