lin12345610
I. 种子的成熟过程。种子的形成和成熟过程实质上是指胚由小变大,营养物质在种子中变化和积累的过程。主要是把葡萄糖、蔗糖和氨基酸等小分子物质合成为淀粉、蛋白质和脂肪等高分子有机物质,并积累在子叶和胚乳中。这些物质由光合作用产生,因此光照强度直接影响种子内有机物质的积累。如小麦籽粒2/3的干物质来源于抽穗后叶片及穗子本身的光合产物,此时光照强,叶片同化物多,输入到籽粒的多,产量就高。在小麦灌浆期一遇到连着好几天阴天,籽粒重量明显地减小而导致减产。此外,光照也影响籽粒的蛋白质含量和含油率。II. 种子萌发过程。种子萌发必须有适当的外界条件,即足够的水分、充足的氧气和适当的温度。这三者是同等重要、缺一不可的。光对一般的植物种子萌发没有什么其他特别的影响,但有些植物的种子的萌发是需要光的,这些种子叫做需光种子,如莴苣、烟草等的种子。还有一些萌发时不需要光的种子称为嫌光种子。近年的研究表明,种子的休眠和萌发对某些波长的光较敏感,主要是红光、远红光和蓝光。这些种子的这种需光萌发性与种子内的光敏色素有关,隐花色素对种子的休眠也有一定的调节作用,主要是光敏色素的作用。伟照业植物灯西红柿育苗实验光敏色素分布在植物的各个器官中,作为光受体,它在吸收了不同波长的光以后,可以诱导和调节植物的形态建成,并对某些生理过程有着显著的影响。例如莴苣种子的发芽中,光敏色素参与了休眠的解除和种子的萌发。在种子成熟后的干种子状态,含有光敏色素的红光吸收型(Pr)和远红光吸收型(Pfr)两种类型。Pr吸收红光能转变成Pfr,Pfr吸收远红光转变成Pr。Pfr是光敏色素的活化形式,可引起各种生理反应。当萌发条件适宜时,在光的照射下,Pr发生水合并转换成Pfr,从而导致发芽。嫌光种子一般来说都是大粒种子,它们具有足够储藏物质以维持幼苗较长时间生长在地下黑暗环境中,发芽一般不需要光,如瓜类;而需光种子则多为一些小粒种子,当它们处于光不能透过的土层中时,保持休眠状态,只有当它们处于土表,依赖少量储藏物质进行发芽,从而及时伸出土表迅速进行自养生长。这在生态学上是具有一定意义的。如果小粒种子在土表下的黑暗处就能发芽,等它还不能伸出土表时,就已经耗尽储藏物质而不能存活了。伟照业植物灯科研实验III. 幼苗的生长分化过程。这一影响可以分为直接和间接两个方面。间接作用是指光通过光合作用、蒸腾作用和物质运输等影响植物生长。这个间接作用是一种高能反应,因为光是光合作用的能源,光照不足就不能产生足够的有机物质,植物生长也就失去了物质基础。此外,光还可以影响植株的蒸腾作用。光是影响蒸腾作用的最主要外界因素,叶子吸收的太阳光辐射能的大部分用于蒸腾。另外,光直接影响气孔的开闭,在光下气孔开放,气孔阻力减小,叶内外蒸汽压差也增大,从而使蒸腾加快,有利于物质的运输。但如果是在土壤水分不足的情况下,就会引起植物水分不足,影响植物的生长。光的直接作用是作为一种信号传导的。这个过程与光敏色素的调节有关。如双子叶植物,胚轴破土伸出地面前,茎尖为钩状,当出土后给以红光照射,形成Pfr(激活型)促使钩展开。此外,在黑暗中生长的幼苗与光下生长的幼苗在形态上有很大差异。黑暗中幼苗植株瘦长,茎细长脆弱,机械组织不发达、顶端呈弯钩状、节间很长,叶片细小不能展开,无叶绿素、不能进行光合作用,同时根系发育不良。这种幼苗由于茎叶均为黄色,被称为黄化苗。而红光促进幼叶的展开,抑制茎的过度伸长,对消除黄化现象起着最有效的作用。伟照业植物补光灯就是模拟太阳可见光波段400-780nm对植物生长有影响的波段,突出优势455-465nm蓝光和640-700nm红光波段,在植物少光或者无光的环境下促进植物光合作用、促进植物生长。
闪闪惹人爱ii
