• 回答数

    4

  • 浏览数

    155

3未闻花名3
首页 > 学术期刊 > 以数学教学为主题的论文数学史

4个回答 默认排序
  • 默认排序
  • 按时间排序

家D玫瑰

已采纳

数学史是研究数学科学发生发展及其规律的科学,简单地说就是研究数学的历史。下文是我为大家整理的关于大学数学史论文的范文,欢迎大家阅读参考!

数学史的教育功能

摘要数学史作为数学学科中的一部分,它不仅揭示了数学知识发展的来源,也揭示了数学学科对于人们发展科学文化知识的巨大作用。数学史的教学已经成为了目前学校教育工作中的一部分,利用数学史的教学可以引导学生们提高对数学学科学习的兴趣,培养创新思维,从了解数学史的根源开始,主动发现数学学科中的奥秘。针对这一系列问题,本文从四大方面分析了数学史对于数学教育工作中的功能体现,从而引起数学教育工作者的高度重视。

关键词数学史教育功能创新思维功能体现

1 数学史的教育功能之一 ——提高学生们学习数学的兴趣

兴趣是最好的老师,有了兴趣学生才会对数学冰冷的美丽产生出火热的激情。然而,为了提高学生们学习数学的兴趣,不仅仅是鼓励和题海战术这么简单,我们应该采取引导与教育相结合的方式,青少年时期正是疑问多、想法多的阶段,我们应该抓住学生们的这一特点,从解除疑问的角度来引导学生们接受和爱好数学的学习。让学生们在了解数学史的基础上,深刻记忆数学定义、定理的模型与应用。

例如:数学老师在课堂上讲授无理数的概念时,若只是将无理数的概念硬性地传授给学生,学生们似乎已经记住了无理数的特征,也能够正确判断哪些数是无理数,哪些数不是无理数,然而,这只是课堂中的短暂记忆,无法给学生们留下深刻的印象,无法在学生们的脑子里留下长久的烙印。因此,我们可以从介绍无理数的历史发展入手,将生动的无理数来源的历史背景讲授给学生们,引起学生们学习无理数的兴趣,加深对这一知识点的记忆。

2 数学史的教育功能之二——培养学生们的数学应用意识

数学的主要功能是应用科学,数学是一种工具,是所有学科中最具前瞻性和科学性的自然科学,从数学知识的本身来看是十分枯燥乏味的,表面来看,学生们在课堂中所接受的是已经由大量科学家所发现和证明了的科学结晶,这些结果的产生是具有强大科学依据的,每一个结晶诞生的背后都有一个久远的历史故事,它不仅验证了科学的可靠性,同时也说明了世界奥秘的可知性。二十一世纪的青少年是与新时代接轨的一代,在学习的过程中只是了解学科的表面是不够的,我们要从数学史的教育抓起,深入探讨数学学科的伟大,从根本上培养学生们的数学应用意识,加大学习数学知识的深度与广度。

例如:我国古代名著 《孙子算经》上有这样一道题:今有鸡兔同笼,从上面看有三十五头,从下面看有九十四足,问笼子里鸡有几只?兔有几只?这道题对学生来说是十分有趣的,既让他们掌握了方程的基本思想,又让他们感觉到学习的新知识的价值所在;

又例如:在《九章算术》中记载了一道有趣的数学题:有一个边长为一丈的正方形水池,在池中央长着一根芦苇,芦苇露出水面1尺,若将芦苇拉到池边中点处,芦苇的顶端恰好到达水面。问水有多深?芦苇有多长?这是一道作为《探索勾股定理》的习题,通过练习,同学们可以在熟练应用勾股定理的同时,体会到勾股定理在实际问题中的应用。

再例如:公元三世纪我国数学家赵爽证明了勾股定理的弦图。老师在课堂上对于这种验证方法的介绍,可以通过数学知识重组再创造,分析当年数学家赵爽的探索过程,使其证明思路逐渐展现在如今的课堂中,帮助学生们理解与掌握勾股定理的内容与应用。

从以上例子中可以看出,数学史的诸多命题历史悠久,具有说服力和兴趣性,我们在利用数学史知识讲授数学课程的时候,既能够为学生们介绍大量的数学历史故事,让学生们深入了解数学中各种定理、模型的来源,加深对其的记忆,又能够扩大学生们的知识面,让学生们了解到数学(下转第189页)(上接第139页)学科的科学性和前瞻性,从认识历史、认识科学家、认识世界的角度学习科学文化知识是现如今加强学生们素质教育的关键。

