奔跑吧笑笑
你太逗了...学语言的,竟然选数学建模,那个本身是数学系的课程,你想,它是干什么的吧,当然还有一些计算机系之类的,也可能会学。而且数学建模,本身不想数学那样,并非公式就行,不同实例,可能要牵扯到的各种理论也不少呢。需要学好多理论才行呢,学理学工的,才会选择这个。你们的选修课,如果不过,用不用交重修费?如果不用的话,下学期,再选呗。我的选修课学分都超了2分,呵呵,忘记了,多修了一门。
oo888888oo
数学建模教学当中的地位摘要:数学,建模,教学,主导当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的符号和语言,把它表述为数学式子,也就是数学模型,然后用通过计算得到的模型结果来解释实际问题,并接受实际的检验。这个建立数学模型的全过程就称为数学建模。近半个多世纪以来,随着计算机技术的迅速发展,数学的应用不仅在工程技术、自然科学等领域发挥着越来越重要的作用,而且以空前的广度和深度向经济、金融、生物、医学、环境、地质、人口、交通等新的领域渗透,所谓数学技术已经成为当代高新技术的重要组成部分。数学建模 不论是用数学方法在科技和生产领域解决哪类实际问题,还是与其它学科相结合形成交叉学科,首要的和关键的一步是建立研究对象的数学模型,并加以计算求解。数学建模和计算机技术在知识经济时代的作用可谓是如虎添翼。数学建模应用 数学是研究现实世界数量关系和空间形式的科学,在它产生和发展的历史长河中,一直是和各种各样的应用问题紧密相关的。数学的特点不仅在于概念的抽象性、逻辑的严密性,结论的明确性和体系的完整性,而且在于它应用的广泛性,进入20世纪以来,随着科学技术的迅速发展和计算机的日益普及,人们对各种问题的要求越来越精确,使得数学的应用越来越广泛和深入,特别是在即将进入21世纪的知识经济时代,数学科学的地位会发生巨大的变化,它正在从国家经济和科技的后备走到了前沿。经济发展的全球化、计算机的迅猛发展,数理论与方法的不断扩充使得数学已经成为当代高科技的一个重要组成部分和思想库,数学已经成为一种能够普遍实施的技术。培养学生应用数学的意识和能力已经成为数学教学的一个重要方面。编辑本段数学建模的意义数学建模 数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻画并"解决"实际问题的一种强有力的数学手段。 数学建模就是用数学语言描述实际现象的过程。这里的实际现象既包涵具体的自然现象比如自由落体现象,也包涵抽象的现象比如顾客对某种商品所取的价值倾向。这里的描述不但包括外在形态,内在机制的描述,也包括预测,试验和解释实际现象等内容。 我们也可以这样直观地理解这个概念:数学建模是一个让纯粹数学家(指只懂数学不懂数学在实际中的应用的数学家)变成物理学家,生物学家,经济学家甚至心理学家等等的过程。 数学模型一般是实际事物的一种数学简化。它常常是以某种意义上接近实际事物的抽象形式存在的,但它和真实的事物有着本质的区别。要描述一个实际现象可以有很多种方式,比如录音,录像,比喻,传言等等。为了使描述更具科学性,逻辑性,客观性和可重复性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学。使用数学语言描述的事物就称为数学模型。有时候我们需要做一些实验,但这些实验往往用抽象出来了的数学模型作为实际物体的代替而进行相应的实验,实验本身也是实际操作的一种理论替代。应用数学模型 应用数学去解决各类实际问题时,建立数学模型是十分关键的一步,同时也是十分困难的一步。建立教学模型的过程,是把错综复杂的实际问题简化、抽象为合理的数学结构的过程。要通过调查、收集数据资料,观察和研究实际对象的固有特征和内在规律,抓住问题的主要矛盾,建立起反映实际问题的数量关系,然后利用数学的理论和方法去分析和解决问题。这就需要深厚扎实的数学基础,敏锐的洞察力和想象力,对实际问题的浓厚兴趣和广博的知识面。数学建模是联系数学与实际问题的桥梁,是数学在各个领械广泛应用的媒介,是数学科学技术转化的主要途径,数学建模在科学技术发展中的重要作用越来越受到数学界和工程界的普遍重视,它已成为现代科技工作者必备的重要能力之。