勿忘归途
1]胡永红,黄卫昌. 美国植物园的特点──兼谈对上海植物园发展的启示[J]. 中国园林,2001,(4). [2]鲍滨福,马军山. 两“园”合一 学用并举——浙江林学院植物园规划设计探索[J]. 中国园林,2006,(5). [3]李春娇,董丽. 试论植物园专类区规划[J]. 广东园林,2007,(2). [4]李惠卓,张彦广,吴杨哲,张亮,陈莉瑶,姬鹏,崔容华. 保定市植物园土壤特性研究[J]. 河北农业大学学报,2004,(4). [5]林昌虎,孙超. 加强科普教育建设 扩大植物园生存空间[A]. 张治明.中国林业出版社[C].: 中国林业出版社,2001:. [6]郑金贵. 校园多功能教学基地“中华名特优植物园”的建设[J]. 福建农林大学学报(哲学社会科学版),2009,(3). [7]胡文芳. 人工与自然的科学结合——体验巴塞罗那植物园[J]. 中国园林,2005,(3). [8]周练. 基于生态休闲文化的南亚热带植物园规划研究[D]. 中南林业科技大学: 中南林业科技大学,2010. [9]陈艺芬. 论植物园在生物教学中的运用[J]. 柳州师专学报,2009,(6). [10]厦门植物园万石阁设计方案[J]. 建筑与文化,2008,(3). [11]黄远钧,黄惠明. 对园林围墙与园路进行设计与施工的分析[J]. 科学之友,2010,(6). [12]张和山. 浅谈影响园林绿化施工质量的因素及解决对策[J]. 科学之友,2010,(10). [13]李永红,杨倩. 杭州西溪湿地植物园——基于有机更新和生态修复的设计[J]. 中国园林,2010,(7). [14]郭鸿英,孙超,储蓉. 植物园数字化建设[J]. 资源开发与市场,2004,(4). [15]孟宪民. 沈阳植物园的现状分析及同北京植物园的比较[D]. 北京林业大学: 北京林业大学,2005. [16]唐宇丹,靳晓白. 植物园的外来种引种和生物安全[A]. 张治明.中国林业出版社[C].: 中国林业出版社,2001:. [17]张晓芹. 枸杞在园林中的应用及栽培管理技术[J]. 河北农业科学,2007,(2). [18]遆卫国,王晶晶. 喷泉在园林造景中的应用[J]. 农业科技与信息(现代园林),2007,(7). [19]杨庆绪,蒋三登,张运德,刘毓. 园林建设志在环境友好 绿化发展重在资源节约[J]. 农业科技与信息(现代园林),2007,(7). [20]尉秋实,李爱德. 植物保护、科研、开发三项功能建设的思路与对策[A]. 张治明.中国林业出版社[C].: 中国林业出版社,2001:. [21]Mauro Ballero,Giovanni Piu,Alberto Ariu. The impact of the botanical gardens on theaeroplankton of the city of Cagliari, Italy[J]. 2000,(1). [22]韦标. 试论园林绿化工程施工与养护管理[J]. 科学之友,2011,(6). [23]吴徳智. 浅谈园林绿化施工中如何提高植树成活率[J]. 科学之友,2010,(10). [24]胡永红. 专类园在植物园中的地位和作用及对上海辰山植物园专类园设置的启示[J]. 中国园林,2006,(7). [25]郦文俊. 园林景观栽植中的植物色彩设计研究[J]. 农业科技与信息(现代园林),2008,(2). [26]麻广睿. 植物园发展与更新规划[D]. 北京林业大学: 北京林业大学,2009. [27]金晓雯. 园林建筑小品人性化研究[D]. 南京林业大学: 南京林业大学,2006. [28]Alessandro Travaglini,Diletta Ravaziol,Maria Grilli Caiola. A meteorological station and a pollen trap at the botanical garden and arboretum of the university of Rome Tor Vergata[J]. 2000,(2). [29]Dr. Boguslaw Molski,Roman Kubiczek,Jerzy Puchalski. Rye genetic resources evaluation in the Botanical Garden of the Polish Academy of Sciences in Warsaw[J]. 