3 数学史的教育功能之三——提高学生们的数学素养

对于任何一门学科的学习,都应该拥有这门学科的学习精神,数学是一门体现人类文明发展史的学科,它融汇了人类智慧的结晶,在历史悠久的中国,有着成千上万的科学家前仆后继,为数学学科的发展作出了卓越的贡献。数学史作为数学学科中的一部分,是如今提高学生们的素质、普及数学科学知识、增强个人科学素养的关键学科。老师应该在传授数学知识的同时,将数学的发展、科学家的成就、每一项成果的来之不易一并传授给学生们,让学生们认识到数学知识的可贵、数学知识的力量、数学知识的魅力。例如:在浙教版《义务教育课程标准实验教科书-数学》的六册书的阅读材料中,介绍了法国的笛卡尔、费马;中国的杨辉;德国的卢道夫等不少历史上的数学家及其重要成果。提高了学生们的学习兴趣,扩大了学生们的知识面,从实际案例中启发学生们学习科学文化知识的重要性。从而提高了学生们的数学素养。

4 数学史的教育功能之四——培养学生们对世界观的正确认知

从数学悠久的历史来看,中国从古至今涌现出了一批优秀的数学家,刘徽、祖冲之、祖咂、杨辉、秦九韶、李冶、朱世杰等,他们的数学成就流传至今,为中国的科学事业奠定了坚实的基础,为后代人对认识世界、改造世界的观念提供了强有力的科学依据。数学是一门自然科学,是上千万科学家智慧的结晶,是科学的真理体现,是对大千世界正确的认识,它是客观存在的科学,是唯物主义的认证。因此,作为数学教育工作者,有责任、有义务在传授知识的同时,培养学生们正确的世界观、人生观、价值观,相信科学,杜绝唯心主义,摆脱迷信思想,利用数学史的介绍勉励学生们对科学文化知识的正确认知,对世界观的正确理解。

总之,数学史在数学教学中的渗透,从提高学生们学习数学的兴趣,培养学生们的数学应用意识,提高学生们的数学素养,培养学生们对世界观的正确认知这四个方面来看是十分重要的。将数学的抽象运算方法融入到数学史的介绍当中,开阔学生们的思路,增强学生们科学知识结构的形成,是目前提高青少年素质教育的关键。我们要加大力度完善数学教学的模式,增加数学史教学的课程安排,有效实施文化教育与素质教育的适当结合,从而提高数学教学的整体质量。

参考文献

[1]范良火.义务教育课程标准实验教科书.数学(七年级上册~九年级下册)浙江教育出版社,2005.

[2]全日制义务教育数学课程标准解读(实验稿).北京师范大学出版社,2008.

[3]李正银.数学史与数学教育[J].海南师范学院学报,(3):98-10.

[4]王鹏飞.尝试错误数学教法[J].中学数学参考,1998(7).

[5]高慧明.在暴露思维过程中培养探究能力[J].数学教学通讯,2004(7).

[6]叶莉.浅谈小学数学课堂教学总结的价值和方法.理工,2012(3).

数学史在大学数学教学中的意义与价值

摘 要: 如今,越来越多的教育工作者对数学史教育在数学教学中的多方面作用给予了充分认可。本文结合大学数学教学的特点,着重探讨了数学史在大学数学教学中的意义与价值。

关键词: 数学史 高等数学 教学改革

1.数学史

数学史是研究数学概念、数学方法和数学思想的起源与发展,以及其与社会政治、经济和一般文化的联系的一门科学,蕴涵了丰富的数学思想的历史。它不仅追溯数学内容、思想和方法的演变、发展过程,而且探索影响这种过程的各种因素,以及历史上数学科学的发展对人类文明所带来的影响。数学的发展绝不是一帆风顺的,数学的发展在不同的历史阶段,受到政治、宗教等各种社会因素的干扰。历史上无理量的发现,微积分和非欧几何的创立,乃至费马大定理的证明,等等,无一不是数学家们经历了曲折艰难最终探索出来的。因此,数学史研究对象不仅包括具体的数学内容,而且涉及历史学、哲学、文化学、宗教等社会科学与人文科学内容,是一门交叉性学科。

2.数学史在大学数学教学中的意义与价值

我国的数学教学一直注重形式化的演绎数学思维的训练,而忽视了培养学生对数学作为一门科学的思想体系、文化内涵和美学价值的认识。但由于受传统教学课时和内容上的安排的影响,大学数学的教学往往存在课时少,内容多的矛盾。广大教师为了完成教学任务,达到“会考试”的效果,往往在课堂上只注重数学知识的传授,而忽视了数学的思想性和趣味性。目前数学史的教育价值也早已被一些学者所认识。2005年在中国召开了“第一届数学史与数学教育会议”,由此看出,充分发掘数学史在数学教学中的作用越来越受到重视。要发展数学史教育首先要提高人们对数学史教育重要性的认识,虽然目前学术界对数学史教育在数学教学的功效引起一定的重视,但这并不够。数学并不是一些枯燥定理的堆砌,而是人类文明、人类文化高度发展的结晶。