为了适应科学技术发展的需要和培养高质量、高层次科技人才,数学建模已经在大学教育中逐步开展,国内外越来越多的大学正在进行数学建模课程的教学和参加开放性的数学建模竞赛,将数学建模教学和竞赛作为高等院校的教学改革和培养高层次的科技人才的一个重要方面,现在许多院校正在将数学建模与教学改革相结合,努力探索更有效的数学建模教学法和培养面向21世纪的人才的新思路,与我国高校的其它数学类课程相比,数学建模具有难度大、涉及面广、形式灵活,对教师和学生要求高等特点,数学建模的教学本身是一个不断探索、不断创新、不断完善和提高的过程。为了改变过去以教师为中心、以课堂讲授为主、以知识传授为主的传统教学模式,数学建模课程指导思想是:以实验室为基础、以学生为中心、以问题为主线、以培养能力为目标来组织教学工作。通过教学使学生了解利用数学理论和方法去分析和解决问题的全过程,提高他们分析问题和解决问题的能力;提高他们学习数学的兴趣和应用数学的意识与能力,使他们在以后的工作中能经常性地想到用数学去解决问题,提高他们尽量利用计算机软件及当代高新科技成果的意识,能将数学、计算机有机地结合起来去解决实际问题。数学建模以学生为主,教师利用一些事先设计好问题启发,引导学生主动查阅文献资料和学习新知识,鼓励学生 积极开展讨论和辩论,培养学生主动探索,努力进取的学风,培养学生从事科研工作的初步能力,培养学生团结协作的精神、形成一个生动活泼的环境和气氛,教学过程的重点是创造一个环境去诱导学生的学习欲望、培养他们的自学能力,增强他们的数学素质和创新能力,提高他们的数举素质,强调的是获取新知识的能力,是解决问题的过程,而不是知识与结果。接受参加数学建模竞赛赛前培训的同学大都需要学习诸如数理统计、最优化、图论、微分方程、计算方法、神经网络、层次分析法、模糊数学,数学软件包的使用等等“短课程”(或讲座),用的学时不多,多数是启发性的讲一些基本的概念和方法,主要是靠同学们自己去学,充分调动同学们的积极性,充分发挥同学们的潜能。培训中广泛地采用的讨论班方式,同学自己报告、讨论、辩论,教师主要起质疑、答疑、辅导的作用,竞赛中一定要使用计算机及相应的软件,如Spss,Lingo,Mapple,Mathematica,Matlab甚至排版软件等。编辑本段过程模型准备 了解问题的实际背景,明确其实际意义,掌握对象的各种信息。用数学语言来描述问题。模型假设 根据实际对象的特征和建模的目的,对问题进行必要的简化,并用精确的语言提出一些恰当的假设。模型建立 在假设的基础上,利用适当的数学工具来刻划各变量之间的数学关系,建立相应的数学结构(尽量用简单的数学工具)。模型求解 利用获取的数据资料,对模型的所有参数做出计算(或近似计算)。模型分析 对所得的结果进行数学上的分析。模型检验 将模型分析结果与实际情形进行比较,以此来验证模型的准确性、合理性和适用性。如果模型与实际较吻合,则要对计算结果给出其实际含义,并进行解释。如果模型与实际吻合较差,则应该修改假设,再次重复建模过程。模型应用 应用方式因问题的性质和建模的目的而异。编辑本段起源进入西方国家大学 数学建模是在20世纪60和70年代进入一些西方国家大学的,我国的几所大学也在80年代初将数学建模引入课堂。经过20多年的发展现在绝大多数本科院校和许多专科学校都开设了各种形式的数学建模课程和讲座,为培养学生利用数学方法分析、解决实际问题的能力开辟了一条有效的途径。 大学生数学建模竞赛最早是1985年在美国出现的,1989年在几位从事数学建模教育的教师的组织和推动下,我国几所大学的学生开始参加美国的竞赛,而且积极性越来越高,近几年参赛校数、队数占到相当大的比例。可以说,数学建模竞赛是在美国诞生、在中国开花、结果的。在中国 1992年由中国工业与应用数学学会组织举办了我国10城市的大学生数学模型联赛,74所院校的314队参加。教育部领导及时发现、并扶植、培育了这一新生事物,决定从1994年起由教育部高教司和中国工业与应用数学学会共同主办全国大学生数学建模竞赛,每年一届。十几年来这项竞赛的规模以平均年增长25%以上的速度发展。 2009 年全国有33个省/市/自治区(包括香港和澳门特区)1137所院校、15046个队(其中甲组12276队、乙组2770队)、4万5千多名来自各个专业的大学生参加竞赛,是历年来参赛人数最多的(其中西藏和澳门是首次参赛)!