• 回答数

    2

  • 浏览数

    108

miracle11sno
首页 > 学术期刊 > 人脑研究最新论文

2个回答 默认排序
  • 默认排序
  • 按时间排序

掉了BOWL

已采纳

人工智能是一项前瞻性科学研究,已经成为ICT产业发展的突破口。以下是我整理的科技人工智能论文的相关 文章 ,欢迎阅读!

人工智能技术推动我国ICT产业发展模式探讨

【摘 要】人工智能是一项前瞻性科学研究,已经成为ICT产业发展的突破口。通过比较国内外ICT产业中人工智能技术研发现状, 总结 我国相关技术和产业的优劣势,有针对性的从国家政策层面和企业层面探讨人工智能技术在促进我国ICT产业发展的对策和建议。

【关键词】人工智能;政策引导;发展模式

0 引言

工信部在2010年工作会议上重点部署了战略性新兴产业的发展,信息和通信技术(Information and Communication Technology, ICT)产业排在首位。当前以智慧城市、智能家居、车联网等构成的物联网、移动互联网等应用为代表的新一代ICT产业不断创新,正在全球范围内掀起新一轮科技革命和产业变革,相关产业布局如图1所示。2013年前后欧美等国家和地区相继启动的人脑研究计划,促进人工智能、神经形态计算和机器人系统的发展。而人工智能就是机器模拟人脑的具体表现形式,以云计算、深度学习、智能搜索等一系列新技术在大规模联网上的应用,已经成为ICT产业进一步发展的重要方向[1-2]。面对人工智能在ICT产业上的迅猛发展,急需对我国在此方面的发展模式进行梳理。

1 国内外人工智能技术在ICT产业的发展现状

从发展脉络看,人工智能研究始终位于技术创新的高地,近年来成果斐然,在智能搜索、人工交互、可穿戴设备等领域得到了前所未有的重视,成为产业界力夺的前沿领域。目前国际ICT产业在人工智能技术上的发展重心涉及以下几个方面。

搜索引擎方向的发展

信息搜索是互联网流量的关键入口,也是实现信息资源与用户需求匹配的关键手段,人工智能的引入打开了搜索引擎发展的新空间。融合了深度学习技术的搜索引擎正大幅度提升图像搜索的准确率,同时吸纳了自然语言处理和云操作处理技术的搜索引擎,可将语音指令转化为实时搜索结果,另外人工智能搜索引擎可能添加意识情感元素,发展出真正意义上的神经心理学搜索引擎[3]。

从搜索引擎的发展上来看,国内企业起步稍晚,搜索领域较窄,但也有新浪、搜狐、百度、阿里巴巴、腾讯等公司等纷纷运用独特的技术与 商业模式 进行中国式的创新与超越,以及科大讯飞等企事业研究单位在部分方向已经具有了一定的基础,发展态势较好。

人脑科学助推人工智能技术发展

人工智能技术都是通过机器来模拟人脑进行复杂、高级运算的人脑研究活动。目前基于信息通信技术建立的研究平台,使用计算机模拟法来绘制详细的人脑模型,推动了人工智能、机器人和神经形态计算系统的发展,预计将引发人工智能由低级人脑模拟向高级人脑模拟的飞跃。

谷歌公司早就通过自主研发以及收购等方式来获取人工智能的必要技术,包括使用一万六千个处理器建立的模拟人脑神经系统的、具备学习功能的谷歌大脑。国内该方面的研究发展起步偏重于医学单位,在中华人类脑计划和神经信息学方面具有一定的科研成果,在某些领域达到了国际先进水平,但在新一轮全球人工智能竞赛中,中国至今处于观望和模仿阶段。直至2013年初,百度成立深度学习研究院,提出百度大脑计划,如图2所示,拥有了超越天河二号的超级计算能力,组建起世界上最大的拥有200亿个参数的深度神经网络。作为国内技术最领先的互联网公司,百度此次争得人工智能领域最顶尖的科学家,在硅谷布局人工智能研究,被视为与美国科技巨头直接展开了技术和人才竞争。

智能终端和可穿戴设备引起产业变革

移动终端通过嵌入人工智能技术破除了时空限制,促进了人机高频互动,穿戴式智能联网设备正在引领信息技术产品和信息化应用发展的新方向。

我国在智能终端和可穿戴设备芯片的研发方面,还处于探索的阶段,特别是大型芯片企业未进行有力的支持。目前只有君正发布了可穿戴的芯片,制造工艺与国际上还有一定的差距。应该说国内芯片现在还是处于刚刚起步阶段,相比市场对可穿戴设备概念的热捧,用户真正能体验到的可穿戴设备屈指可数,大多停留在概念阶段。