数学家庞加莱说:“若欲预见数学的将来,正确的方法是研究它的历史和现状。”数学史是人类文明给后人留下的路标,具有独特的教育功能。数学史的学习在大学数学教学中的意义与价值主要体现在以下几个方面。

(1)数学史是数学文化的最佳载体

传统的数学教学一般只涉及数学的两个层面:数学的概念、命题,数学的思想和方法。现如今,数学作为一种文化现象,早已是常识,那么,我们就应该用较为宽泛的眼光来看数学或数学文化。数学作为人类创造的文化之一,它并不是超文化的。数学课程应适当反映数学的历史、应用和发展趋势。数学文化除了数学知识本身,还包括数学对推动社会发展的作用,数学的社会需求,社会发展对数学发展的推动作用,数学科学的思想体系,数学的美学价值,数学家的创新精神,等等。数学史正是数学文化教育的最佳载体。

(2)数学史是激发兴趣的有效途径

几乎所有学科都强调激发学生学习兴趣的重要性,而数学学科尤为突出,在著名数学家成才规律的探索中,中外学者不约而同地将“对数学浓厚的兴趣”列为第一位要素。在教学过程中,要善于激发学生对数学学科的兴趣,正如爱因斯坦所言:“兴趣是最好的老师。”大学阶段的学生无论是逻辑思维能力还是自控能力都已经基本发展成熟,且大学阶段的数学知识内容已经非常注重体系的严密性和完整性,学习方式也从中学时期的“要我学”变成“我要学”,学习兴趣显得尤为重要。

纵观数学发展史,许多数学名家并非一开始就是从事数学研究的,很多人是因偶然的机会而对数学产生了兴趣,才走上了专业化发展道路。解析几何的创始人笛卡尔,从小游手好闲,偶遇一次街头数学问题悬赏解答,强烈的兴趣使他对数学入了迷,那年他已经近二十岁了。

数学史上的许多经典问题,仍然吸引了一代又一代数学学习者投入其中,如欧拉研究过的七桥问题,我国的七巧板游戏等,都是激发学生学习兴趣的良好素材,在教学中要有意识地发掘其教育价值。

(3)数学史是理解数学的必由之路

数学课程通常给出的是一个系统的逻辑论述,好像从这一结论到那一个定理是很自然的事情,其实历史的发展并非一帆风顺,通过数学史的学习可以使同学们认识到,一个学科的发展是从点滴积累开始的,有的甚至需要几百年时间。比如我们熟悉的四色原理从产生到最终解决花了三百多年,在解决问题过程中,衍生出了众多应用数学的分支,从不同侧面影响着社会生活。

从数学史看,数学成果的流传主要是数学思想方法的流传,所以我们在学习知识的过程中,只有了解数学研究的历史背景,分析前人的方法,才能透过现象看本质,得到有益的启示,激发出思想的火花,并真正学会“像数学家那样思考”。

(4)数学史是思想教育的良好素材

数学史在课本中的反映是经过提炼的,自然淡化了发展中艰苦漫长的历程。通过数学史的学习,同学们会获得学习的勇气,不会因为学习中的挫折而沮丧。中外数学家刻苦钻研,严谨创新和为了科学事业而勇于献身的例子比比皆是,在解决数学史上的三大危机时,许多数学家甚至为此付出了生命,这些都是极好的思想教育的材料。

欧拉终身为数学奋斗,所有的领域都留下欧拉研究的痕迹,长期的劳累使他双目失明,在此以后的17年,仍忘我地献身于数学研究。牛顿出身于农民家庭,1661年考入剑桥大学。1665年,伦敦地区流行鼠疫,剑桥大学暂时关闭。牛顿回到了家乡,在乡村幽居了两年,终日思考各种问题、探索大自然的奥秘。他平生的三大发明――微积分、万有引力、光谱分析都萌发于此。后来牛顿在追忆这段峥嵘的青春岁月时,深有感触地说:“我的成功当归功于精力的探索。”“没有大胆的猜想就做不出伟大的发现。”学生听了数学家的事迹,必然会备受鼓舞,从而认识到只有经过自己奋斗,才能取得成就。通过这些数学史实和事例能够帮助学生树立超越世界数学先进水平的胆识,培养学生的科学态度和优良品质。