编辑本段大学生数学建模竞赛全国大学生数学建模竞赛 全国大学生数学建模竞赛是国家教育部高教司和中国工业与应用数学学会共同主办的面向全国大学生的群众性科技活动,目的在于激励学生学习数学的积极性,提高学生建立数学模型和运用计算机技术解决实际问题的综合能力,鼓励广大学生踊跃参加课外科技活动,开拓知识面,培养创造精神及合作意识,推动大学数学教学体系、教学内容和方法的改革。竞赛题目一般来源于工程技术和管理科学等方面经过适当简化加工的实际问题,不要求参赛者预先掌握深入的专门知识,只需要学过普通高校的数学课程。题目有较大的灵活性供参赛者发挥其创造能力。参赛者应根据题目要求,完成一篇包括模型的假设、建立和求解,计算方法的设计和计算机实现,结果的分析和检验,模型的改进等方面的论文(即答卷)。竞赛评奖以假设的合理性、建模的创造性、结果的正确性和文字表述的清晰程度为主要标准。 全国统一竞赛题目,采取通讯竞赛方式,以相对集中的形式进行;竞赛一般在每年9月末的三天内举行;大学生以队为单位参赛,每队3人,专业不限。全国大学生数学建模竞赛章程(2008年) 第一条 总则 全国大学生数学建模竞赛(以下简称竞赛)是教育部高等教育司和中国工业与应用数学学会共同主办的面向全国大学生的群众性科技活动,目的在于激励学生学习数学的积极性,提高学生建立数学模型和运用计算机技术解决实际问题的综合能力,鼓励广大学生踊跃参加课外科技活动,开拓知识面,培养创造精神及合作意识,推动大学数学教学体系、教学内容和方法的改革。 第二条 竞赛内容 竞赛题目一般来源于工程技术和管理科学等方面经过适当简化加工的实际问题,不要求参赛者预先掌握深入的专门知识,只需要学过高等学校的数学课程。题目有较大的灵活性供参赛者发挥其创造能力。参赛者应根据题目要求,完成一篇包括模型的假设、建立和求解、计算方法的设计和计算机实现、结果的分析和检验、模型的改进等方面的论文(即答卷)。竞赛评奖以假设的合理性、建模的创造性、结果的正确性和文字表述的清晰程度为主要标准。 第三条 竞赛形式、规则和纪律 1.全国统一竞赛题目,采取通讯竞赛方式,以相对集中的形式进行。 2.竞赛每年举办一次,一般在某个周末前后的三天内举行。 3.大学生以队为单位参赛,每队3人(须属于同一所学校),专业不限。竞赛分本科、专科两组进行,本科生参加本科组竞赛,专科生参加专科组竞赛(也可参加本科组竞赛),研究生不得参加。每队可设一名指导教师(或教师组),从事赛前辅导和参赛的组织工作,但在竞赛期间必须回避参赛队员,不得进行指导或参与讨论,否则按违反纪律处理。 4.竞赛期间参赛队员可以使用各种图书资料、计算机和软件,在国际互联网上浏览,但不得与队外任何人(包括在网上)讨论。 5.竞赛开始后,赛题将公布在指定的网址供参赛队下载,参赛队在规定时间内完成答卷,并准时交卷。 6.参赛院校应责成有关职能部门负责竞赛的组织和纪律监督工作,保证本校竞赛的规范性和公正性。 第四条 组织形式 1.竞赛由全国大学生数学建模竞赛组织委员会(以下简称全国组委会)主持,负责每年发动报名、拟定赛题、组织全国优秀答卷的复审和评奖、印制获奖证书、举办全国颁奖仪式等。 2.竞赛分赛区组织进行。原则上一个省(自治区、直辖市)为一个赛区,每个赛区应至少有6所院校的20个队参加。邻近的省可以合并成立一个赛区。每个赛区建立组织委员会(以下简称赛区组委会),负责本赛区的宣传发动及报名、监督竞赛纪律和组织评阅答卷等工作。未成立赛区的各省院校的参赛队可直接向全国组委会报名参赛。 3.设立组织工作优秀奖,表彰在竞赛组织工作中成绩优异或进步突出的赛区组委会,以参赛校数和队数、征题的数量和质量、无违纪现象、评阅工作的质量、结合本赛区具体情况创造性地开展工作以及与全国组委会的配合等为主要标准。 数学建模的应用,对于数学建模竞赛来说是非常大的促进和动力。 目前,国内首家数学建模公司-北京诺亚数学建模科技有限公司在北京成立。已读博士的魏永生和另外两个志同道合的同学一起合作的创业项目,源于他们熟悉的数学建模领域。 魏永生三人在2003年4月组建了一个大学生数学建模竞赛团队,当年就获得了国家二等奖,2005年荣获了国际数学建模竞赛的一等奖,同年10月注册了数学建模爱好者网站,本着数学建模走向社会,走向应用的方向,他们在去年6月正式确立了以数学建模应用为创业方向,组建了创业团队,开启了创业之路。