• 回答数

    3

  • 浏览数

    203

代号为喵
首页 > 学术期刊 > 目标检测水论文

3个回答 默认排序
  • 默认排序
  • 按时间排序

ssssss0008

已采纳

论文名称:Rich feature hierarchies for accurate object detection and semantic segmentation 提出时间:2014年 论文地址: 针对问题: 从Alexnet提出后,作者等人思考如何利用卷积网络来完成检测任务,即输入一张图,实现图上目标的定位(目标在哪)和分类(目标是什么)两个目标,并最终完成了RCNN网络模型。 创新点: RCNN提出时,检测网络的执行思路还是脱胎于分类网络。也就是深度学习部分仅完成输入图像块的分类工作。那么对检测任务来说如何完成目标的定位呢,作者采用的是Selective Search候选区域提取算法,来获得当前输入图上可能包含目标的不同图像块,再将图像块裁剪到固定的尺寸输入CNN网络来进行当前图像块类别的判断。 参考博客: 。 论文题目:OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks 提出时间:2014年 论文地址: 针对问题: 该论文讨论了,CNN提取到的特征能够同时用于定位和分类两个任务。也就是在CNN提取到特征以后,在网络后端组织两组卷积或全连接层,一组用于实现定位,输出当前图像上目标的最小外接矩形框坐标,一组用于分类,输出当前图像上目标的类别信息。也是以此为起点,检测网络出现基础主干网络(backbone)+分类头或回归头(定位头)的网络设计模式雏形。 创新点: 在这篇论文中还有两个比较有意思的点,一是作者认为全连接层其实质实现的操作和1x1的卷积是类似的,而且用1x1的卷积核还可以避免FC对输入特征尺寸的限制,那用1x1卷积来替换FC层,是否可行呢?作者在测试时通过将全连接层替换为1x1卷积核证明是可行的;二是提出了offset max-pooling,也就是对池化层输入特征不能整除的情况,通过进行滑动池化并将不同的池化层传递给后续网络层来提高效果。另外作者在论文里提到他的用法是先基于主干网络+分类头训练,然后切换分类头为回归头,再训练回归头的参数,最终完成整个网络的训练。图像的输入作者采用的是直接在输入图上利用卷积核划窗。然后在指定的每个网络层上回归目标的尺度和空间位置。 参考博客: 论文题目:Scalable Object Detection using Deep Neural Networks 提出时间:2014年 论文地址: 针对问题: 既然CNN网络提取的特征可以直接用于检测任务(定位+分类),作者就尝试将目标框(可能包含目标的最小外包矩形框)提取任务放到CNN中进行。也就是直接通过网络完成输入图像上目标的定位工作。 创新点: 本文作者通过将物体检测问题定义为输出多个bounding box的回归问题. 同时每个bounding box会输出关于是否包含目标物体的置信度, 使得模型更加紧凑和高效。先通过聚类获得图像中可能有目标的位置聚类中心,(800个anchor box)然后学习预测不考虑目标类别的二分类网络,背景or前景。用到了多尺度下的检测。 参考博客: 论文题目:DeepBox: Learning Objectness with Convolutional Networks 提出时间:2015年ICCV 论文地址: 主要针对的问题: 本文完成的工作与第三篇类似,都是对目标框提取算法的优化方案,区别是本文首先采用自底而上的方案来提取图像上的疑似目标框,然后再利用CNN网络提取特征对目标框进行是否为前景区域的排序;而第三篇为直接利用CNN网络来回归图像上可能的目标位置。创新点: 本文作者想通过CNN学习输入图像的特征,从而实现对输入网络目标框是否为真实目标的情况进行计算,量化每个输入框的包含目标的可能性值。 参考博客: 论文题目:AttentionNet: AggregatingWeak Directions for Accurate Object Detection 提出时间:2015年ICCV 论文地址: 主要针对的问题: 对检测网络的实现方案进行思考,之前的执行策略是,先确定输入图像中可能包含目标位置的矩形框,再对每个矩形框进行分类和回归从而确定目标的准确位置,参考RCNN。那么能否直接利用回归的思路从图像的四个角点,逐渐得到目标的最小外接矩形框和类别呢? 创新点: 通过从图像的四个角点,逐步迭代的方式,每次计算一个缩小的方向,并缩小指定的距离来使得逐渐逼近目标。作者还提出了针对多目标情况的处理方式。 参考博客: 论文题目:Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition 提出时间:2014年 论文地址: 针对问题: 如RCNN会将输入的目标图像块处理到同一尺寸再输入进CNN网络,在处理过程中就造成了图像块信息的损失。在实际的场景中,输入网络的目标尺寸很难统一,而网络最后的全连接层又要求输入的特征信息为统一维度的向量。作者就尝试进行不同尺寸CNN网络提取到的特征维度进行统一。创新点: 作者提出的SPPnet中,通过使用特征金字塔池化来使得最后的卷积层输出结果可以统一到全连接层需要的尺寸,在训练的时候,池化的操作还是通过滑动窗口完成的,池化的核宽高及步长通过当前层的特征图的宽高计算得到。原论文中的特征金字塔池化操作图示如下。 参考博客 : 论文题目:Object detection via a multi-region & semantic segmentation-aware CNN model 提出时间:2015年 论文地址: 针对问题: 既然第三篇论文multibox算法提出了可以用CNN来实现输入图像中待检测目标的定位,本文作者就尝试增加一些训练时的方法技巧来提高CNN网络最终的定位精度。创新点: 作者通过对输入网络的region进行一定的处理(通过数据增强,使得网络利用目标周围的上下文信息得到更精准的目标框)来增加网络对目标回归框的精度。具体的处理方式包括:扩大输入目标的标签包围框、取输入目标的标签中包围框的一部分等并对不同区域分别回归位置,使得网络对目标的边界更加敏感。这种操作丰富了输入目标的多样性,从而提高了回归框的精度。 参考博客 : 论文题目:Fast-RCNN 提出时间:2015年 论文地址: 针对问题: RCNN中的CNN每输入一个图像块就要执行一次前向计算,这显然是非常耗时的,那么如何优化这部分呢? 创新点: 作者参考了SPPNet(第六篇论文),在网络中实现了ROIpooling来使得输入的图像块不用裁剪到统一尺寸,从而避免了输入的信息丢失。其次是将整张图输入网络得到特征图,再将原图上用Selective Search算法得到的目标框映射到特征图上,避免了特征的重复提取。 参考博客 : 论文题目:DeepProposal: Hunting Objects by Cascading Deep Convolutional Layers 提出时间:2015年 论文地址: 主要针对的问题: 本文的作者观察到CNN可以提取到很棒的对输入图像进行表征的论文,作者尝试通过实验来对CNN网络不同层所产生的特征的作用和情况进行讨论和解析。 创新点: 作者在不同的激活层上以滑动窗口的方式生成了假设,并表明最终的卷积层可以以较高的查全率找到感兴趣的对象,但是由于特征图的粗糙性,定位性很差。相反,网络的第一层可以更好地定位感兴趣的对象,但召回率降低。 论文题目:Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks 提出时间:2015年NIPS 论文地址: 主要针对的问题: 由multibox(第三篇)和DeepBox(第四篇)等论文,我们知道,用CNN可以生成目标待检测框,并判定当前框为目标的概率,那能否将该模型整合到目标检测的模型中,从而实现真正输入端为图像,输出为最终检测结果的,全部依赖CNN完成的检测系统呢? 创新点: 将当前输入图目标框提取整合到了检测网络中,依赖一个小的目标框提取网络RPN来替代Selective Search算法,从而实现真正的端到端检测算法。 参考博客 :