3.结语

数学史是人类的认识史、发明史和创造史,其中蕴涵着可供后人借鉴的巨大思想财富,广大教育工作者已经认识到它的重要作用。数学史可以将逻辑推理还原为合情推理,将逻辑演绎追溯到归纳演绎,通过挖掘历史上数学家解决问题的真谛学生不仅可以学到具体的现成的数学知识,而且可以学到“科学的方法”,更深刻地领略数学文化。在大学数学教学中融入数学史对强化课堂效果是一种很行之有效的做法,会起到良好的作用。最后引用19世纪英国数学家格莱舍的一句话作为结语:“任何企图将一种科目和它的历史割裂开来,我确信,没有哪一种科目比数学的损失更大。”

参考文献

[1]靳玉乐.现代教育学[M].四川教育出版社,2006.

[2]张奠宙,李士,李俊.数学教育学导论[M].高等教育出版社,2003.

[3]杨泰良.以史为鉴 注重反思[J].数学通报..

[4].数学家谈数学本质[M].北京大学出版社,1989.

[5]李心灿.微积分的创立者及其先驱[M].高等教育出版社,2002.

249 评论

飛8469682648

数学史是研究数学概念、数学方法和数学思想的起源与发展,及其与社会政治、经济和一般文化的联系的一门科学。数学的发展决不是一帆风顺的,数学史是数学家们克服困难和战胜危机的斗争的记录,是蕴涵了丰富的数学思想的历史。无理量的发现,微积分和非欧几何的创立,乃至费马大定理的证明等等,无一不是经历了曲折艰难最终探索出来的。这样的例子在数学史上不胜枚举。在此奋斗的过程中所蕴涵的深刻的哲理,也不是通过学习通常的教科书中被“包装”过的定理就能轻而易举得到的。有一位学者曾收集了九百余条关于数学本质的言论,著成《数学家谈数学本质》一书。书中的各家众说纷纭,观点各不相同,但数学家们都认为对数学史的了解,包括对一些杰出的数学家的生平与事迹的了解会有助于吸收各种不同的数学经验,理解各种不同的数学思想观点,探求数学的本质。由此可见,数学史并不是单纯的数学成就的编年记录。 那么是不是只有研究数学的人才需要了解数学史呢?或者说了解了数学史只是对学习和研究数学的人才有好处呢? 数学科学作为一种文化,不仅是整个人类文化的重要组成部分,而且始终是推进人类文化的重要力量。它与其他很多学科都关系密切,甚至是很多学科的基础和生长点,对人类文明的发展起着巨大的作用。从数学史上看,数学和天文学一直都关系密切,海王星的发现过程就是一个很好的例子;它与物理学也是密不可分的,牛顿、笛卡儿等人既是著名的数学家也是著名的物理学家。对于每一个希望了解整个人类文明史的人来说,数学史是必读的篇章。著名的哲学家在批评以往思想史家们忽视数学的地位时,曾打了一个比喻来说明数学是人类思想史的要素之一。他说:“假如有人说:编著一部思想史而不深刻研究每一个时代的数学概念,就等于是在《哈姆雷特》这一剧本中去掉了哈姆雷特这一角色,这一说法也许太过分了,我不愿说的这样过火。但这样做却肯定地等于是把奥菲莉这一角色去掉了。奥菲莉对整个剧情来说,是非常重要的[2]。”他仅是就思想史而言。实际上我们可以说:不了解数学史,就不可能全面了解整个人类文明史。 研究数学史对数学自身的发展所起的作用也是不可估量的。众所周知,2000年荣获首届国家最高科学技术奖的吴文俊院士是数学机械化研究的倡导者。他在示性类和示嵌类研究中取得了根本重要性的结果,在多种问题中被广泛应用。他提出的用计算机证明几何定理的方法,与常用的基于数理逻辑的方法根本不同,显现了无比的优越性,改变了国际上自动推理研究的面貌,被称为自动推论领域的先驱性工作,并因此获得Herbrand自动推论杰出成就奖。吴文俊教授在分析所取得的成绩时指出,“我们是遵循我国古代机械化数学的启示,把几何代数化,把非机械化的几何定理证明转化为多项式方程的处理,从而实现了几何定理的机器证明。”像这样认真研究数学思想将之用以指导数学研究并取得重大成绩的例子不胜枚举。即使对于高等数学的教学来说,数学史所起的作用也是不可低估的。 如果将整个数学比作一棵大树,那么初等数学是树根,名目繁多的数学分支是树枝,而树干的主要部分就是微积分。由此体现出了微积分的重要性以及它和各科之间的关系。因此,《微积分》总是作为高等院校理工类的一门重要的必修课。一般制订为两学期教学计划。它包含了微分学,积分学,空间解析几何,无穷级数和常微分方程的基础知识。我国的数学教学一直注重形式化的演绎数学思维的训练,而忽视了培养学生对数学作为一门科学的思想体系、文化内涵和美学价值的认识。并由于受传统教学课时和内容上的安排的影响,高等数学的教学往往存在课时少,内容多的矛盾。所以,广大教师为了完成教学任务,达到“会考试”的效果,往往在课堂上只注意进行数学知识的传授,忽视了数学的思想性和趣味性。当代著名数学家Courant曾指出:“微积分,或者数学分析,是人类思维的伟大成果之一。它处于自然科学与人文科学之间的地位,使它成为高等教育的一种特别有效的工具。遗憾的是,微积分的教学方法有时流于机械,不能体现出这门学科乃是一种撼人心灵的智力奋斗的结晶。” 作为高等数学的教师,我们也有过这样的经验,虽然仔细备课全面讲解下来,却发现教学效果并不理想,对一些抽象的概念难以理解,普遍反映听不懂。长此以往,个别同学甚至失去了能学好高等数学的信心,对学习失去了兴趣。经过几代人对高等数学教学方法的不断研究,数学史在高等数学教学中的所起的作用已被大家所认可。那些认为在教学中讲述数学史是华而不实的多余之举,是在浪费时间,任为应该多把“宝贵的时间”用在习题训练上的思想已经成为过去。