本月初,北京诺亚数学建模科技有限公司正式注册,魏永生团队的创业正式走向正轨。 目前,诺亚数学建模正以其专业化的视角不断拓展业务壮大实力,并积极涉足铁路交通、公路交通、物流管理等其他相关领域的数学建模及数学模型解决方案 、咨询服务。 魏永生向记者解释说,也许很多人并不了解数学建模究竟有什么用途,他举了个例子,一个火车站,要计算隔多久发一辆车才能既保证把旅客都带走,又能最大程度的节约成本,这些通过数学建模都能算出最优方案。 魏永生介绍说,他们的数学建模团队已有6年的历史,彼此配合很默契,也做了数十个大大小小的项目。他们的创业理念是为直接和潜在客户提供一种前所未有的数学建模优化及数学模型解决方案,真正为客户实现投资收益的最大化、生产成本费用的最小化。数学建模应当掌握的十类算法 1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算 法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法) 2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要 处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具) 3、线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题 属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、 Lingo软件实现) 4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉 及到图论的问题可以用这些方法解决,需要认真准备) 5、动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计 中比较常用的方法,很多场合可以用到竞赛中) 6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是 用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实 现比较困难,需慎重使用) 7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛 题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好 使用一些高级语言作为编程工具) 8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计算机只 认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非 常重要的) 9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常 用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调 用) 10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也应该 要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用Matlab 进行处理)
niftynifty
2012年电子科技大学中山学院优秀论文 葡萄酒等级划分体系模型的探究 摘 要 针对目前葡萄酒评价体系不完善的现状本文对葡萄酒评价体系作出探究。 对于问题一运用单因素方差分析法利用Matlab软件以Anoval函数求解。求出p-value显著性水平取作为标准来判断那组有显著性以及通过比较方差来判断那组数据更加可信。 对于问题二在问题一中得到第二组评分更可信因此根据该组的评分进行分级通过用Matlab软件的Corrcoef和Regress函数对该组成分进行相关性验证和用EXCEL画出图表进行分析找出影响葡萄酒分级的成分然后在酿酒葡萄数据中找出与影响葡萄酒分级相同的成分再结合葡萄酒评分对葡萄样品进行分级得出葡萄样品成分的排列结合成分的量和葡萄酒分级得出影响酿酒葡萄分级成分的范围。 