植物光合作用及其对光的需求无论是采用太阳光还是人工光进行植物生产,最终都是通过光合作用来完成产物的积累。光合作用是通过植物叶绿素等光合器官,在光能作用下将CO2和水转化为糖和淀粉等碳水化合物并释放出氧气的生理过程;与光合作用相对应的是呼吸作用,呼吸作用是通^植物线粒体等呼吸器官,吸收氧气和分解有机物而释放CO2与能量的生理过程,是植物把光合作用形成的碳水化合物作为能量用来形成根、茎、叶等形态建成的重要生理活动。呼吸作用包括与光合作用毫无关系的暗呼吸以及与光合作用同时进行的光呼吸2个部分。作物的光合作用与呼吸作用之间有一个相互平衡的过程,随着生长阶段的不同,其平衡点也不同。实际生产中经常利用控制作物的光合速度和呼吸速度来调节营养生长和生殖生长的相对平衡,达到提高目标产量或改善产品品质的目的。植物的光合作用与CO2的吸收、释放关系密切,光合时吸收CO2,呼吸时排放CO2,这2种生理活动是同时进行的,所以光合器官的叶片内外的CO2交换速度也就等于光合速度减去呼吸速度。通常把该CO2交换速度也叫做净光合速度,其中的呼吸速度则是暗呼吸速度与光呼吸速度的总和。一般而言,C3植物光呼吸速度高,C4植物光呼吸速度低。因此,净光合速度为0时,光合速度等于光呼吸速度。光合速度的单位为kg/cm2・s)或mol/cm2・s)(以CO2计),表示单位叶面积单位时间内CO2的吸收、排放或交换量。光强对作物光合的影响光合产物的形成与光照的强度及其累积的时间密切相关。光照的强弱一方面影响着光合强度,同时还能改变作物形态,如开花、节间长短、茎的粗细及叶片的大与厚薄等。在某一CO2浓度和一定的光照强度范围内,光合强度随光照强度的增加而增加。当光照强度超过光饱和点时,净光合速度不但不会增加,反而还会形成抑制作用,使叶绿素分解而导致作物的生理障碍。不同类型植物的光饱和点的差异较大,光饱和点一般会随着环境中CO2浓度的增加而提高。因此,植物生产中给予光饱和点以上的光照强度毫无意义;而另一方面,当光照强度长时间处于光补偿点之下,植物的呼吸作用超过了光合作用,有机物消耗多于积累,作物生长缓慢,严重时还会导致植株枯死,因此对植物生长也极为不利。通常情况下,耐荫植物的光补偿点为200~1000 lx,喜阳植物的光补偿点为1000~2000 lx。植物对光照强度的要求可分为喜光型、喜中光型、耐弱光型植物。蔬菜多数属于喜光型植物,其光补偿点和光饱和点均比较高,在人工光植物工厂中作物对光照强度的相关要求是选择人工光源的最重要依据,了解不同植物的光照需求对设计人工光源、提高系统的生产性能都是极为必要的。光质对作物光合的影响光质或光谱分布对植物光合作用和形态建成同样具有重要影响,地球上的植物都是在经过亿万年的自然选择来不断适应太阳辐射,并依据种类不同而具有光选择性吸收特征的。到达地面的太阳辐射的波长范围为300~2000 nm,而以500 nm处能量最高。太阳辐射中,波长380nm以下的成为紫外线,380~760 nm的叫可见光,760 nm以上的是红外线也称为长波辐射或热辐射。太阳辐射总能量中,可见光或光合有效辐射占45%~50%,紫外线占1%~2%,其余为红外线。波长400~700 nm的部分是植物光合作用主要吸收利用的能量区间,称为光合有效辐射;波长700~760 nm的部分称为远红光,它对植物的光形态建成起到一定的作用。在植物光合过程中,植物吸收最多的是红、橙光(600~680 nm),其次是蓝紫光和紫外线(300~500nm),绿光(500~600 nm)吸收的很少。紫外线波长较短的部分,能抑制作物的生长,杀死病菌孢子、波长较长的部分,可促进种子芽、果实成熟,提高蛋白质、维生素和糖的含量;红外线还对植物的萌芽和生长有刺激作用,并产生热效应。不同的光谱成分对植物的影响效果也不尽相同(表1),强光条件下蓝色光可促进叶绿素的合成,而红色光则阻碍其合成。虽然红色光是植物光合作用重要的能量源,但如果没有蓝色光配合则会造成植物形态的异常。大量的光谱实验表明,适当的红色光(600~700 nm)/蓝色光(400~500 nm)比(R/B比)才能保证培育出形态健全的植物,红色光过多会引起植物徒长,蓝色光过多会抑制植物生长。