347 评论

吧啦左耳

目标检测论文整理最近开始看一些object detection的文章,顺便整理一下思路。排版比较乱,而且几乎所有图片都是应用的博客或论文,如有侵权请联系我。文章阅读路线参考目前已完成的文章如下,后续还会继续补充(其中加粗的为精读文章):RCNNOverfeatMR-CNNSPPNetFast RCNNA Fast RCNNFaster RCNNFPNR-FCNMask RCNNYOLOYOLO 9000YOLO v3SSDDSSDR-SSDRetinaNet(focal loss)DSODCascade R-CNN(待续)吐槽一下,博客园的markdown竟然没有补齐功能,我还是先在本地补全再传上来吧。。。RCNN之前的故事Histogram of Gradient (HOG) 特征在深度学习应用之前,图像的特征是人工定义的具有鲁棒性的特征,如SIFT,HOG等,下面简要介绍一下HOG。8x8像素框内计算方向梯度直方图:HOG Pyramid特征金字塔,对于不同大小的物体进行适应,设计尺度不变性特征HOG特征 -> SVM分类DPM模型 Deformable Part Model加组件组合的HOG特征, 组件间计算弹性得分,优化可变形参数如果没有弹性距离,就是BoW (Bag of Word)模型, 问题很大, 位置全部丢失:n个组件的DPM计算流程:Selective Search 思想过分割后基于颜色纹理等相似度合并,然后,过分割、分层合并、建议区域排序基于Selective Search + DPM/HoG + SVM的物体识别此时的框架就是RCNN的雏形,因为DPM就是基本由RBG和他导师主导,所以大神就是大神。AlexNet的图像分类(深度学习登场)2012年AlexNet赢得LSVRC的ImageNet分类竞赛。深度CNN结构用来图像特征提取。bounding-box regression 框回归BBR 在DPM时代就和SVM分类结合,一般直接使用线性回归,或者和SVR结合RCNN: Rich feature hierarchies for accurate object detection and semantic segmentationRCNN作为深度学习用于目标检测的开山之作,可以看出是基于Selective Search + DPM/HoG + SVM框架,只不过将是将手工特征转变为CNN提取特征,本文主要贡献如下:CNN用于object detection解决数据集不足的问题主要流程如下:regional preposals(selective research)CNN feature extractionSVM ClassificationNMSbounding-box regression(BBR)为啥能work?优秀的目标检测框架,region proposal 和 regression offset降低了目标检测的难度,强大的CNN特征提取器,代替传统的已经到瓶颈的手工特征迁移训练降低了对数据集的要求MR-CNN:Object detection via a multi-region & semantic segmentation-aware CNN modelMulti-Region的提出, 开始对Box进一步做文章, 相当于对Box进一步做增强,希望改进增强后的效果,主要改善了部分重叠交叉的情况。特征拼接后使得空间变大,再使用SVM处理, 效果和R-CNN基本类似.OverFeat:Integrated Recognition, Localization and Detection using Convolutional Networks不得不说虽然OverFeat在但是比赛成绩不是太好,但是它的思想还是很有启发性的。OverFeat直接抛弃了Selective Search,采用CNN上slide windows来进行框推荐,并且把Bounding box Regression整合一起使用全连接层搞定, 解决了后面一端的问题(取代了SVM分类器和BBR线性回归器),这个思想影响了后来的Fast RCNN。是第一个End to End 的目标检测模型,模型虽然简陋,但是可以验证网络强大的拟合能力注意整合目标检测的各项功能(分类,回归)。亮点:先用CNN得到feature map再做slide windows推荐区域,避免了特征重复计算。设计了End to End模型,方便优化和加快检测速度设计全卷积网络,并进行多尺度图像训练maxpool offset(没有Fast RCNN的ROI Pooling自然)为啥能work?可以看出OverFeat将不同的两个问题物体分类和位置回归采用了两个分支网络,共用前面的CNN特征表述,而CNN提取的特征正如OverFeat所言,是一种类似于SIFT,HOG等人工描述子的一种稳定的描述子(底层抽象),可以用于构建不同的任务(高层表述),也就是模型为什么能work的原因。SPPNetR-CNN和Overfeat都存在部分多尺度,重叠效果的问题。 某种意义上, 应对了HoG特征, 这样对于物体来说类似BoW模型, 我们知道DPM里面,是带有组件空间分布的弹性得分的, 另外也有HoG Pyramid的思想。 如何把Pyramid思想和空间限制得分加入改善多尺度和重叠的效果呢? MR-CNN里面尝试了区域增强, Overfeat里面尝试了多尺度输入。 但是效果都一般。 这里我们介绍另外一个技术Spatial Pyramid Matching, SPM,是采用了空间尺度金字塔的特点。和R-CNN相比做到了先特征后区域, 和Overfeat相比自带Multi-Scale。SPP pooling layer 的优势:解决了卷积层到全连接层需要固定图片大小的问题,方便多尺度训练。能够对于任意大小的输入产生固定的输出,这样使得一幅图片的多个region proposal提取一次特征成为可能。