对于问题三通过问题二的解答可以知道葡萄酒和酿酒葡萄的划分级别利用附件二的资料对每一种理化指标的数据根据对应的含量建立模型运用matlab软件拟合数据作出拟合线性图并采用多元回归分析法进行回归分析最后根据拟合线性图和回归系数来分析两类理化指标之间的关系。 对于问题四分析酿酒葡萄和葡萄酒的理化指标对葡萄酒质量的影响并论证能否用葡萄和葡萄酒的理化指标来评价葡萄酒的质量。结合题目给出芬香物质的数据对感官指标和理化指标进行综合分析用MABTLE拟合感官指标和理化指标的数据得出结论需要结合葡萄酒的理化指标和感官指标对葡萄酒的质量进行综合评价。关键字方差分析法 分级 理化指标 线性相关 回归分析 一、问题的重述 随着我国经济的快速发展葡萄酒市场竞争也异常激烈和无序“三精一水”、假年份、假产地酒、假酒庄影响消费者的健康虽然我国的GB15037-2006《葡萄酒》国家标准对葡萄酒的质量作了规定但由于相应规范的制定工作限制我国关于葡萄酒质量等级分划的标准还未完善国家迫切需要制定统一的质量等级制度。 确定葡萄酒质量时一般是通过聘请一批有资质的评酒员进行品评。每个评酒员在对葡萄酒进行品尝后对其分类指标打分然后求和得到其总分从而确定葡萄酒的质量。酿酒葡萄的好坏与所酿葡萄酒的质量有直接的关系葡萄酒和酿酒葡萄检测的理化指标会在一定程度上反映葡萄酒和葡萄的质量文章给出了某一年份一些葡萄酒的评价结果及该年份这些葡萄酒的和酿酒葡萄的成分数据。本文尝试解决以下问题 问题一 由于评酒师对葡萄酒的评分存在主观性需对评酒师的分数进行客观分析分析两组评酒员的评价结果有无显著性差异哪一组结果更可信 问题二葡萄酒的质量离不开原料酿酒葡萄的质量所以酿酒葡萄的理化指标至关重要。需根据酿酒葡萄的理化指标和葡萄酒的质量对这些酿酒葡萄进行分级。 问题三酿酒葡萄与葡萄酒的理化指标之间的联系可能影响着葡萄酒质量所以需建立模型酿酒葡萄与葡萄酒的理化指标之间的联系。 问题四分析酿酒葡萄和葡萄酒的理化指标对葡萄酒质量的影响并论证能否用葡萄和葡萄酒的理化指标来评价葡萄酒的质量能否综合感官指标和理化指标建立模型来评价葡萄酒的质量是问题关键所在。 二、模型假设 1.品酒员打分相互之间没有影响 2.品酒员对样品的给的总分是他对该样品所有方面评分的总和并且该样品的最终得分可认为是10位品酒员打分的平均值 3.题目所给的数据真实可靠 4.酿酒方式及酿酒过程对葡萄酒的质量没有影响 5.不同种类葡萄酒的成份数据值统一标准没有差异 6.所有样品的酿造过程相同。 三、符号说明 n 测试数量 r 测试水平量 A 因素SS 各类数据源的平方和 Df 各类数据相应的自由度 MS 各类的均方值 F 统计量 P 大于F的概率 AS 各组均值对总方差的偏差平方和 ES 各组数据对均值偏差平方和的总和 . 四、问题分析 问题一的分析 我们要根据附件1的数据可知评酒员对红酒27组样品和白酒28组样品进行评分每件样品都进行了两次评分即是有两组评分数据题目要求分析两组评酒员的评分结果有无显著性差异以及那一组数据更加可信对于显著性的判断我们采用单因素方差分析法Analysis Of Variance。对于每件样品评酒员对外观香气口感及其整体评价进行打分每一组的每件样品都有十名品酒员进行评分故求每个品酒员对样品酒的总分之后求出这十名品酒员给的总分的平均分此平均分就是该样品的总分葡萄酒分为白酒和红酒我们对第一组的红酒和第二组的红酒进行方差分析法运用matlab软件中的anova1函数可得出p-value及F值通过分析就可知道那组更加具有显著性。方差是考察数据的波动性的方差小就说明数据比较稳定方差大就是波动性比较大 故通过比较两组数据的方差大小就知道那一组数据更加可信。 问题二的分析 根据问题一可知第二组的评酒员的评酒分数更可靠所以选择第二组葡萄酒的数据进行处理。从评酒员对葡萄酒评分的分数入手用逆向思维反推葡萄的等级。首先将第一问中第二组的白葡萄酒和红葡萄酒的每一种样品的评分进行分等级依次分为四个等级,然后用EXCEL将每个等级的样品酒的理化指标画成曲线图忽略异常数据点观察各等级间的理化指标有没有相关性如果有相关性找出影响葡萄酒质量的相关因素跟酿酒葡萄的理化指标数据进行对照得出酿酒葡萄的分级依据。 问题三的分析结合葡萄酒和酿酒葡萄的理化指标作出每两个理化指标间的直观趋势图观察两者之间的大体关系根据曲线拟合的方法得出两者间的函数关系。 