物联网部分领域发展

全球物联网应用在各国战略引领和市场推动下正在加速发展,所产生的新型信息化正在与传统领域深入融合。总的来看,在公共市场方面发展较快,其中智能电网、车联网、机器与机器通信(Machine-To-Machine, M2M)是近年来发展较为突出的应用领域[4]。

物联网涉及领域众多,各国均上升至国家战略层次积极推动物联网技术研发,我国也在主动推进物联网共性基础能力研究和建立自主技术标准。在射频识别(Radio Frequency Identification, RFID)、M2M、工业控制、标识解析等领域已经获得部分知识产权,其中中高频RFID技术接近国际先进水平,在超高频(800/900MHz)和微波()RFID空中接口物理层和MAC层均有重要技术突破。在标准方面,已建立传感网标准体系的初步框架,其中多项标准提案已被国际标准化组织采纳。作为国际传感网标准化四大主导国(美国、德国、韩国、中国)之一,我国在制定国际标准时已享有重要话语权。

2 我国ICT产业的政策引导

目前ICT产业的应用范围在不断的延伸,政策的制定必须考虑跨行业的需要,加速产业链的分工、合作和成熟。我国ICT企业正紧跟变革、激励创新、发掘内需,再通过突破瓶颈的ICT政策必将迎来新的机遇和发展。

国家政策方面的引导

世界发达国家纷纷制定ICT产业发展计划,并将其作为战略性新兴产业的重要组成部分。我国急需在国家政策方面进行引导,试图抢占下一程竞争制高点。政策应呈现如下趋势,破除行业间壁垒,加快制定ICT跨行业标准和产业相关政策。

加强政策顶层设计

成立国家级ICT产业发展机构,尽快确立国家ICT中长期发展战略,落实国家级监管机制、产业协同等各方面的工作,促进ICT产业及相关行业的发展。 加强自主创新能力

将战略性新兴产业作为发展重点,围绕其需求部署创新链,掌握核心关键技术,突破技术瓶颈。加强技术集成和商业模式的创新,加快新产品、新技术、新工艺研发应用。

深化科技体制改革

将企业主体地位予以强化,建立以企业为主、以市场为导向、产学研一体化的创新体系。新体系要确保企业为产业技术研发、技术创新决策、成果转化的主导地位,要促进人才、资源、技术等创新要素向企业流动,要主动与产学研机构开展深度合作,要扶植和壮大创新型企业。

知识产权方面的引导

专利方面

国际专利纠纷在一定程度上提高了国内企业的专利危机意识,但是由于在国内专利长期并未得到重视及专利技术研发周期长,企业对是否有能力实现布局认识不清[5]。初具国际竞争实力的国内企业应该紧抓全球重大的专利收购机遇,快速提升整体竞争力。针对新技术涉及专利问题应加快系统研究,重视前瞻性专利布局。积极探索统一专利池的构建,增强全产业专利授权及谈判能力,探索构建国内企业面临知识产权危机时的商业保护伞机制。一方面强化自身研发投入,另一方面仍需加强产学研结合、实现高校和科研院所的专利对企业转移。

著作权方面

目前版权产业已经成为国民经济新的增长点和经济发展中的支柱产业。世界知识产权组织在与我国国家版权局的合作调研时发现,2013年我国著作权作品登记共845064件,其中软件著作权登记164349件,同比增长超过18%。物联网、云计算、大数据等 热点 领域软件均呈现出了加速增长态势,如物联网软件著作权共4388件,同比增长,云计算软件著作权共3017件,同比增长,明显高于软件登记整体增速。虽然我国软件技术正处在一个高速增长期,但存在着低水平重复、起点较低的问题,仍需坚持不懈的进行引导、创新和保护。

3 ICT相关企业实现方式探讨

经过多年的努力积累,在人工智能究领域我国在不再仅是国外技术的跟随者,已经能够独立自主地进行重大问题的创新性研究,并取得了丰硕的成果。今后我国相关企业应进一步拓展人工智能在ICT产业的应用,并加快构建ICT产业生态系统。我国ICT相关企业在整个产业上应该逐步完成以下几个方面。