适当的红色光(600~700 nm)/远红色光(700~800 nm)比(R/FR比)能够调节植物的形态形成,大的R/FR比能够缩短茎节间距而起到矮化植物的效果,相反小的R/FR比可以促进植物的生长。所有这些特征都是植物工厂选择人工光源时必须考虑的重要因素,尤其是对于近年来发展起来的新型节能光源,如LED、LD以及冷阴极管等来说显得更为重要,因为这些光源需要通过不同光谱的单色光组合构成作物最适直的光质配比,以保障高效生产和节能的需求。光周期对植物的影响植物的光合作用和光形态建成与日长(或光期时间)之间的相互关系称其为植物的光周性。光周性与光照时数密切相关,光照时数是指作物被光照射的时间。不同的作物,完成光周期需要一定的光照时数才能开花结实。长日照作物,如白菜、芜青、芭英菜等,在其生育的某一阶段需要12~14 h以上的光照时数;短日照作物,如洋葱、大豆等,需要12~14h一下的光照时数;中日照作物,如黄瓜、番茄、辣椒等,在较长或较短的光照时数下,都能开花结实。
君君仅仅
光对植物生长发育具有调节的作用,尤其是对植物幼苗分化起到作用。通常在种子成熟的过程当中,植物经过光的作用以后,它结的种子数量也就越多。而在种子萌发的过程当中,光对种子的萌芽作用不是很大。另外,光还能促进植株的根、茎和叶片的生长,能够有效的防止植株进行徒长。光对植物生长的影响,除通过代谢作用影响其生长外,还可通过抑制细胞生长、促进细胞分化对植物器官分化和形态产生直接影响。光对植物形态建成产生的直接影响称光范型作用。光是绿色植物正常生长所必须的条件,其影响植物生长的光照因素主要有光照强度、光照波长和光照时间。光照强度根据植物学理论,只有一定强度的光照刺激,才能产生引起植物有效的光合作用。适宜的光照强度可以促进光合作用顺利进行,未知物生长提供足够的物质和能量。依照不同植物生长特点,适合植物光合作用的光照强度一般在10000-30000勒克司。在黑暗条件下,植物表现为:茎细、节长、脆弱(机械组织不发达)、叶片小而卷曲、根系发育不良,全株发黄,这种现象称为黄化现象。植物光合作用的强弱与光照强弱密切相关,但不同植物对光照强度要求不同。光照强度的单位是勒克司,可用光补偿点、光饱和点和光和强度(即同化率)三个数值表示、光补偿点是植物在一定光照条件下,其光合作用制造的养分与呼吸作用小号的养分相等。光饱和点是植物在一定光照强度条件下,其光合作用达到最高点,光和强度是单位叶面积在每小时内同化的二氧化碳的重量。果蔬类蔬菜除营养器官需要正常生长外,在果实成长过程中也需储存大量的复杂物质,如蛋白质、脂肪等,所以对光照强度要求较高。比如原产于晴天多、光照强的中部非洲和中、南美洲的番茄、辣(甜)椒、菜豆等,根菜类和叶菜类是以营养体为成品的,其所需物质多为简单的糖和淀粉,故对光照强度要求也较低。如大白菜光补偿点是750Lux,光饱和点是15000Lux。一般在露地栽培条件下,各种蔬菜植物对光照要求均可满足,但其强弱也受种植密度、行向、间套作方式等影响。蔬菜植物在光照强度不足时,除光合作用强度降低外,还能影响叶子大小、薄厚,叶肉结构,节间长短,茎的粗细等植物形态上和解剖学上的变化。这些又都会影响植株生长发育状况,影响产量和品质。在生长势强、密度较大的群体中,上下部叶片受光照强度有时差异很大,在生产上为改善通风透光条件,有时可适当打掉下部部分叶片,以提高产量和品质。光照波长根据植物学理论,不同波长的光照对植物生长有不同影响。短波的蓝紫光有抑制植物生长作用,其中紫外光的抑制作用更显著,它可以使植物矮化。在育苗时常采用浅蓝色塑料薄膜覆盖,它能透过紫外光,抑制植物徒长,与无色薄膜相比,幼苗生长得更健壮。在自然光照基础上,添加蓝色波段和红色波段的补充照明,对整条街植物生长有显著效果。
阿优米酱