1981,(1). [30]G. V. Kovaleva,T. G. Dobrovol’skaya,A. V. Golovacheva. The structure of bacterial communities in natural and anthropogenic brown forest soils of the Botanical Garden on Murav’eva-Amurskogo Peninsula[J]. 2007,(5). [31]Giuseppe Venturella. The Popularization of Mycology within the Botanical Garden of Palermo[Z]. :1994,1. [32]李忠实. 加强园林施工质量管理浅谈[J]. China's Foreign Trade,2011,(12). [33]何勇军. 浅谈园林施工过程中的成本控制[J]. 科学之友,2010,(6). [34]肖振甲,宋国祥. 浅谈园林驳岸工程施工现场管理[J]. 科学之友,2010,(14). [35]朱丹粤. 浅谈如何做好园林绿化工程施工项目成本管理[J]. 华东森林经理,2007,(2). [36]齐海鹰,安吉磊. 浅谈观赏草在园林造景中的应用[J]. 农业科技与信息(现代园林),2007,(7). [37]郭丹. 园林绿化工程造价浅谈[J]. 广东园林,2007,(6). [38]计桂珍. 浅述避暑山庄的园林艺术[J]. 承德职业学院学报,2005,(4). [39]Metal bioaccumulation in plant leaves from an industrious area and the Botanical Garden in Beijing[J]. Journal of Environmental Sciences,2005,(2). [40]N. Rascio,A. Camani,L. Sacchetti,I. Moro,G. Cassina,F. Torres,E. M. Cappelletti,M. G. Paoletti. Acclimatization trials of someSolanum species from Amazonas Venezuela at the botanical garden of Padova[J]. 2002,(4). [41]Irena Maryniak. Oles Shevchenko et al in the Botanical Gardens[Z]. :1989,5. [42]A. Alfani,G. Bartoli,R. Santacroce. Sulphur contamination of soil and Laurus nobilis L. leaves in the botanical garden of Naples University[Z]. :1983,5. [43]邵丹锦. 一个永续发展的热带风情植物园——新加坡植物园[J]. 中国园林,2011,(3). [44]肖春芬,彭艳琼,杨大荣. 植物园在物种迁地保护中的作用——以西双版纳热带植物园榕树和榕小蜂的保护为例[J]. 中国园林,2010,(5). [45]任康丽. 植物园景观设计功能性与艺术性的高度结合——从美国费尔柴尔德热带植物园看景观设计的组构[J]. 中国园林,2010,(9). [46]李忠超,陈红锋. 我国植物园新时期科学普及工作的思考——以中国科学院华南植物园为例[J]. 福建林业科技,2006,(3). [47]欧阳欢,王庆煌,黄根深,龙宇宙,宋应辉. 科研、开发、旅游三位一体新型植物园的创建——以兴隆热带植物园为例[J]. 中国生态农业学报,2007,(4). [48]孟宪民. 国外植物园发展现状及对我国植物园建设的启示[J]. 世界林业研究,2004,(5). [49]任海,简曙光,张征,郑祥慈,张奠湘,王峥峰,郝刚,段俊,廖景平,魏孝义,傅德志. 数字化植物园的理论与技术思考—以华南植物园为例[J]. 热带亚热带植物学报,2004,(5). [50]林有润. 植物园,“植物系统与工程学”科学研究与实验的基地———兼论《巨系统》理论对植物园建设及对植物科学研究工作的指导意义[J]. 植物研究,1998,(4).