在教师教学里,引进与主题相关的数学史题材,对学生的学习会有很正面的意义,不仅能调动了同学们的学习热情,尤其能协助学生将抽象观念具体化。因为不论在科技应用层面或思想突破方面,数学重要概念的演进确有其实用面的意义,因此具有启发性的数学史方面的教学实属必要。 基于以上的认识,近来,关于这方面已经取得了不少的研究成果。国内,国际上的交流活动也日益频繁。在一些学校已经将数学史设为一门选修课。系统的介绍数学的起源与发展。这对高等数学的教学起到了很好的辅助作用。但是由于这方面人材的短缺,也有一些学校并不能开出这门选修课。再者作为一门单独的选修课,它要系统的体现出数学的起源与发展,并不能做到与高等数学所授内容适时匹配。所以,这就要求我们广大教授高等数学的教师在平时高等数学的教学中就应该做到与数学史的有机结合。 怎样才能在繁重的教学任务和紧张的课堂教学时间里将数学知识的传授和数学史的介绍有机的结合起来呢?怎样才能在有限的课堂时间里既做到保证了教学任务的完成又做到通过数学史的介绍提升了大家的学习兴趣,传递了数学思想呢? 综观历史发展的长河,重要思想的诞生离不开重要的人物。对数学的发展也是如此。德国著名数学家说过:“如果不知道各位前辈所建立和发展的概念,方法和成果,我们就不能理解近50年数学的目标,也不能理解它的成就。”由此可见,研究数学人物在数学史的研究中的重要性。 在高等数学的教材中我们会接触到一些根本重要性的定理和概念。如“牛顿——莱布尼兹定理”、“拉格朗日中值定理”、“富里叶三角级数等等。”这些定理和概念的学习不仅对于学习高等数学知识来说是重要的,并且对于提高数学素质也是及其必要的。它们是微积分的精华,是高等数学教学的必讲内容。这些定理和概念大都是以重要数学人物的名字命名的。他们也恰恰是微积分的创立者和先驱们。这就提醒了广大教师,在课堂教学过程中适当的加入先驱们的生平和业绩的介绍就不仅能在有限的时间里完成我们的教学任务还可以起到提升大家的学习兴趣,传递了数学思想的作用。对我们的课堂教学起到了画龙点睛的作用。 牛顿[3](1642~1727)是英国数学家、物理学家、天文学家。他出身于农民家庭。1661年考入剑桥大学三一学院。1665年,伦敦地区流行鼠疫,剑桥大学暂时关闭。牛顿回到了家乡,在乡村幽居了两年,终日思考各种问题、探索大自然的奥秘。他平生的三大发明,微积分,万有引力、光谱分析都萌发于此。后来牛顿在追忆这段峥嵘的青春岁月时,深有感触地说:“我的成功当归功于精力的探索。”“没有大胆的猜想就做不出伟大的发现。”牛顿的微积分理论主要体现在《运用无穷多项方程的分析学》、《流数术和无穷级数》、《求曲边形的面积》三部论著里。在《运用无穷多项方程的分析学》这一著作里,他给出了求瞬时变化率的普遍方法,阐明了求变化率和求面积是两个互逆问题,从而揭示了微分与积分的联系,即沿用至今的所谓微积分的基本定理。在《流数术和无穷级数》里,牛顿对他的微积分理论作出了更加广泛而深入的说明。例如,他改变了过去静止的观点,认为变量是由点、线、面连续运动而产生的。而在《求曲边形的面积》这一篇研究可积曲线的经典文献里,牛顿试图排除由“无穷小”造成的混乱局面。把求极限的思想方法作为微积分的基础在这里已出露端倪。牛顿还曾说过:“如果我之所见比笛卡儿等人要远一点,那只是因为我是站在巨人肩上的缘故。” 莱布尼兹[3](1646~1746)是德国数学家、自然主义哲学家、自然科学家。他的第一篇微分学论文《一种求极大极小和切线的新方法,它也适用于分式和无理量,以及这种新方法的奇妙类型的计算》是历史上最早公开发表的关于微分学的文献。他也是历史上最伟大的符号学家。他曾说:“要发明,就得挑选恰当的符号,要做到这一点,就要用包义简明的少量符号来表达或比较忠实地描绘事物的内在本质,从而最大限度减少人的思维劳动。”例如,dx、dy、∫、log等等,都是他创立的。他的优越的符号为以后分析学的发展带来了极大的方便。 以上只是我们在浩瀚的数学人物的海洋中,采摘的两颗最耀眼的明珠,对他们的生平与业绩只进行了一些简介。这些内容的介绍在课堂上占用不了多少“宝贵”的时间,然而通过这些,使我们活生生的看到了数学的发展是曲折的,一个重要概念的产生是离不开实际问题的,只有对实际问题进行精力的思索,就可以找出问题的本质,抽象出数学思想。还有作者在解决实际问题时频繁运用的“无穷小”、“流数”等概念,使我们体会到正确、熟练掌握基本概念对于理解数学思想的重要性。对于平时我们视为枯燥的数学符号,却正是它是最直接、最简练表达数学思维的工具。并且从先驱们的言行里我们能感受到科学家的治学态度和对知识的执着追求,这往往能激发大家刻苦钻研,勇往直前的奋斗精神。 最后,我们相信,作为高等数学的教师,我们的目的不仅是为大家传授数学知识,更重要的是使大家在学习数学知识的过程中掌握数学思想,提高大家的数学素养。将数学史与数学知识的传授有机地结合起来就能很好地达到以上的目的。经过多年的教学实践,在高等数学的教学中适时地加入数学人物的介绍就能对高等数学的教学起到很好的辅助作用。我们相信,对于高等数学的教师,如果熟悉了数学人物的生平、业绩、治学态度、治学方法、趣闻轶事等等,对高等数学的教学来说有百利而无一害,一定会把高等数学讲授得更生动、有趣和富有哲理。而对于很多正在学习高等数学的学生,一旦了解了这些数坛前辈们的学术成就和道德风范,也必将从中受到鼓舞,继而提高学习兴趣,做出更大的成绩。