研究动机: 我这次会选「光对植物的影响」这个题目的原因是:世界上到处都是植物,而且我知道植物在生长的过程中,一定需要适度的阳光,所以我想要了解光的强弱对植物的生长是否有影响;不同的光对植物的生长是否有影响;不同颜色的光对植物的生长是否有影响。研究目的: (一)光的强弱,对植物生长的影响?(二)不同颜色的光,对植物生长的影响?(三)光的强弱,对植物生产养分的影响?研究结论与建议:实验一、光的强弱,对植物生长的影响 从这个实验中,发现 (一)25W下的植物长的最快,平均每天长,因为25W的光最强,所以植物有足够的光线可以使自己快速生长。 (二)8W下的植物长的最慢,平均每天长,因为8W的光线最弱,所以植物没有足够的光线可以使自己生长。实验二、不同颜色的光,对植物生长的影响从这个实验中,发现(一)在8W的叶子加上碘液,发现颜色稍淡,可能是因为8W的灯光不够强,无法使植物大量的制造养分,因此颜色较淡。(二)在25W的叶子加上碘液,发现两个的颜色都差不多,颜色较深,可能是因为25W的光线已足够植物制造养分,所以在25W灯光下的植物,养分较多。实验三、光的强弱,对植物生产养分的影响从这个实验中,发现(一)在8W的叶子加上碘液,发现颜色稍淡,可能是因为8W的灯光不够强,无法使植物大量的制造养分,因此颜色较淡。(二)在25W的叶子加上碘液,发现两个的颜色都差不多,颜色较深,可能是因为25W的光线已足够植物制造养分,所以在25W灯光下的植物,养分较多。一、光的强弱,对植物生长的影响?(一)从实验中发现,绿豆的茎都长的特别高,可能是因为给植物光照的时间不够,导致植物的叶子特别少,而茎却特别高,所以在实验中,植物高度的差异性很小,在下次实验的时候,光的瓦数差异要更大,光照的时间要很久,才能做出差异性较显著的实验。(二)当初,是把为发芽的绿豆埋进去,但是,每颗绿豆发芽的时间都不一样,导致实验有误差,下次做实验,应该把一样高的芽放在一起,才能减少实验的误差。二、光的颜色,对植物生长的影响? 我们发现不同波长的光对植物生长发育有不同的影响。植物在行光合作用过程中,并不是所有波长的光能都可利用,光线中的红光与蓝光(红色光的波长范围为640-740nm,蓝色光为420-490nm)是被植物吸收最多的,并能促进叶绿素的形成,具有最大的光合活性(行光合作用的能力)。绿光容易被绿色叶子反射和透射,因此很少被吸收利用。但是在本次的实验中观察到照射紫光的绿豆长的最高,其次才是照射蓝光与红光的绿豆,是否还有其他的重要因素影响本次的实验,导致实验结果不如预期,是一个值得探讨的好问题。 三、光的强弱,对植物生产养分的影响 ? 从实验中发现,植物滴上碘液以後,并没有明显的差距,可能是因为光照的时间不够久,导致叶子的养分都被拿来使用。在摘下来以後,都处於阴暗处,导致养分拿来供给叶子,使得实验并没有明显的差距,在下次的实验中,让植物照光时,照得久一点,并且放置在有阳光的地方,才能避免养分的流失。
Bohollsland
间接影响:主要通过光合作用,是一个高能反应。 直接影响:主要通过光形态建成,是一个低能反应。光在此主要起信号作用。 1)光形态建成的概念:光控制植物生长、发育和分化的过程。为光的低能反应。光在此起信号作用。信号的性质与光的波长有关。植物体通过不同的光受体感受不同性质的光信号。 2)光形态建成的主要方面:(1)蓝紫光对植物的生长特别是对茎的伸长生长有强烈的抑制作用。因此生长在黑暗中的幼苗为黄化苗。光对植物生长的抑制与其对生长素的破坏有关。(2)蓝紫光在植物的向光性中起作用。(3)光(实质是红光)通过光敏色素影响植物生长发育的诸多过程。如:需光种子的萌发;叶的分化和扩大;小叶运动;光周期与花诱导;花色素形成;质体(包括叶绿体)的形成;叶绿素的合成;休眠芽的萌发;叶脱落等。 3)光信号受体:光敏色素、隐花色素、UV-B受体。 I 光敏色素 I-1 光敏色素的概念和分子结构:光敏色素是上世纪50年代发现的一种光受体。该受体为具有两个光转换形式的单一色素。