花花的老妈
植物光合作用的多样性光合作用既是生物学中最古老的问题,也是当前生物学的前沿之一,因为它不仅在农业,能源,生态等问题中具有重大实际意义,而且在生命起源,进化与光能转换等生物学基本理论问题中也很重要。但自1771年Priestley发现光合作用以来,光合作用的原初过程仍不很清楚,而对光合作用碳素同化的化学过程却有了比较清楚的认识和了解。总的来讲,绿色植物(尤其是高等植物)在不同自然环境中不仅表现广泛的适应性,而且表现光合作用方式的多样性。1.光合作用的多种途径据目前所知,所有绿色植物光合作用的原初反应(包括光物理和光化学)都是通过捕获光能产生ATP和NADPH(即同化力),但随后发生的CO2固定还原过程则存在着较大的种间差异。研究表明,所有绿色植物都具有一种最基本的光合碳代谢方式,即著名的卡尔文循环(因其发现者而得名)或光合碳还原循环,亦称C3途径或C3方式。该途径的生化过程十分复杂,在此不予赘述。由于有的植物同时具有多种光合方式,通常称只利用这一方式的植物为C3植物。这类植物主要分布在温带地区,其同化CO2的最适日温是15-25℃。光合作用的另两种变异途径是C4途径和景天科酸代谢(CAM)途径。具有C4途径的植物通常生长在热带地区,其同化CO2的最适温度是25-35℃,光合效率显著提高,称为C4植物;具有CAM途径的植物通常生长在干燥的沙漠地区,且白天进行光反应,晚上固定CO2合成有机酸,使有机酸含量表现明显的日变化,称为CAM植物。这两类植物与C3植物在叶片解剖结构及某些生理特性方面均有显著差异。此外,C4植物的光合作用还有三种变式,即PEP-CK型C4植物,NAD-ME型C4植物和NADP-ME型C4植物,这三类C4植物都具有相似的叶片解剖结构,即花环状维管束和具叶绿体的维管束鞘,其主要差别是产生的中间产物和脱羧酶不同。PEP-CK型C4植物在叶肉细胞内固定CO2形成草酰乙酸,然后转变为天冬氨酸传导至维管束鞘细胞,经丙酮酸磷酸双羧酶脱羧,其碳架以丙酮酸或丙氨酸重新返回到叶肉细胞;NAD-ME型C4植物在叶肉细胞中固定CO2形成天冬氨酸并传导至维管束鞘细胞,然后转化为苹果酸.并在线粒体内脱羧,其碳架再以丙酮酸或丙氨酸转回到叶肉细胞;NADP-ME型C4植物在叶肉细胞固定CO2形成草酰乙酸,而后转化为苹果酸,并被输送到维管束鞘细胞中,在叶绿体内经苹果酸脱羧酶氧化脱羧,产生的碳架以丙氨酸重新返回叶肉细胞。以上三类C4植物在维管束鞘细胞内脱羧后,产生的CO2最终还是通过C3途径被还原,C4途径实际上只起“CO2泵”的作用,以增加反应位置CO2的浓度,从而显著提高光合效率。2.不同光合途径的判定叶片的解剖学特征通常可用来区分C3,C4和CAM植物,但由于光合作用主要是生化反应过程,因此时有例外发生。鉴于此,目前已发明了数种用以区分植物不同光合类型的其他方法,如δ13C(13C/12C同位素比),光呼吸,光照后CO2的猝发以及相对光合效率等,其中以δ13C的测定最为可靠。δ13C是近来发展起来的一种新的检测技术,主要依据是C3途径中的 RuBP羧化酶比C4途径中的PEP羧化酶对13CO2具有更大的排斥性,即在13CO2和12CO2中C4植物比C3植物更易消耗13CO2,因此,C4植物有机质中的13C/12C要比C3植物有机质中的13C/12C更大。13CO2和12CO2含量的测定是以国际标样(即普通石灰岩CaCO3)为对照,通过焚烧干燥的植物材料测定的。最后根据下式计算出δ13C(‰)值,即:从上式可以看出,如果在光合作用的碳固定期间13C/12C没有变化,δ13C(‰)将等于零;如果对13CO2有排斥,δ13C(‰)将是一个负数,排斥能力愈大,δ13C(‰)负值也越大。实验证明,在25℃和条件下,PEP羧化酶的δ13C(‰)是-3‰,而在24℃和条件下,RuBP羧化酶的δ13C(‰)是%,这清楚地表明,RuBP羧化酶对13CO2具有比PEP羧化酶更大的排斥性。当温度升高(37℃,)时,RuBP羧化酶的δ13C(‰)显著变负的程度要小一些(‰),这与C3植物光合作用的最适温度偏低(15-25℃)相一致。应用此法目前已测得C3植物的δ13C(‰)在-23到-34‰之间,C4植物的δ13C(‰)在-10到一18‰之间,并据此发现了一些δ13C(‰)居于C3植物与C4植物之间的C3/C4中间类型植物。