299 评论

秉诚装饰

数学的发展史世界数学发展史 数学,起源于人类早期的生产活动,为中国古代六艺之一,亦被古希腊学者视为哲学之起点。数学的希腊语Μαθηματικ? mathematikós)意思是“学问的基础”,源于ματθημα(máthema)(“科学,知识,学问”)。 数学的演进大约可以看成是抽象化的持续发展,或是题材的延展。第一个被抽象化的概念大概是数字,其对两个苹果及两个橘子之间有某样相同事物的认知是人类思想的一大突破。 除了认知到如何去数实际物质的数量,史前的人类亦了解如何去数抽象物质的数量,如时间-日、季节和年。算术(加减乘除)也自然而然地产生了。古代的石碑亦证实了当时已有几何的知识。 更进一步则需要写作或其他可记录数字的系统,如符木或于印加帝国内用来储存数据的奇普。历史上曾有过许多且分歧的记数系统。 从历史时代的一开始,数学内的主要原理是为了做税务和贸易等相关多计算,为了了解数字间的关系,为了测量土地,以及为了预测天文事件而形成的。这些需要可以简单地被概括为数学对数量、结构、空间及时间方面的研究。 到了16世纪,算术、初等代数、以及三角学等初等数学已大体完备。17世纪变量概念的产生使人们开始研究变化中的量与量的互相关系和图形间的互相变换。在研究经典力学的过程中,微积分的方法被发明。随着自然科学和技术的进一步发展,为研究数学基础而产生的集合论和数理逻辑等也开始慢慢发展。 数学从古至今便一直不断地延展,且与科学有丰富的相互作用,并使两者都得到好处。数学在历史上有着许多的发现,并且直至今日都还不断地发现中。依据Mikhail B. Sevryuk于美国数学会通报2006年1月的期刊中所说,“存在于数学评论数据库中论文和书籍的数量自1940年(数学评论的创刊年份)现已超过了一百九十万份,而且每年还增加超过七万五千份的细目。此一学海的绝大部分为新的数学定理及其证明。”就这些了!O(∩_∩)O~