进一步强调了CNN特征计算前移, 区域处理后移的思想, 极大节省计算量也能看出文章还是强调用CNN做特征的提取,还是用的BBR和SVM完成回归和分类的问题Fast RCNN可以看出Fast RCNN结合了OverFeat和Sppnet的实现,打通了高层表述和底层特征之间的联系主要流程:任意size图片输入CNN网络,经过若干卷积层与池化层,得到特征图;在任意size图片上采用selective search算法提取约2k个建议框;根据原图中建议框到特征图映射关系,在特征图中找到每个建议框对应的特征框【深度和特征图一致】,并在RoI池化层中将每个特征框池化到H×W【VGG-16网络是7×7】的size;固定H×W【VGG-16网络是7×7】大小的特征框经过全连接层得到固定大小的特征向量;将上一步所得特征向量经由各自的全连接层【由SVD分解实现(全连接层加速)】,分别得到两个输出向量:一个是softmax的分类得分,一个是Bounding-box窗口回归;利用窗口得分分别对每一类物体进行非极大值抑制剔除重叠建议框其中ROI POOL层是将每一个候选框映射到feature map上得到的特征框经池化到固定的大小,其次用了SVD近似求解实现全连接层加速。这里需要注意的一点,作者在文中说道即使进行多尺度训练,map只有微小的提升,scale对Fast RCNN的影响并不是很大,反而在测试时需要构建图像金字塔使得检测效率降低。这也为下一步的多尺度改进埋下了伏笔。为啥能更好的work?也是结合了OverFeat的和SPPnet的work,同时规范了正负样本的判定(之前由于SVM和CNN对区域样本的阈值划分不同而无法统一网络,当然这只是其中的一个原因。更多的估计是作者当时没想到),将网络的特征抽取和分类回归统一到了一个网络中。A Fast RCNN: Hard Positive Generation via Adversary for Object Detection这篇论文是对,CMU与rbg的online hard example mining(OHEM)改进,hard example mining是一个针对目标检测的难例挖掘的过程,这是一个更充分利用数据集的过程。实际上在RCNN训练SVM时就已经用到,但是OHEM强调的是online,即如何在训练过程中选择样本。同期还有S-OHEM的改进。而随着但是GAN的火热,A-Fast-RCNN尝试生成hard example(使用对抗网络生成有遮挡和有形变的两种特征,分别对应网络ASDN和ASTN)结论如下:ASTN 和 随机抖动(random jittering)做了对比,发现使用AlexNet,mAP分别是和,使用VGG16,mAP分别是和,ASTN 的表现都比比随机抖动效果好。作者又和OHEM对比,在VOC 2007数据集上,本文方法略好( vs. ),而在VOC 2012数据集上,OHEM更好( vs. )。gan用于目标检测还没有很好的idea,这篇论文相当于抛砖引玉了。同时需要注意的一个问题,网络对于比较多的遮挡和形变情况识别情况更好;但是对于正常目标的特征抽象能力下降,所以有时候创造难例也要注意样本的数量。下面是一些由于遮挡原因造成的误判。Faster RCNN:Towards Real-Time Object Detection with Region Proposal Networks这篇文章标志着two-stage目标检测的相对成熟,其主要改进是对候选区域的改进,将候选区域推荐整合进了网络中。结合后面的一系列文章,可以马后炮一下它的缺点:虽然Faster RCNN已经共享了绝大部分卷积层运算,但是RoI之后还有部分ConvNet的计算,有没有可能把ROI之上的计算进一步前移? 请看R-FCNFaster RCNN还是没有很好的解决多尺度问题,如何解决,请看FPNYOLO:You Only Look Once作者的论文简直是一股论文界的泥石流,作者本身是一个喜欢粉红小马的大叔,萌萌哒。实际上YOLO一直发展到v3都是简单粗暴的目标检测方法,虽然学术界模型繁杂多样,但是在实际应用工业应用上YOLO绝对是一个首选的推荐。YOLO v1版本现在看来真是简单粗暴,也印证了网络抽象的强大之处。可以看出作者没有受到太多前辈的影响,将对象检测重新定义为单个回归问题,直接从图像像素到边界框坐标和类概率(当然这也是一个缺少坐标约束也是一个缺点)。YOLO的明显缺点,如多尺度问题,密集物体,检测框耦合,直接回归坐标等在yolo 9000中也做了比较好的改进。SSD:Single Shot MultiBox DetectorSSD作为one stage的代表模型之一,省去了判断推荐候选区域的步骤(实际上可以认为one-stage就是以feature map cell来抽象代替ROI Pooling功能) ,虽然SSD和Faster RCNN在Anchor box上一脉相承,但是Faster RCNN却还是有一个推荐候选区域(含有物体的区域)的监督部分(注意后面其实也是整合到了最终Loss中),因此one-stage优势是更快,而含有区域推荐的two-stage目前是更加准确一些。(更看好one-stage,其实区域推荐不太符合视觉系统,但是可以简化目标检测问题),主要贡献:用多尺度feature map来预测,也生成了更多的default box检测框对每一类对象产生分数(低耦合,对比yolo)缺点:底层feature map高级语义不足 (FPN)正负样本影响 (focal loss)feature map抽象分类和回归任务只用了两个卷积核抽象性不足(DSSD)为啥能更好的工作?SSD的出现对多尺度目标检测有了突破性进展,利用卷积层的天然金字塔形状,设定roi scale让底层学习小物体识别,顶层学习大物体识别FPN:feature pyramid networksSSD网络引入了多尺度feature map,效果显著。那Faster RCNN自然也不能落后,如何在Faster RCNN中引入多尺度呢?自然有FPN结构同时FPN也指出了SSD因为底层语义不足导致无法作为目标检测的feature map注意原图的候选框在Faster RCNN中只固定映射到同一个ROI Pooling中,而现在如果某个anchor和一个给定的ground truth有最高的IOU或者和任意一个Ground truth的IOU都大于,则是正样本。