对于CAM植物来说,得到的δ13C(‰)在-14到-33%之间,显然较低的值落在C4植物的δ13C(‰)范围内,而较高的值则落在C3植物的δ13C(‰)范围内。对此种情况的解释是,许多CAM植物在变化着的环境条件中,能够从光合作用的C3方式转变到CAM,反之亦然。从上新世到二叠纪的代表性化石植物材料中得到的δ13C(0/00),都在现代典型的C3植物范围内,并且目前古老植物中也很少发现有CAM植物存在,这表明植物自来到陆上以来,C3途径就作为一个固定空气中CO2的主要方式进行着。而C4途径和CAM途径似乎比C3途径进化较晚,是C3途径对环境变化的一种适应性反应。3 光合作用多样性与植物系统演化的关系在当今纷繁众多的植物世界中,要理出一条清晰合理的植物系统演化线索是很困难的。除了传统的研究手段外,唯一可凭藉的有说服力的证据是埋在不同地层中的植物化石材料。目前普遍认为,太古代和元古代是细菌,蓝藻繁生的单细胞生物时代;右碳纪是羊齿植物隆盛的时代,三叠纪和侏罗纪为裸子植物时代;被子植物的出现则更要晚得多。显然,在不向地质时代中植物进化的等级是显而易见的。植物的系统演化无不伴随着一系列生理结构和代谢机能的重大改变和调整,其中一个重要的变化就是光合作用的多样性反应。光合细菌和蓝藻可谓最低等的光合生物,其光合结构和光合方式较之高等植物要原始简单得多。就光合碳代谢而言,C3途径最早是在单细胞真核绿藻中发现的,后来被证明是光合生物中碳转化的普遍过程,但同时发现包括现代海藻在内的许多绿色植物还存在其他光合途径,如目前人所供知的C4,CAM等。单子叶禾本科被认为是进化程度很高的被子植物类群,其适应性特强,分布极广是众所周知的。研究表明,该科差不多存在几乎所有的光合作用类型,并且公认较原始的竹亚科只有C3型,而进化较高级的虎耳草亚科和须芒草亚科等均为C4型,有些亚科如芦竹亚科等既有C3型,又有C4型。因此,在这种“高级进化科”中研究光合作用的多样性及其进化关系是很有代表意义的。4 结束语据有关地质资料,地球自形成以来,在漫长的演变过程中,地质地层结构已发生了多次剧烈的变化。不难想象,定居于各个地质时代的绿色植物也会发生相应的代谢改变与适应。Hallersley和Watson(1992)曾分析不同光合作用途径与过去气候变化的关系。由于现代工业文明的发展与进步,大气中的CO2浓度的持续增加已达一个世纪之久,全球气温升高也成为一种必然趋势,面临种种变化,尤其是CO2和温度这两个影响光合作用的重要因素的改变,绿色植物的光合代谢将作出怎样的响应?对这一问题的探讨和回答无疑是很有意义的,不仅在理论上对生理学工作者将有所启示,并可能对现代农业的增收提供有益的指导。
miss.w\^O^/
植物光合作用及其对光的需求无论是采用太阳光还是人工光进行植物生产,最终都是通过光合作用来完成产物的积累。光合作用是通过植物叶绿素等光合器官,在光能作用下将CO2和水转化为糖和淀粉等碳水化合物并释放出氧气的生理过程;与光合作用相对应的是呼吸作用,呼吸作用是通^植物线粒体等呼吸器官,吸收氧气和分解有机物而释放CO2与能量的生理过程,是植物把光合作用形成的碳水化合物作为能量用来形成根、茎、叶等形态建成的重要生理活动。呼吸作用包括与光合作用毫无关系的暗呼吸以及与光合作用同时进行的光呼吸2个部分。作物的光合作用与呼吸作用之间有一个相互平衡的过程,随着生长阶段的不同,其平衡点也不同。实际生产中经常利用控制作物的光合速度和呼吸速度来调节营养生长和生殖生长的相对平衡,达到提高目标产量或改善产品品质的目的。植物的光合作用与CO2的吸收、释放关系密切,光合时吸收CO2,呼吸时排放CO2,这2种生理活动是同时进行的,所以光合器官的叶片内外的CO2交换速度也就等于光合速度减去呼吸速度。通常把该CO2交换速度也叫做净光合速度,其中的呼吸速度则是暗呼吸速度与光呼吸速度的总和。一般而言,C3植物光呼吸速度高,C4植物光呼吸速度低。因此,净光合速度为0时,光合速度等于光呼吸速度。光合速度的单位为kg/cm2・s)或mol/cm2・s)(以CO2计),表示单位叶面积单位时间内CO2的吸收、排放或交换量。光强对作物光合的影响光合产物的形成与光照的强度及其累积的时间密切相关。光照的强弱一方面影响着光合强度,同时还能改变作物形态,如开花、节间长短、茎的粗细及叶片的大与厚薄等。在某一CO2浓度和一定的光照强度范围内,光合强度随光照强度的增加而增加。