196 评论

我是乾宝宝

摘要:本文通过对高中生的调查研究发现当前高中生的数学观存在不够全面、不够准确、不够科学的现象,为此提出了通过数学史来影响高中生数学观之假设.经过为期一年多的实验和探索,发现数学史对改变学生的数学观能产生积极的影响,对学生的学习兴趣和学习效果也有明显的作用.因此积极倡导应用数学史来为数学教学服务.关键词:数学观;数学史;对数;复数教学中,经常有学生提出这样的问题:“老师,我怎么对数学就是没兴趣?”“老师,学了这些概念、定理和公式到底将来有什么用?”更有甚者问到:“老师,你为什么要逼我学数学,我将来也不搞数学研究。”……的确,当前不少学生因为想不通数学就认为数学是一门枯燥乏味、难以学习的学科;因为不理解数学就认为数学是一门概念和规则从天而降的游戏;因为没有体会到数学的价值就认为数学是没有实际意义的学科,学数学只是为了应付考试;因为没有领悟数学的思想和精神就认为“概念我会背,公式我会用,定理我会证,题目我会做”是学好数学的最高标准……这些现象表明,学生思想深处的问题已经不能等闲视之了,为此笔者开展了相关研究。一、对高中生数学观的现状分析高中生的数学观主要是指学生关于数学本身的信念,关于数学学习的信念和关于自身的信念。[1]由于个体具有不同的知识背景,或接受了不同哲学观念,或受不同教师的影响,再加上自己的实践经验,因此在数学学习过程中便逐渐产生和形成各自不同的认识和体会。(1)对数学本身的信念学生在数学学习过程中,对数学本身的感受和认识不尽相同。通过对614名高中生的调查发现,约的人“从未想过数学是什么”;的人“曾经想过数学是什么,但不清楚是什么”;的人“曾经听老师说过数学是什么”;的人“曾经想过数学是什么,所以知道是什么”。但在他们眼中,数学主要是与数字、图形有关的问题;是由概念、公式、定理、法则、符号组成的一门学科;是技巧性和方法性很强但又不易把握的一门学科;是关于计算、解题的一门学科;是讨论空间形式与其数量关系的学科……(2)对数学学习的信念Davis等人的调查(李士锜2001,217-222)表明:学生在学习过程中,对数学学习持有不同观点和看法。笔者调查发现高中生的数学学习信念主要是:①学数学就是要会做题目;②学数学就是为了在考试中取得好成绩;③学数学主要靠记忆、模仿、套公式;④学数学就是要培养一个人的计算能力、思维能力;立体几何主要培养一个人的逻辑推理能力和空间想象能力;⑤学数学就是学会用所学的数学知识解决实际生活中的问题。(3)对自身学习数学的信念学生对自身学习数学的信念差异明显,在调查中发现:①信心十足──有人对数学充满浓厚的兴趣,认为自己在数学方面有一定的天赋和优势,有信心、有能力学好数学。②信心平淡──有人对数学的兴趣一般,认为自己在数学方面没有多少天赋和优势,但是只要自己勤奋努力,刻苦钻研,还是能够达到基本要求的。③信心缺乏──有人对数学不感兴趣,认为自己根本没有学习数学的天赋,没有学好数学的能力。他们经常说自己从小学到现在数学都一直很差,由此来表明自己是学不好数学的。(4)数学观的类型根据调查分析,高中生的数学观不妨可归纳为以下几种:①动态的数学观。在学生眼中,数学是不断变化、发展过程中的知识,从而可能会出现不足和错误,只有通过不断地尝试、改正和改进才会逐渐完善。所以学习数学也是一个循序渐进,不断完善的过程。对自己的困惑和错误能够宽容,同时也知道只有采取积极的态度才会学好数学。②静态绝对主义数学观。他们把数学知识看成自古有之、千年不变的、不容置疑的真理的集合,是一个高度严密、极端抽象的知识体系。因此,他们多强调接受和记忆,模仿和训练,提倡熟能生巧;或认为自己的记忆能力不行,抽象能力又较差,所以数学学习必然困难等想法。③工具主义的数学观。他们认为学数学就是学会处理和解决各类(数学)问题的方法和技巧。