其交替接受红光和远红光照射时可发生存在形式的可逆转换,并通过这种转换来控制光形态建成。 光敏色素的分子结构:光敏色素的单体由一个生色团(发色团,chromophore)及一个脱辅基蛋白(apoprotein)组成,其中前者分子量约为612 KD,后者约为120 KD。光敏色素生色团由排列成直链的四个吡咯环组成,因此具共轭电子系统,可受光激发。其稳定型结构为红光吸收型(Pr),Pr吸收红光后则转变为远红光吸收型(Pfr),而Pfr吸收远红光后又可变为Pr。其中,Pfr为生理活化型,Pr为生理钝化型。 光敏色素的脱辅基蛋白:现已知燕麦胚芽鞘脱辅基蛋白的分子量为124 KD,其一级结构含1128个氨基酸,其中含酸性和碱性氨基酸较多,因此带较多负电荷。燕麦胚芽鞘脱辅基蛋白1级结构N端321位处的半胱氨酸以硫醚键与生色团相连。生色团与脱辅基蛋白紧密相连,当生色团形式改变时也引起脱辅基蛋白结构的改变。燕麦胚芽鞘脱辅基蛋白的2级结构有α-螺旋、β-折叠、β-转角、无轨线团等。在2级结构基础上,再形成3级结构。4级结构则为两个脱辅基蛋白单体聚合成二聚体。 I-2 光敏色素的生物合成与理化性质: 光敏色素的Pr型是在黑暗条件下进行生物合成的,其合成过程可能类似于脱植基叶绿素的合成过程,因为二者都具有四个吡咯环。 光敏色素理化性质中最重要的是其光化学特性。光敏色素的Pr和Pfr对小于800 nm的各种光波都有不同程度的吸收且有许多重叠,但Pr的吸收峰为660 nm,Pfr的吸收峰为730 nm。在活体中,Pr和Pfr是“平衡”的。这种平衡取决于光源的光波成分。此即光稳定平衡(Φ):在一定波长下,具生理活性的Pfr浓度与光敏色素的总浓度的比值。即:Φ=[Pfr] /([Pr]+[Pfr])。不同波长的红光和远红光可组合成不同混合光,可得到各种Φ值。在自然条件下,Φ为~即可引起生理反应。 Pr与Pfr除吸收红光与远红光而发生可逆转换外,Pfr在暗中也可自发地逆转为Pr(此为热反应),或被蛋白酶水解。Pr与Pfr之间的光化学转换包含光化反应和暗反应,其中暗反应需要水。故干种子不具光敏色素反应。 光敏色素的其他理化性质:光敏色素可溶于水。光敏色素的Pr为蓝绿色,Pfr为黄绿色。 I-3 光敏色素的分布:(1)除真菌外,各种植物中都有光敏色素的分布。其中尤以黄花苗中含量为多(可高出绿色苗含量的20~100倍)。光敏色素在植物体内各器官的分布不均匀,禾本科植物胚芽鞘尖端、黄化豌豆苗的弯钩、含蛋白质丰富的各种分生组织等部位含有较多的光敏色素;(2)在黑暗中生长的植物组织内光敏色素以Pr形式均匀分布在细胞质中,照射红光后,Pr转化为Pfr并迅速地与内膜系统(质膜、内质网膜、线粒体膜等)结合在一起。 在高等植物中,黄化组织中的光敏色素含量高,光下不稳定,为光不稳定光敏色素(Phy I);而绿色组织中的光敏色素在光下相对稳定,为光稳定光敏色素(PhyII)。PhyII的红光吸收峰为652nm(蓝移)。
大学生创业活动开展的核心是形成规模化创业团队,因而在活动中需要了解整个团队的运行机制,管理大学生创业方向,并且对小组成员进行德育 教育 活动,提升学生的创业
物流管理论文精选参考文献 物流管理论文参考文献一: [1]Hotelling H. Stability in competition[J]. Economic
大学生学习礼仪很重要 “礼仪”一词,最早见于《诗经》和《礼记》。现代社会“礼仪”一词有了更加广泛的含义,其内容包括行礼仪式、礼节及仪式、风俗规定的仪式、行
浅析电子商务的经济学特征及对经济结构的影响浅析电子商务的经济学特征及对经济结构的影响[摘 要] 随着市场经济的发展,电子商务已经逐渐深入到了社会经济生活的各个领
1]胡永红,黄卫昌. 美国植物园的特点──兼谈对上海植物园发展的启示[J]. 中国园林,2001,(4). [2]鲍滨福,马军山. 两“园”合一 学用并举——浙