当光照强度超过光饱和点时,净光合速度不但不会增加,反而还会形成抑制作用,使叶绿素分解而导致作物的生理障碍。不同类型植物的光饱和点的差异较大,光饱和点一般会随着环境中CO2浓度的增加而提高。因此,植物生产中给予光饱和点以上的光照强度毫无意义;而另一方面,当光照强度长时间处于光补偿点之下,植物的呼吸作用超过了光合作用,有机物消耗多于积累,作物生长缓慢,严重时还会导致植株枯死,因此对植物生长也极为不利。通常情况下,耐荫植物的光补偿点为200~1000 lx,喜阳植物的光补偿点为1000~2000 lx。植物对光照强度的要求可分为喜光型、喜中光型、耐弱光型植物。蔬菜多数属于喜光型植物,其光补偿点和光饱和点均比较高,在人工光植物工厂中作物对光照强度的相关要求是选择人工光源的最重要依据,了解不同植物的光照需求对设计人工光源、提高系统的生产性能都是极为必要的。光质对作物光合的影响光质或光谱分布对植物光合作用和形态建成同样具有重要影响,地球上的植物都是在经过亿万年的自然选择来不断适应太阳辐射,并依据种类不同而具有光选择性吸收特征的。到达地面的太阳辐射的波长范围为300~2000 nm,而以500 nm处能量最高。太阳辐射中,波长380nm以下的成为紫外线,380~760 nm的叫可见光,760 nm以上的是红外线也称为长波辐射或热辐射。太阳辐射总能量中,可见光或光合有效辐射占45%~50%,紫外线占1%~2%,其余为红外线。波长400~700 nm的部分是植物光合作用主要吸收利用的能量区间,称为光合有效辐射;波长700~760 nm的部分称为远红光,它对植物的光形态建成起到一定的作用。在植物光合过程中,植物吸收最多的是红、橙光(600~680 nm),其次是蓝紫光和紫外线(300~500nm),绿光(500~600 nm)吸收的很少。紫外线波长较短的部分,能抑制作物的生长,杀死病菌孢子、波长较长的部分,可促进种子芽、果实成熟,提高蛋白质、维生素和糖的含量;红外线还对植物的萌芽和生长有刺激作用,并产生热效应。不同的光谱成分对植物的影响效果也不尽相同(表1),强光条件下蓝色光可促进叶绿素的合成,而红色光则阻碍其合成。虽然红色光是植物光合作用重要的能量源,但如果没有蓝色光配合则会造成植物形态的异常。大量的光谱实验表明,适当的红色光(600~700 nm)/蓝色光(400~500 nm)比(R/B比)才能保证培育出形态健全的植物,红色光过多会引起植物徒长,蓝色光过多会抑制植物生长。适当的红色光(600~700 nm)/远红色光(700~800 nm)比(R/FR比)能够调节植物的形态形成,大的R/FR比能够缩短茎节间距而起到矮化植物的效果,相反小的R/FR比可以促进植物的生长。所有这些特征都是植物工厂选择人工光源时必须考虑的重要因素,尤其是对于近年来发展起来的新型节能光源,如LED、LD以及冷阴极管等来说显得更为重要,因为这些光源需要通过不同光谱的单色光组合构成作物最适直的光质配比,以保障高效生产和节能的需求。光周期对植物的影响植物的光合作用和光形态建成与日长(或光期时间)之间的相互关系称其为植物的光周性。光周性与光照时数密切相关,光照时数是指作物被光照射的时间。不同的作物,完成光周期需要一定的光照时数才能开花结实。长日照作物,如白菜、芜青、芭英菜等,在其生育的某一阶段需要12~14 h以上的光照时数;短日照作物,如洋葱、大豆等,需要12~14h一下的光照时数;中日照作物,如黄瓜、番茄、辣椒等,在较长或较短的光照时数下,都能开花结实。
哑巴与春天 农具的眼睛 昆虫的天网 蚊烟中的往事 采山的人们 光与影 动物们 邻里间的围栏 故乡的吃食 棺材与竹板 露天
写有关古诗词的论文引用古诗词要在参考文献中注明。 一篇论文的参考文献是将论文在研究和写作中可参考或引证的主要文献资料,列于论文的末尾。参考文献应另起一页,标注方
一、缺乏应有的文献综述有些学位论文没有文献综述,作者却说,他写的题目找不到相关文献或没有相关文献。其解释有两种可能: 一是作者认为前所未有才是创新,甚至个别的还
小河边映出一个模糊的边缘,那是石桥,石桥上,用手轻抚,你能摸到一些精美而又细致的花纹,这些花纹仿佛鬼斧神工,精致至极。脚踏着石桥的声音清脆又悦耳,你不禁感受到这
测绘工程论文参考文献 参考文献的著录格式是否规范反映作者论文写作经验和治学态度,下同时也是论文的重要构成部分,也是学术研究过程之中对于所涉及到的所有文献资料的总