如果一个anchor和任意一个ground truth的IOU都小于,则为负样本。本文算法在小物体检测上的提升是比较明显的,另外作者强调这些实验并没有采用其他的提升方法(比如增加数据集,迭代回归,hard negative mining),因此能达到这样的结果实属不易。DSSD:Deconvolutional Single Shot Detector一个SSD上移植FPN的典型例子,作者主要有一下改动:将FPN的Upsampling变成deconv复杂了高层表述分支(分类,回归)网络的复杂度R-SSD:Enhancement of SSD by concatenating feature maps for object detection本文着重讨论了不同特征图之间的融合对SSD的影响(水论文三大法宝),这篇论文创新点不是太多,就不说了DSOD: Learning Deeply Supervised Object Detectors from Scratch这篇文章的亮点:提出来了不需要预训练的网络模型DSOD实际上是densenet思想+SSD,只不过并不是在base model中采用densenet,而是密集连接提取default dox的层,这样有一个好处:通过更少的连接路径,loss能够更直接的监督前面基础层的优化,这实际上是DSOD能够直接训练也能取得很好效果的最主要原因,另外,SSD和Faster RCNN直接训练无法取得很好的效果果然还是因为网络太深(Loss监督不到)或者网络太复杂。Dense Prediction Structure 也是参考的densenetstem能保留更多的信息,好吧,这也行,但是对效果还是有提升的。YOLO 9000:Better, Faster, Stronger很喜欢这个作者的论文风格,要是大家都这么写也会少一点套路,多一点真诚。。。。文章针对yolo做了较多的实验和改进,简单粗暴的列出每项改进提升的map。这个建议详细的看论文。下面列举几个亮点:如何用结合分类的数据集训练检测的网络来获得更好的鲁棒性将全连接层改为卷积层并结合了细粒度信息(passthrough layer)Multi-Scale TraningDimension Clustersdarknet-19更少的参数Direct locaion prediction对offset进行约束R-FCN:Object Detection via Region-based Fully Convolutional Networks本文提出了一个问题,base CNN网络是为分类而设计的(pooling 实际上是反应了位置的不变性,我一张人脸图片只要存在鼻子,两只眼睛,分类网络就认为它是人脸,这也就是Geoffrey Hinton 在Capsule中吐槽卷积的缺陷),而目标检测则要求对目标的平移做出准确响应。Faster RCNN是通过ROI pooling让其网络学习位置可变得能力的,再次之前的base CNN还是分类的结构,之前讲过R-FCN将Faster RCNN ROI提取出来的部分的卷积计算共享了,那共享的分类和回归功能的卷积一定在划分ROI之前,那么问题来了,如何设计让卷积对位置敏感?主要贡献:将用来回归位置和类别的卷积前置共享计算,提高了速度。巧妙设计score map(feature map)的意义(感觉设计思想和yolo v1最后的全连接层一样),让其何以获得位置信息,之后在经过ROI pooling和vote得到结果为啥能work?实际上rfcn的feature map设计表达目标检测问题的方式更加抽象(ROI pool前的feature map中每一个cell的channel代表定义都很明确),loss在监督该层时更能通过论文中关于ROI pool和vote设计,在不同的channel上获得高的响应,这种设计方式可能更好优化(这个是需要大量的实验得出的结论),至于前面的resnet-base 自然是抽象监督,我们本身是无法理解的,只是作为fintuning。实际上fpn的loss监督也是非常浅和明确的,感觉这种可以理解的优化模块设计比较能work。Focal Loss: Focal Loss for Dense Object Detection这篇文章实际上提供了另外一个角度,之前一直认为Single stage detector结果不够好的原因是使用的feature不够准确(使用一个位置上的feature),所以需要Roi Pooling这样的feature aggregation办法得到更准确的表示。但是这篇文章基本否认了这个观点,提出Single stage detector不好的原因完全在于:极度不平衡的正负样本比例: anchor近似于sliding window的方式会使正负样本接近1000:1,而且绝大部分负样本都是easy example,这就导致下面一个问题:gradient被easy example dominant的问题:往往这些easy example虽然loss很低,但由于数 量众多,对于loss依旧有很大贡献,从而导致收敛到不够好的一个结果。所以作者的解决方案也很直接:直接按照loss decay掉那些easy example的权重,这样使训练更加bias到更有意义的样本中去。很直接地,如下图所示:实验中作者比较了已有的各种样本选择方式:按照class比例加权重:最常用处理类别不平衡问题的方式OHEM:只保留loss最高的那些样本,完全忽略掉简单样本OHEM+按class比例sample:在前者基础上,再保证正负样本的比例(1:3)Focal loss各种吊打这三种方式,coco上AP的提升都在3个点左右,非常显著。值得注意的是,3的结果比2要更差,其实这也表明,其实正负样本不平衡不是最核心的因素,而是由这个因素导出的easy example dominant的问题。RetinaNet 结构如下实际上就是SSD+FPN的改进版