问题四的分析 由第三问求解可得出酿酒葡萄与葡萄酒的理化指标之间是呈线性相关的因此我们要证明酿酒葡萄和葡萄酒的理化指标对葡萄酒质量是有影响的只需证明酿酒葡萄的理化指标对葡萄酒质量是有影响。在综合附录3给出的芬香物质用MABTLE拟合出理化指标和感官指标的关系图呈相关性所以要综合葡萄酒的理化指标和感官指标一起来评价葡萄酒的质量。 五、模型建立与求解 问题一的模型建立和求解 对于两组评酒员的评价结果有无显著性差异我们采用单因素方差分析法去解决。 单因素方差分析法: 只考虑一个因素A 对所关心的指标的影响A 取几个水平在每个水平上作若干个试验试验过程中除A 外其它影响指标的因素都保持不变只有随机因素存在),我们的任务是从试验结果推断因素A 对指标有无显著影响即当A 取不同水平时指标有无显著差别。A 取某个水平下的指标视为随机变量,判断A 取不同水平时指标有无显著差别相当于检验若干总体的均值是否相等。 设 A取n 个水平nAAAA,...,,321,在水平iA下总体ix 服从正态分步N(iu,2),i=1,...,n,这里u,2未知iu可以互不相同但假定ix有相同的方差又设在每个水平iA下作了in次独立试验即从中抽取容量为in的样本记作,,...,1,jijnjxijx服从N(iu,2)i=1,…,n,j=1,…, in且且相互独立。将这些数据列成表1单因素试验数据表的形式。 表 单因素试验数据表 分值 第一组红酒 第二组红酒 第一组白酒 第二组白酒 A1 X12 X21 X12 X21 A2 X21 X22 X21 X22 ..... A3 X31 X32 X31 X32 根据上述理论首先我们对数据进行处理附件1里有四组数据红葡萄酒和白葡萄酒各有两组数据每种酒都有两组人进行对其进行评分每件样品酒有十名品酒员号打分采用单因素方差分析法我们将样品酒的总分作为唯一考虑的因素A运用matlab软件编程求出品酒员对每组样品打的总分的平均分.
小悟空harrywang
018年全国研究生数学建模竞赛题目
2018年全国研究生数学建模竞赛题目:链接:
A题:跳台跳水体型校正系数的建模分析
论文1 论文2 论文3 论文4 论文5 论文6
B题: 光传送网建模与价值评估
论文1 论文2 论文3 论文4 论文5 论文6 论文7
C题: 对恐怖袭击事件记录数据的量化分析
论文1 论文2 论文3 论文4 论文5 论文6 论文7
D题: 基于卫星高度计海面高度异常资料获取潮汐调和常数方法及应用
论文1 论文2 论文3 论文4 论文5 论文6 论文7 论文8
E题: 多无人机对组网雷达的协同干扰
论文1 论文2 论文3 论文4 论文5
F题: 增设卫星厅的登机口分配问题
论文1 论文2 论文3 论文4 论文5 论文6
莮Renissodifficult
论文(答卷)用白色A4纸,上下左右各留出厘米的页边距。论文题目用三号黑体字、一级标题用四号黑体字,并居中。论文中其它汉字一律采用小四号黑色宋体字,行距用单倍行距。论文从正文开始编写页码,页码必须位于每页页脚中部,用阿拉伯数字从“1”开始连续编号引用别人的成果或其他公开的资料(包括网上查到的资料) 必须按照规定的参考文献的表述方式在正文引用处和参考文献中均明确列出。正文引用处用方括号标示参考文献的编号,如[1][3]等;引用书籍还必须指出页码。参考文献按正文中的引用次序列出,其中书籍的表述方式为: [编号] 作者,书名,出版地:出版社,出版年。 参考文献中期刊杂志论文的表述方式为: [编号] 作者,论文名,杂志名,卷期号:起止页码,出版年。 参考文献中网上资源的表述方式为: [编号] 作者,资源标题,网址,访问时间(年月日)。
我去年就参加了全国大学生数学建模竞赛,这些资料是我去年暑假整理的论文模板,如果资料不足的话,再联系我………………全国大学生数学建模竞赛论文格式规范 本科组参赛
如何用matlab求任意给定一长度的数组中0和1的个数? 这个问题可以通过下列几步来求解: 1,根据题意,创建一个自定义函数,如mfunc(X) 2,使用fin
经过对举报邮件内容的核实以及查重
论文(答卷)用白色A4纸,上下左右各留出2.5厘米的页边距。论文题目用三号黑体字、一级标题用四号黑体字,并居中。论文中其它汉字一律采用小四号黑色宋体字,行距用单
数模相当纠结啊