政、学、研、产、用全面推进

政府与科研院所建立合作机制。我国已经在制定多个促进产学研合作的计划,目的是将基础研究、应用研究,以及国家工业未来的发展紧密联系起来。大力资助具有应用前景的科研项目,促进大学与产业界联合申请项目,同时对由企业参与投资开发的项目实行重点关注。企业参与高校的科研项目。鼓励实力雄厚的公司通过向高校提供资金、转让科研设备等形式建立合作关系。高校积极参加企业研发项目。提供多种形式的合作方式,如高校教师充当企业顾问、举办学术讲座或参加企业课题研究,公司科研人员到高校进修并取得学位等。随着高校与政府、企业、研发机构合作的不断深入,努力消除校企之间的空间和物理层面的隔阂。探索建立学校、地方、企业、研发机构四位一体的科技创新体系,尽快形成具有特色优势和规模效益的高新技术产业群。

加强合作、推进新技术的产业化与商用

通信设备企业可与电信运营商、互联网企业加强合作,共同搭建新型试验网络,验证基于融合技术的网络架构在各场景的运行状况,排查可能出现的问题,推进相关技术、设备以及解决方案的成熟与商用化。加大与科研院所、专利中介、行业协会组织的合作,充分利用各方资源优势。企业应着重关注和影响科研院所的研究方向,协助其加强研发的实用性,提高研发质量。可以采取与校企合作开发、企业牵头申报课题,高校参与、企业设立课题由高校认领、建立联合实验室等方式。合作培育应用生态。企业在推进网络控制平台面向标准化的过程中,应充分考虑和吸纳包括电信运营商、互联网企业及其他各类企业的网络应用创新需求,为网络应用生态体系的形成与繁荣创建良好的技术基础与商业环境。

全力抢占大数据

我国政府已经认识到大数据在改善公共服务、推动经济发展以及保障国家安全等方面的重大意义。2014年《政府 工作 报告 》明确提出,“以创新支撑和引领经济结构优化升级;设立新兴产业创业创新平台”,在新一代移动通信、集成电路、大数据等方面赶超先进,引领未来产业发展。ICT企业在发展大数据的总体思路应该是:首先,明确国家关于大数据发展的战略目标,促进电信、互联网、金融等拥有海量数据的企业与其他行业进行大数据融合,扩展大数据应用领域;其次,在技术方面需要提高研发的前瞻性和系统性,近期重点发展实时大数据处理、深度学习、海量数据存储管理、交互式数据可视化和应用相关的分析技术等[6];第三,集合产学研用各方力量,统筹规划大数据应用,避免盲目发展;最后,解决个人信息的数据安全性需求。

重点发展云计算

2014年3月,工信部软件服务业司司长陈伟透露我国云计算综合标准化技术体系草案已形成。在政府建立标准化的同时,ICT企业应以企业的角度积极参与到云计算领域研究中,服务国家云产业发展战略。建议向用户充分开放企业平台资源,推进社会云产业发展;加强技术应用深度,将云计算技术着重应用于信息搜索、数据挖掘等领域,逐渐形成社会资源利用方面高效可行的 方法 技术;广泛展开与社会各界合作,推动社会各类数据资源与企业云计算技术的整合应用。云计算企业拥有丰富的软硬件资源、技术资源以及人力资源,并且服务政府信息化建设意愿强烈。应通过与政府社会资源应用需求相结合,充分发挥企业云计算资源在服务政府信息化建设、社会资源应用方面的潜力。

4 小结

发达国家对人工智能技术在ICT产业应用的研究开展较早,为促进人工智能技术的发展和ICT产业相关技术的发展已经提出并实施了一些行之有效的策略,积累了一定的 经验 。本文通过对比国内外在人工智能技术重点方向发展现状,借鉴他国政策与经验,根据我国的国情及产业发展所处的阶段,提出符合我国目前产业发展现状,适合我国的可借鉴的策略,以期为促进我国人工智能技术在ICT产业发展提供参考。