238 评论

随风来雨

原文: Scalable Object Detection using Deep Neural Networks——学术范 最近,深度卷积神经网络在许多图像识别基准上取得了最先进的性能,包括ImageNet大规模视觉识别挑战(ILSVRC-2012)。在定位子任务中获胜的模型是一个网络,它预测了图像中每个对象类别的单个边界框和置信度得分。这样的模型捕获了围绕对象的整幅图像上下文,但如果不天真地复制每个实例的输出数量,就无法处理图像中同一对象的多个实例。在这篇论文中提出了一个显著性启发的神经网络检测模型,它预测了一组与类无关的边界框,每个框有一个分数,对应于它包含任何感兴趣的对象的可能性。该模型自然地为每个类处理数量可变的实例,并允许在网络的最高级别上进行跨类泛化。 目标检测是计算机视觉的基本任务之一。一个解决这个问题的通用范例是训练在子图像上操作的对象检测器,并在所有的场所和尺度上以详尽的方式应用这些检测器。这一范例被成功地应用于经过区别训练的可变形零件模型(DPM)中,以实现检测任务的最新结果。对所有可能位置和尺度的穷举搜索带来了计算上的挑战。随着类数量的增加,这个挑战变得更加困难,因为大多数方法都训练每个类单独的检测器。为了解决这个问题,人们提出了多种方法,从检测器级联到使用分割提出少量的对象假设。 关于对象检测的文献非常多,在本节中,我们将重点讨论利用类不可知思想和解决可伸缩性的方法。 许多提出的检测方法都是基于基于部件的模型,最近由于有区别学习和精心设计的特征,已经取得了令人印象深刻的性能。然而,这些方法依赖于在多个尺度上详尽地应用零件模板,这是非常昂贵的。此外,它们在类的数量上是可伸缩的,这对像ImageNet这样的现代数据集来说是一个挑战。 为了解决前一个问题,Lampert等人使用分支绑定策略来避免计算所有可能的对象位置。为了解决后一个问题,Song et al.使用了一个低维部件基,在所有对象类中共享。基于哈希算法的零件检测也取得了良好的结果。 另一种不同的工作,与我们的工作更接近,是基于对象可以本地化的想法,而不必知道它们的类。其中一些方法建立在自底向上无阶级分割[9]的基础上。通过这种方式得到的片段可以使用自上而下的反馈进行评分。基于同样的动机,Alexe等人使用一种廉价的分类器对对象假设是否为对象进行评分,并以这种方式减少了后续检测步骤的位置数量。这些方法可以被认为是多层模型,分割作为第一层,分割分类作为后续层。尽管它们编码了已证明的感知原理,但我们将表明,有更深入的模型,充分学习可以导致更好的结果。 最后,我们利用了DeepLearning的最新进展,最引人注目的是Krizhevsky等人的工作。我们将他们的边界盒回归检测方法扩展到以可扩展的方式处理多个对象的情况。然而,基于dnn的回归已经被Szegedy等人应用到对象掩模中。最后一种方法实现了最先进的检测性能,但由于单个掩模回归的成本,不能扩展到多个类。 我们的目标是通过预测一组表示潜在对象的边界盒来实现一种与类无关的可扩展对象检测。更准确地说,我们使用了深度神经网络(DNN),它输出固定数量的包围盒。此外,它为每个盒子输出一个分数,表示这个盒子包含一个对象的网络信任度。 为了形式化上述思想,我们将i-thobject框及其相关的置信度编码为最后一网层的节点值: Bounding box: 我们将每个框的左上角和右下角坐标编码为四个节点值,可以写成vectorli∈R4。这些坐标是归一化的w. r. t.图像尺寸,以实现图像绝对尺寸的不变性。每个归一化坐标是由最后一层的线性变换产生的。 Confidence: 置信度:包含一个对象的盒子的置信度得分被编码为单个节点valueci∈[0,1]。这个值是通过最后一个隐藏层的线性变换产生的,后面跟着一个sigmoid。 我们可以组合边界盒位置sli,i∈{1,…K}为一个线性层。同样,我们可以将所有置信区间ci,i∈{1,…K}作为一个s型层的输出。这两个输出层都连接到最后一个隐藏层 在推理时,我们的算法生成kbound盒。在我们的实验中,我们使用ek = 100和K= 200。如果需要,我们可以使用置信分数和非最大抑制在推理时获得较少数量的高置信框。