• 回答数

    5

  • 浏览数

    157

雪梨的天空shelly
首页 > 学术期刊 > 目标检测sci论文

5个回答 默认排序
  • 默认排序
  • 按时间排序

陈家小鱼儿

已采纳

sci论文查重只需要找到论文查重平台,例如,上学吧论文查重,再把论文提交,系统就直接把查重结果发到邮箱了,还可以根据提示把重复率高的地方改一下就好。建议选用知网查重。

90 评论

小蟠桃儿

一.准确得体要求论文题目能准确表达论文内容,恰当反映所研究的范围和深度。常见毛病是:过于笼统,题不扣文。如:'金属疲劳强度的研究'过于笼统,若改为针对研究的具体对象来命题。效果会好得多,例如'含镍名牌的合金材料疲劳强度的研究',这样的题名就要贴切得多。再如:'35Ni-15Cr型铁基高温合金中铝和钛含量对高温长期性能和组织稳定性能的影响的研究'这样的论文题目,既长又不准确,题名中的35Ni-15Cr是何含义,令人费解,是百分含量?是重量比?体积比?金属牌号?或是其它什么,请教不得而知,这就叫题目含混不清,解决的办法就是要站在读者的角度,清晰地点示出论文研究的内容。假如上面的题目中,指的是百分含量,可放在内文中说明,不必写在标题中,标题中只需反映含Ni和Cr这一事实即可。可参考的修改方案为:'Ni、Cr合金中Al和Ti含量对高温性能和组织稳定性的影响'。关键问题在于题目要紧扣论文内容,或论文内容民论文题目要互相匹配、紧扣,即题要扣文,文也要扣题。这是撰写论文的基本准则。二.简短精炼力求题目的字数要少,用词需要精选。至于多少字算是合乎要求,并无统一的'硬性'规定,一般希望一篇论文题目不要超出20个字,不过,不能由于一味追求字数少而影响题目对内容的恰当反映,在遇到两者确有矛时,宁可多用几个字也要力求表达明确。常见了繁琐题名如:'关于钢水中所含化学成分的快速分析方法的研究'。在这类题目中,像'关于'、'研究'等词汇如若舍之,并不影响表达。既是论文,总包含有研究及关于什么方面的研究,所以,上述题目便可精炼为:'钢水化学成分的快速分析法'。这样一改,字数便从原21个安减少为12个字,读起来觉得干净利落、简短明了。若简短题名不足以显示论文内容或反映出属于系列研究的性质,则可利用正、副标题的方法解决,以加副标题来补充说明特定的实验材料,方法及内容等信息,使标题成为既充实准确又不流于笼统和一般化。如?quot;(主标题)有源位错群的动力学特性--(副标题)用电子计算机模拟有源位错群的滑移特性'。三.外延和内涵要恰如其分'外延'和'内涵'属于形式逻辑中的概念。所谓外延,是指一个概念所反映的每一个对象;而所谓内涵,则是指对每一个概念对象特有属性的反映。命题时,若不考虑逻辑上有关外延和内涵的恰当运用,则有可能出现谬误,至少是不当。如:'对农村合理的全、畜、机动力组合的设计'这一标题即存在逻辑上的错误。题名中的'人',其外延可能是青壮年,也可以是指婴儿、幼儿或老人,因为后者也?quot;人',然而却不是具有劳动能力的人,显然不属于命题所指,所以泛用'人',其外延不当。同理,'畜'可以指牛,但也可以指羊和猪,试问,哪里见到过用羊和猪来犁田拉磨的呢?所以也属于外延不当的错误。其中,由于使用'劳力'与'畜力',就不会分别误解成那些不具有劳动能力和不能使役的对象。论文题目虽然居于首先映入读者眼帘的醒目位置,但仍然存在题目是否醒目的问题,因为题目所用字句及其所表现的内容是否醒目,其产生的效果是相距甚远的。正文是一篇论文的本论,属于论文的主体,它占据论文的最大篇幅。论文所体现的创造性成果或新的研究结果,都将在这一部分得到充分的反映。因此,要求这一部分内容充实,论据充分、可靠,论证有力,主题明确。为了满足这一系列要求,同时也为了做到层次分明、脉络清晰,常常将正文部分人成几个大的段落。这些段落即所谓逻辑段,一个逻辑段可包含几个自然段。每一逻辑段落可冠以适当标题(分标题或小标题)。