下一页分享更优秀的>>>科技人工智能论文

120 评论

乖囡好好

深度神经网络(DNNs)是 AI 领域的重要成果,但它的 “存在感” 已经不仅仅限于该领域。 一些前沿生物医学研究,也正被这一特别的概念所吸引。特别是计算神经科学家。 在以前所未有的任务性能彻底改变计算机视觉之后,相应的 DNNs 网络很快就被用以试着解释大脑信息处理的能力,并日益被用作灵长类动物大脑神经计算的建模框架。经过任务优化的深度神经网络,已经成为预测灵长类动物视觉皮层多个区域活动的最佳模型类型之一。 用神经网络模拟大脑或者试图让神经网络更像大脑正成为主流方向的当下,有研究小组却选择用神经生物学的方法重新审视计算机学界发明的DNNs。 而他们发现,诸如改变初始权重等情况就能改变网络的最终训练结果。这对使用单个网络来窥得生物神经信息处理机制的普遍做法提出了新的要求:如果没有将具有相同功能的深度神经网络具有的差异性纳入考虑的话,借助这类网络进行生物大脑运行机制建模将有可能出现一些随机的影响。要想尽量避免这种现象,从事 DNNs 研究的计算神经科学家,可能需要将他们的推论建立在多个网络实例组的基础上,即尝试去研究多个相同功能的神经网络的质心,以此克服随机影响。 而对于 AI 领域的研究者,团队也希望这种表征一致性的概念能帮助机器学习研究人员了解在不同任务性能水平下运行的深度神经网络之间的差异。 人工神经网络由被称为 “感知器”、相互连接的单元所建立,感知器则是生物神经元的简化数字模型。人工神经网络至少有两层感知器,一层用于输入层,另一层用于输出层。在输入和输出之间夹上一个或多个 “隐藏” 层,就得到了一个 “深层” 神经网络,这些层越多,网络越深。 深度神经网络可以通过训练来识别数据中的特征,就比如代表猫或狗图像的特征。训练包括使用一种算法来迭代地调整感知器之间的连接强度(权重系数),以便网络学会将给定的输入(图像的像素)与正确的标签(猫或狗)相关联。理想状况是,一旦经过训练,深度神经网络应该能够对它以前没有见过的同类型输入进行分类。 但在总体结构和功能上,深度神经网络还不能说是严格地模仿人类大脑,其中对神经元之间连接强度的调整反映了学习过程中的关联。 一些神经科学家常常指出深度神经网络与人脑相比存在的局限性:单个神经元处理信息的范围可能比 “失效” 的感知器更广,例如,深度神经网络经常依赖感知器之间被称为反向传播的通信方式,而这种通信方式似乎并不存在于人脑神经系统。 然而,计算神经科学家会持不同想法。有的时候,深度神经网络似乎是建模大脑的最佳选择。 例如,现有的计算机视觉系统已经受到我们所知的灵长类视觉系统的影响,尤其是在负责识别人、位置和事物的路径上,借鉴了一种被称为腹侧视觉流的机制。 对人类来说,腹侧神经通路从眼睛开始,然后进入丘脑的外侧膝状体,这是一种感觉信息的中继站。外侧膝状体连接到初级视觉皮层中称为 V1 的区域,在 V1 和 V4 的下游是区域 V2 和 V4,它们最终通向下颞叶皮层。非人类灵长类动物的大脑也有类似的结构(与之相应的背部视觉流是一条很大程度上独立的通道,用于处理看到运动和物体位置的信息)。 这里所体现的神经科学见解是,视觉信息处理的分层、分阶段推进的:早期阶段先处理视野中的低级特征(如边缘、轮廓、颜色和形状),而复杂的表征,如整个对象和面孔,将在之后由颞叶皮层接管。 如同人的大脑,每个 DNN 都有独特的连通性和表征特征,既然人的大脑会因为内部构造上的差异而导致有的人可能记忆力或者数学能力更强,那训练前初始设定不同的神经网络是否也会在训练过程中展现出性能上的不同呢? 换句话说,功能相同,但起始条件不同的神经网络间究竟有没有差异呢? 这个问题之所以关键,是因为它决定着科学家们应该在研究中怎样使用深度神经网络。 在之前 Nature 通讯发布的一篇论文中,由英国剑桥大学 MRC 认知及脑科学研究组、美国哥伦比亚大学 Zuckerman Institute 和荷兰拉德堡大学的 Donders 脑科学及认知与行为学研究中心的科学家组成的一支科研团队,正试图回答这个问题。论文题目为《Individual differences among deep neural network models》。 根据这篇论文,初始条件不同的深度神经网络,确实会随着训练进行而在表征上表现出越来越大的个体差异。 此前的研究主要是采用线性典范相关性分析(CCA,linear canonical correlation analysis)和 centered-kernel alignment(CKA)来比较神经网络间的内部网络表征差异。 这一次,该团队的研究采用的也是领域内常见的分析手法 —— 表征相似性分析(RSA,representational similarity analysis)。 该分析法源于神经科学的多变量分析方法,常被用于将计算模型生产的数据与真实的大脑数据进行比较,在原理上基于通过用 “双(或‘对’)” 反馈差异表示系统的内部刺激表征(Inner stimulus representation)的表征差异矩阵(RDMs,representational dissimilarity matrices),而所有双反馈组所组成的几何则能被用于表示高维刺激空间的几何排布。 两个系统如果在刺激表征上的特点相同(即表征差异矩阵的相似度高达一定数值),就被认为是拥有相似的系统表征。 表征差异矩阵的相似度计算在有不同维度和来源的源空间(source spaces)中进行,以避开定义 “系统间的映射网络”。本研究的在这方面上的一个特色就是,使用神经科学研究中常用的网络实例比较分析方法对网络间的表征相似度进行比较,这使得研究结果可被直接用于神经科学研究常用的模型。 最终,对比的结果显示,仅在起始随机种子上存在不同的神经网络间存在明显个体差异。 该结果在采用不同网络架构,不同训练集和距离测量的情况下都成立。团队分析认为,这种差异的程度与 “用不同输入训练神经网络” 所产生的差异相当。 如上图所示,研究团队通过计算对应 RDM 之间的所有成对距离,比较 all-CNN-C 在所有网络实例和层、上的表示几何。 再通过 MDS 将 a 中的数据点(每个点对应一个层和实例)投影到二维。各个网络实例的层通过灰色线连接。虽然早期的代表性几何图形高度相似,但随着网络深度的增加,个体差异逐渐显现。 在证明了深度神经网络存在的显著个体差异之后,团队继续探索了这些差异存在的解释。 随后,研究者再通过在训练和测试阶段使用 Bernoulli dropout 方法调查了网络正则化(network regularization)对结果能造成的影响,但发现正则化虽然能在一定程度上提升 “采用不同起始随机种子的网络之表征” 的一致性,但并不能修正这些网络间的个体差异。 最后,通过分析网络的训练轨迹与个体差异出现的过程并将这一过程可视化,团队在论文中表示,神经网络的性能与表征一致性间存在强负相关性,即网络间的个体差异会在训练过程中被加剧。 总而言之,这项研究主要调查了多个神经网络在最少的实验干预条件下是否存在个体差异,即在训练开始前为网络设置不同权重的随机种子,但保持其他条件一致,并以此拓展了此前与 “神经网络间相关性” 有关的研究。 除了这篇 这篇 研究以外,“深度学习三巨头” 之一、著名 AI 学者 Hinton 也有过与之相关的研究,论文名为《Similarity of Neural Network Representations Revisited》,文章探讨了测量深度神经网络表示相似性的问题,感兴趣的读者可以一并进行阅读。 Refrence: [1] [2]