这些盒子应该代表对象。因此,它们可以通过后续的分类器进行分类,实现目标检测。由于盒子的数量非常少,我们可以提供强大的分类器。在我们的实验中,我们使用另一个dnn进行分类。 我们训练一个DNN来预测每个训练图像的边界框及其置信度得分,以便得分最高的框与图像的groundtruth对象框很好地匹配。假设对于一个特定的训练例子,对象被标记为boundingboxesgj,j∈{1,…,M}。在实践中,pre- dictionary的数量远远大于groundtruthboxm的数量。因此,我们试图只优化与地面真实最匹配的预测框子集。我们优化他们的位置,以提高他们的匹配度,最大化他们的信心。与此同时,我们将剩余预测的置信度最小化,这被认为不能很好地定位真实对象。为了达到上述目的,我们为每个训练实例制定一个分配问题。Wexij∈{0,1}表示赋值:xij= 1,如果第i个预测被赋值给第j个真对象。这项任务的目标可以表示为 其中,我们使用标准化边界框坐标之间的el2距离来量化边界框之间的不同。此外,我们希望根据分配x优化盒子的可信度。最大化指定预测的置信度可以表示为  最终的损失目标结合了匹配损失和信心损失 受式1的约束。α平衡了不同损失条款的贡献。 对于每个训练例子,我们通过解决一个最佳的赋值x*的预测到真实的盒子 约束执行赋值解决方案。这是二部匹配的一种变体,是一种多项式复杂度匹配。在我们的应用程序中,匹配是非常便宜的——每幅图像中标记的对象的数量少于一打,而且在大多数情况下只有很少的对象被标记。然后,通过反向传播优化网络参数。例如,反向传播算法的一阶导数计算w、r、t、l和c 尽管上述定义的损失在原则上是足够的,但三次修改使其有可能更快地达到更好的准确性。第一个修改是对地面真实位置进行聚类,并找到这样的聚类/质心,我们可以使用这些聚类/质心作为每个预测位置的先验。因此,鼓励学习算法为每个预测位置学习一个残差到一个先验。 第二个修改涉及到在匹配过程中使用这些先验:不是将N个groundtruth位置与K个预测进行匹配,而是在K个先验和groundtruth之间找到最佳匹配。一旦匹配完成,就会像之前一样计算目标的置信度。此外,位置预测损失也不变:对于任何一对匹配的(目标,预测)位置,其损失定义为groundtruth和对应于匹配先验的坐标之间的差值。我们把使用先验匹配称为先验匹配,并假设它促进了预测的多样化。  需要注意的是,尽管我们以一种与类无关的方式定义了我们的方法,但我们可以将它应用于预测特定类的对象盒。要做到这一点,我们只需要在类的边框上训练我们的模型。此外,我们可以预测每个类的kbox。不幸的是,这个模型的参数数量会随着类的数量线性增长。此外,在一个典型的设置中,给定类的对象数量相对较少,这些参数中的大多数会看到很少有相应梯度贡献的训练示例。因此,我们认为我们的两步过程——首先本地化,然后识别——是一个更好的选择,因为它允许使用少量参数利用同一图像中多个对象类型的数据 我们使用的本地化和分类模型的网络架构与[10]使用的网络架构相同。我们使用Adagrad来控制学习速率衰减,128的小批量,以及使用多个相同的网络副本进行并行分布式训练,从而实现更快的收敛。如前所述,我们在定位损失中使用先验——这些是使用训练集上的均值来计算的。我们还使用α = 来平衡局部化和置信度损失。定位器可以输出用于推断的种植区以外的坐标。坐标被映射和截断到最后的图像区域。另外,使用非最大抑制对盒进行修剪,Jaccard相似度阈值为。然后,我们的第二个模型将每个边界框分类为感兴趣的对象或“背景”。为了训练我们的定位器网络,我们从训练集中生成了大约3000万幅图像,并对训练集中的每幅图像应用以下步骤。最后,样品被打乱。为了训练我们的本地化网络,我们通过对训练集中的每一幅图像应用以下步骤,从训练集中生成了大约3000万幅图像。对于每幅图像,我们生成相同数量的平方样本,使样本总数大约为1000万。对于每幅图像,样本被桶状填充,这样,对于0 - 5%、5 - 15%、15 - 50%、50 - 100%范围内的每个比例,都有相同数量的样本,其中被包围框覆盖的比例在给定范围内。训练集和我们大多数超参数的选择是基于过去使用非公开数据集的经验。