182 评论

椒盐儿橙子

进入paperrater官网,注册直接检测,首次免费检测两万字。

125 评论

大坏蛋make

论文名称:Rich feature hierarchies for accurate object detection and semantic segmentation 提出时间:2014年 论文地址: 针对问题: 从Alexnet提出后,作者等人思考如何利用卷积网络来完成检测任务,即输入一张图,实现图上目标的定位(目标在哪)和分类(目标是什么)两个目标,并最终完成了RCNN网络模型。 创新点: RCNN提出时,检测网络的执行思路还是脱胎于分类网络。也就是深度学习部分仅完成输入图像块的分类工作。那么对检测任务来说如何完成目标的定位呢,作者采用的是Selective Search候选区域提取算法,来获得当前输入图上可能包含目标的不同图像块,再将图像块裁剪到固定的尺寸输入CNN网络来进行当前图像块类别的判断。 参考博客: 。 论文题目:OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks 提出时间:2014年 论文地址: 针对问题: 该论文讨论了,CNN提取到的特征能够同时用于定位和分类两个任务。也就是在CNN提取到特征以后,在网络后端组织两组卷积或全连接层,一组用于实现定位,输出当前图像上目标的最小外接矩形框坐标,一组用于分类,输出当前图像上目标的类别信息。也是以此为起点,检测网络出现基础主干网络(backbone)+分类头或回归头(定位头)的网络设计模式雏形。 创新点: 在这篇论文中还有两个比较有意思的点,一是作者认为全连接层其实质实现的操作和1x1的卷积是类似的,而且用1x1的卷积核还可以避免FC对输入特征尺寸的限制,那用1x1卷积来替换FC层,是否可行呢?作者在测试时通过将全连接层替换为1x1卷积核证明是可行的;二是提出了offset max-pooling,也就是对池化层输入特征不能整除的情况,通过进行滑动池化并将不同的池化层传递给后续网络层来提高效果。另外作者在论文里提到他的用法是先基于主干网络+分类头训练,然后切换分类头为回归头,再训练回归头的参数,最终完成整个网络的训练。图像的输入作者采用的是直接在输入图上利用卷积核划窗。然后在指定的每个网络层上回归目标的尺度和空间位置。 参考博客: 论文题目:Scalable Object Detection using Deep Neural Networks 提出时间:2014年 论文地址: 针对问题: 既然CNN网络提取的特征可以直接用于检测任务(定位+分类),作者就尝试将目标框(可能包含目标的最小外包矩形框)提取任务放到CNN中进行。也就是直接通过网络完成输入图像上目标的定位工作。 创新点: 本文作者通过将物体检测问题定义为输出多个bounding box的回归问题. 同时每个bounding box会输出关于是否包含目标物体的置信度, 使得模型更加紧凑和高效。先通过聚类获得图像中可能有目标的位置聚类中心,(800个anchor box)然后学习预测不考虑目标类别的二分类网络,背景or前景。用到了多尺度下的检测。 参考博客: 论文题目:DeepBox: Learning Objectness with Convolutional Networks 提出时间:2015年ICCV 论文地址: 主要针对的问题: 本文完成的工作与第三篇类似,都是对目标框提取算法的优化方案,区别是本文首先采用自底而上的方案来提取图像上的疑似目标框,然后再利用CNN网络提取特征对目标框进行是否为前景区域的排序;而第三篇为直接利用CNN网络来回归图像上可能的目标位置。创新点: 本文作者想通过CNN学习输入图像的特征,从而实现对输入网络目标框是否为真实目标的情况进行计算,量化每个输入框的包含目标的可能性值。 参考博客: 论文题目:AttentionNet: AggregatingWeak Directions for Accurate Object Detection 提出时间:2015年ICCV 论文地址: 主要针对的问题: 对检测网络的实现方案进行思考,之前的执行策略是,先确定输入图像中可能包含目标位置的矩形框,再对每个矩形框进行分类和回归从而确定目标的准确位置,参考RCNN。那么能否直接利用回归的思路从图像的四个角点,逐渐得到目标的最小外接矩形框和类别呢? 创新点: 通过从图像的四个角点,逐步迭代的方式,每次计算一个缩小的方向,并缩小指定的距离来使得逐渐逼近目标。作者还提出了针对多目标情况的处理方式。 参考博客: 论文题目:Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition 提出时间:2014年 论文地址: 针对问题: 如RCNN会将输入的目标图像块处理到同一尺寸再输入进CNN网络,在处理过程中就造成了图像块信息的损失。在实际的场景中,输入网络的目标尺寸很难统一,而网络最后的全连接层又要求输入的特征信息为统一维度的向量。作者就尝试进行不同尺寸CNN网络提取到的特征维度进行统一。创新点: 作者提出的SPPnet中,通过使用特征金字塔池化来使得最后的卷积层输出结果可以统一到全连接层需要的尺寸,在训练的时候,池化的操作还是通过滑动窗口完成的,池化的核宽高及步长通过当前层的特征图的宽高计算得到。原论文中的特征金字塔池化操作图示如下。 参考博客 : 论文题目:Object detection via a multi-region & semantic segmentation-aware CNN model 提出时间:2015年 论文地址: 针对问题: 既然第三篇论文multibox算法提出了可以用CNN来实现输入图像中待检测目标的定位,本文作者就尝试增加一些训练时的方法技巧来提高CNN网络最终的定位精度。创新点: 作者通过对输入网络的region进行一定的处理(通过数据增强,使得网络利用目标周围的上下文信息得到更精准的目标框)来增加网络对目标回归框的精度。具体的处理方式包括:扩大输入目标的标签包围框、取输入目标的标签中包围框的一部分等并对不同区域分别回归位置,使得网络对目标的边界更加敏感。这种操作丰富了输入目标的多样性,从而提高了回归框的精度。 参考博客 : 论文题目:Fast-RCNN 提出时间:2015年 论文地址: 针对问题: RCNN中的CNN每输入一个图像块就要执行一次前向计算,这显然是非常耗时的,那么如何优化这部分呢? 创新点: 作者参考了SPPNet(第六篇论文),在网络中实现了ROIpooling来使得输入的图像块不用裁剪到统一尺寸,从而避免了输入的信息丢失。其次是将整张图输入网络得到特征图,再将原图上用Selective Search算法得到的目标框映射到特征图上,避免了特征的重复提取。 参考博客 : 论文题目:DeepProposal: Hunting Objects by Cascading Deep Convolutional Layers 提出时间:2015年 论文地址: 主要针对的问题: 本文的作者观察到CNN可以提取到很棒的对输入图像进行表征的论文,作者尝试通过实验来对CNN网络不同层所产生的特征的作用和情况进行讨论和解析。 创新点: 作者在不同的激活层上以滑动窗口的方式生成了假设,并表明最终的卷积层可以以较高的查全率找到感兴趣的对象,但是由于特征图的粗糙性,定位性很差。相反,网络的第一层可以更好地定位感兴趣的对象,但召回率降低。 论文题目:Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks 提出时间:2015年NIPS 论文地址: 主要针对的问题: 由multibox(第三篇)和DeepBox(第四篇)等论文,我们知道,用CNN可以生成目标待检测框,并判定当前框为目标的概率,那能否将该模型整合到目标检测的模型中,从而实现真正输入端为图像,输出为最终检测结果的,全部依赖CNN完成的检测系统呢? 创新点: 将当前输入图目标框提取整合到了检测网络中,依赖一个小的目标框提取网络RPN来替代Selective Search算法,从而实现真正的端到端检测算法。 参考博客 :