139 评论

相关问答

  • 人脑研究最新论文

    人工智能是一项前瞻性科学研究,已经成为ICT产业发展的突破口。以下是我整理的科技人工智能论文的相关 文章 ,欢迎阅读! 人工智能技术推动我国ICT产业发展模

    miracle11sno 2人参与回答 2023-12-10
  • 人工智障最新研究进展论文

    人工智障(Artificial Idiot)是一种低智商计算机程序,本身缺乏自主行动能力或其它方面特殊能力。它是通过计算机程序bug而造就的,这种计算机程序bu

    旧在现在 3人参与回答 2023-12-11
  • 恐龙最新研究论文

    如果恐龙是在瞬间灭绝的!那恐龙的化石周围应该还会别的动物的化石! 如果是小行星撞击的尘埃遮住那了太阳,那就会有大量植物死亡!那就会有大量的植物化石同时被发现

    小乐乐9 2人参与回答 2023-12-08
  • 最新人力资源管理研究论文

    随着社会的快速发展,人力资源逐渐成为企业发展的重要资源。酒店是劳动密集型企业,其产品具有无形性、生产与消费同时性的特征决定了人力资源在酒店发展过程中不可替代的重

    尝试新鲜 3人参与回答 2023-12-07
  • 减肥最新研究论文

    大学生处于青年人生长发育的重要时期,其日常生活属中等体力劳动,身体发育需要有足够的营养。下面是我为你精心整理的,希望对你有帮助! 篇1 摘要

    皇冠家具厂 3人参与回答 2023-12-08