在下面的实验中,我们没有探索任何非标准数据生成或正则化选项。在所有的实验中,所有的超参数都是通过对训练集。 Pascal Visual Object Classes (VOC)挑战是最常用的对象检测算法基准。它主要由复杂的场景图像组成,其中包含了20种不同的对象类别的边界框。在我们的评估中,我们关注的是2007版VOC,为此发布了一个测试集。我们通过培训VOC 2012展示了结果,其中包含了大约。11000张图片。我们训练了一个100框的定位器和一个基于深度网络的分类器。 我们在一个由1000万作物组成的数据集上训练分类器,该数据集重叠的对象至少为 jaccard重叠相似度。这些作物被标记为20个VOC对象类中的一个。•2000万负作物与任何物体盒最多有个Jaccard相似度。这些作物被贴上特殊的“背景”类标签。体系结构和超参数的选择遵循。 在第一轮中,定位器模型应用于图像中最大-最小中心方形作物。作物的大小调整到网络输入大小is220×220。单次通过这个网络,我们就可以得到上百个候选日期框。在对重叠阈值为的非最大抑制后,保留评分最高的前10个检测项,并通过21路分类器模型分别通过网络进行分类。最终的检测分数是给定盒子的定位分数乘以分类器在作物周围的最大方形区域上评估的分数的乘积。这些分数通过评估,并用于计算精确查全曲线。 首先,我们分析了本地化器在隔离状态下的性能。我们给出了被检测对象的数量,正如Pascal检测标准所定义的那样,与生成的包围框的数量相对比。在图1中,我们展示了使用VOC2012进行训练所获得的结果。此外,我们通过使用图像的最大中心面积(max-center square crop)作为输入以及使用两个尺度(second scale)来给出结果:最大中心面积(max-center crop)的第二个尺度(select3×3windows的大小为图像大小的60%)正如我们所看到的,当使用10个边界框的预算时,我们可以用第一个模型本地化的对象,用第二个模型本地化48%的对象。这显示出比其他报告的结果更好的性能,例如对象度算法达到42%[1]。此外,这个图表显示了在不同分辨率下观察图像的重要性。虽然我们的算法通过使用最大中心作物获得了大量的对象,但当使用更高分辨率的图像作物时,我们获得了额外的提升。进一步,我们用21-way分类器对生成的包围盒进行分类,如上所述。表1列出了VOC 2007的平均精度(APs)。达到的平均AP是,与先进水平相当。注意,我们的运行时间复杂度非常低——我们只使用top10框。示例检测和全精度召回曲线分别如图2和图3所示。值得注意的是,可视化检测是通过仅使用最大中心方形图像裁剪,即使用全图像获得的。然而,我们设法获得了相对较小的对象,例如第二行和第二列的船,以及第三行和第三列的羊。 在本工作中,我们提出了一种新的方法来定位图像中的对象,该方法可以预测多个边界框的时间。该方法使用深度卷积神经网络作为基本特征提取和学习模型。它制定了一个能够利用可变数量的groundtruth位置的多箱定位成本。在“一个类一个箱”方法的情况下,对1000个盒子进行非max-suppression,使用与给定图像中感兴趣的DeepMulti-Box方法相同的准则,并学习在未见图像中预测这些位置。 我们在VOC2007和ILSVRC-2012这两个具有挑战性的基准上给出了结果,在这两个基准上,所提出的方法具有竞争力。此外,该方法能够很好地预测后续分类器将探测到的位置。我们的结果表明,deepmultibox的方法是可扩展的,甚至可以在两个数据集之间泛化,就能够预测感兴趣的定位,甚至对于它没有训练的类别。此外,它能够捕获同一类物体的多种情况,这是旨在更好地理解图像的算法的一个重要特征。 在未来,我们希望能够将定位和识别路径折叠到一个单一的网络中,这样我们就能够在一个通过网络的一次性前馈中提取位置和类标签信息。即使在其当前状态下,双通道过程(本地化网络之后是分类网络)也会产生5-10个网络评估,每个评估的速度大约为1个CPU-sec(现代机器)。重要的是,这个数字并不与要识别的类的数量成线性关系,这使得所提出的方法与类似dpm的方法非常有竞争力。

