shangbabayue
求矩阵的全部特征值和特征向量的方法如下:
第一步:计算的特征多项式;
第二步:求出特征方程的全部根,即为的全部特征值;
第三步:对于的每一个特征值,求出齐次线性方程组:
的一个基础解系,则的属于特征值的全部特征向量是其中是不全为零的任意实数。
若是的属于的特征向量,则也是对应于的特征向量,因而特征向量不能由特征值惟一确定.反之,不同特征值对应的特征向量不会相等,亦即一个特征向量只能属于一个特征值。
扩展资料
求特征向量
设A为n阶矩阵,根据关系式Ax=λx,可写出(λE-A)x=0,继而写出特征多项式|λE-A|=0,可求出矩阵A有n个特征值(包括重特征值)。将求出的特征值λi代入原特征多项式,求解方程(λiE-A)x=0,所求解向量x就是对应的特征值λi的特征向量。
判断相似矩阵的必要条件
设有n阶矩阵A和B,若A和B相似(A∽B),则有:
1、A的特征值与B的特征值相同——λ(A)=λ(B),特别地,λ(A)=λ(Λ),Λ为A的对角矩阵;
2、A的特征多项式与B的特征多项式相同——|λE-A|=|λE-B|。
参考资料来源:百度百科-特征值
老王09870
把特征值代入特征方程,运用初等行变换法,将矩阵化到最简,然后可得到基础解系。求矩阵的全部特征值和特征向量的方法如下:第一步:计算的特征多项式;第二步:求出特征方程的全部根,即为的全部特征值;第三步:对于的每一个特征值,求出齐次线性方程组:的一个基础解系,则可求出属于特征值的全部特征向量。扩展资料求特征向量:设A为n阶矩阵,根据关系式Ax=λx,可写出(λE-A)x=0,继而写出特征多项式|λE-A|=0,可求出矩阵A有n个特征值(包括重特征值)。将求出的特征值λi代入原特征多项式,求解方程(λiE-A)x=0,所求解向量x就是对应的特征值λi的特征向量。判断矩阵可对角化的充要条件:矩阵可对角化有两个充要条件:1、矩阵有n个不同的特征向量;2、特征向量重根的重数等于基础解系的个数。对于第二个充要条件,则需要出现二重以上的重特征值可验证(一重相当于没有重根)。若矩阵A可对角化,则其对角矩阵Λ的主对角线元素全部为A的特征值,其余元素全部为0。(一个矩阵的对角阵不唯一,其特征值可以换序,但都存在由对应特征向量顺序组成的可逆矩阵P使P⁻¹AP=Λ)。求矩阵特征值的方法如下:任意一个矩阵A可以分解成如下两个矩阵表达的形式: 其中矩阵Q为正交矩阵,矩阵R为上三角矩阵,至于QR分解到底是怎么回事,矩阵Q和矩阵R是怎么得到的,你们还是看矩阵论吧,如果我把这些都介绍了,感觉这篇文章要写崩,或者你可以先认可我是正确的,然后往下看。由式(22)可知,A1和A2相似,相似矩阵具有相同的特征值,说明A1和A2的特征值相同,我们就可以通过求取A2的特征值来间接求取A1的特征值。
小胖怡情
尝试x=-1,发现满足方程,接下来就简单了x^3-x^2-13x-10=x^3+x^2-3x^2-3x-10x-10=(x+1)(x^2-3x-10)=(x+1)(x+2)(x-5)于是特征值为 5 -1 -2
会思想の萝卜
求n阶矩阵A的特征值的一般步骤为 (1)写出方程丨λI-A丨=0,其中I为与A同阶的单位阵,λ为代求特征值(2)将n阶行列式变形化简,得到关于λ的n次方程(3)解此n次方程,即可求得A的特征值只有方阵可以求特征值,特征值可能有重根。举例,求已知A矩阵的特征值则A矩阵的特征值为1,-1和2.不懂可追问
随机环境中经济增长模型研究广义生产函数假设下的经济增长模型分析考虑市场预期的供求关系模型基于Matlab的离散事件模拟用风险预算进行资产配置有向图上的PAR贯序
你怎么也做分块矩阵的应用毕业论文??
求矩阵的全部特征值和特征向量的方法如下: 第一步:计算的特征多项式; 第二步:求出特征方程的全部根,即为的全部特征值; 第三步:对于的每一个特征值,求出齐次线性
如果这两个不行,你可以把这两篇论文综合一下哦
这种文体一般是先指出对方错误的实质,或直接批驳(驳论点),或间接批驳(驳论据、驳论证);继而,针锋相对地提出自己的观点并加以论证。驳论是跟立论紧密联系着的,因为