223 评论

木姑娘Zara

我之前查重都是用软件自己查的,但是效果不怎么样,后来我朋友给我介绍了一家机构,叫清北医学翻译,在收费上面也不是很高

263 评论

相关问答

  • 目标检测追踪论文

    论文原文: YOLO(you only look once)是继RCNN、faster-RCNN之后,又一里程碑式的目标检测算法。yolo在保持不错的准确度的

    yyh心随我动 3人参与回答 2023-12-11
  • yolo目标检测论文

    论文原文: YOLO(you only look once)是继RCNN、faster-RCNN之后,又一里程碑式的目标检测算法。yolo在保持不错的准确度的

    爱吃爱喝薅羊毛 2人参与回答 2023-12-10
  • 检测论文题目标红

    有些同学在进行知网查重时,经常会出现这样的失误。即容易漏掉标题,或者没有写完整。所以他们会担心,这样的小失误会不会影响论文的查重率。这样的举动会不会产生影响呢?

    右耳钉的豆豆 5人参与回答 2023-12-07
  • 目标检测相关论文

    原文: Scalable Object Detection using Deep Neural Networks——学术范 最近,深度卷积神经网络在许多图

    无锡捞王 2人参与回答 2023-12-10
  • 结课论文目标检测

    大学期末结课论文老师真的会去查重的,因为大学期末结课论文是非常重要的,关系到你是否能顺利毕业的,所以老师对于这块还是非常看重的。

    满堂红李娜 8人参与回答 2023-12-06