275 评论

相关问答

  • 目标检测追踪论文

    论文原文: YOLO(you only look once)是继RCNN、faster-RCNN之后,又一里程碑式的目标检测算法。yolo在保持不错的准确度的

    yyh心随我动 3人参与回答 2023-12-11
  • 水位水质检测论文

    闽江水利工程的环境水质效应问题论文 闽江是我国东南沿海最大江河之一,整个流域基本受北东(NE)向与北西(NW)向两组交叉的断裂构造所控制,是典型的山区性河流,流

    一碗小泡饭 3人参与回答 2023-12-07
  • yolo目标检测论文

    论文原文: YOLO(you only look once)是继RCNN、faster-RCNN之后,又一里程碑式的目标检测算法。yolo在保持不错的准确度的

    爱吃爱喝薅羊毛 2人参与回答 2023-12-10
  • 检测论文题目标红

    有些同学在进行知网查重时,经常会出现这样的失误。即容易漏掉标题,或者没有写完整。所以他们会担心,这样的小失误会不会影响论文的查重率。这样的举动会不会产生影响呢?

    右耳钉的豆豆 5人参与回答 2023-12-07
  • 目标检测sci论文

    sci论文查重只需要找到论文查重平台,例如,上学吧论文查重,再把论文提交,系统就直接把查重结果发到邮箱了,还可以根据提示把重复率高的地方改一下就好。建议选用知网

    雪梨的天空shelly 5人参与回答 2023-12-05