所以他们比较重视做应用题,提倡将数学与生活紧密结合,也比较注意积累与数学有关的素材。④文化主义数学观。他们认为数学是与社会性质、阶级意识、民族精神等有一定关系的人类文化,是一种反应人们思维方法、审美意识与文化价值观念的特定的知识体系。当然这种观念在学生中间被发现、被接受的较少。上述各种观念从不同的角度反映了学生对数学本身的理解和领会,对数学价值的认识和判断。当然有些观念对学生的学习起到积极促进作用,而有些则明显会导致消极的负面影响。二、数学观对数学学习的影响分析数学观对学生数学学习究竟有多大的影响,目前尚缺乏确切的数据分析。但从历史材料和当前的研究表明,学生的数学观对其学习方式和学习成果是有相当影响的。Schoenfeld研究表明学生思想观念的发展已经成为数学学习过程中的重要因素,数学信念与数学成绩之间存在明显的相关性。[2]Carlson研究发现一些普遍存在的和持续的数学观念在他们的后继学习中起着决定性作用。[3]郑毓信指出,对于学生来说,观念的重要性在于数学学习不仅是指知识的学习和能力的提高,而且也是一个观点、信念、态度等形成的过程,而后者则将对他们今后的数学学习、乃至整个人生产生重要的影响。[4]事实上,对个体而言,正确的数学观可以统摄个体自身的各种因素,使之积极参与到学习活动之中。如果学生没有一定的数学观念,那么他将是主动精神缺乏、主体意识单薄、只会按指令被动行事的人;如果学生对数学的看法和课程蕴藏的数学观不一致,那么这种观念便可能成为其学习的障碍;如果学生面对数学处境而未能意识到它与数学有关,那么他就不会着手以数学方法来处理;如果学生把数学看作是与社会生产实践活动无关的概念、定理、符号的集合,那么他们在学习过程中就必然会采取一种静止的、被动的态度来接受“数学真理”;如果学生把数学看作是数学家凭空想象、自由创造的产物,那么一种远离社会、脱离客观、极其严密、高度抽象的刻板印象就会占领他们心灵的上空,使他们在学习过程中必然产生一种兴趣不大、意义不大,或难度太大、敬而远之的心理;如果学生把数学看作思维的体操,认为学数学就要反复用脑,那么数学仿佛就变成了度量一个人聪明与否的标尺,当他们解决不了数学问题而产生挫折感时,便会觉得自己智力不如别人而悲观失望;如果学生认为数学学习就是计算、就是解题,那么在他们眼中,数学与算式、公式﹑列式有着不可分割的关系,或者认为数学就是给出一堆数字、然后通过算式找出答案的活动,那么他们对冗长繁杂的计算、无边无际的题海必然会丧失兴趣;如果学生认为数学学习就是模仿智力超群的数学家或数学教师的思维,那么他们常丧失信心,自叹不如。实践证明,学生的数学观的确影响着他们的学习态度、学习兴趣,影响着他们对认知材料的选取,对认知方式的选择,对学习结果的评价。(李士锜2001,211)对群体而言,数学观可以统摄个体之间的各种力量,使之积极参与到社会建构活动之中。学习是一种社会建构活动,存在着师师、生生、师生以及学生与家庭、学生与社会交往的多种形态。在这些活动中,数学观一方面提供活动的基本准则,以此来调节主体的行为方式,决定交往的程度和范围。另一方面,通过个体数学观的沟通、交流和碰撞,主体间逐渐达成共识、形成合力。尽管同一群体中的数学观存在着个体差异,但总有一种主导的数学观在起作用,也正是这样主导观念使得整个班级对数学的学习目标、学习方式、评价标准趋向一致,从而保证学习活动顺利进行。相反,如果学生之间,师生之间,学生与教材之间的数学观经常抵触、矛盾和冲突,缺乏维系的纽带,就会出现“形聚神散”的状态,学习活动就难以真正有效开展。三、数学史影响高中生数学观的实验探索1、实验目的数学史与数学教育的关系早在1876年丹麦著名数学家和数学史家H. G. Zeuthen就强调,“通过数学史的学习,学生不仅获得了一种历史感,而且,通过从新的角度看数学学科,他们将对数学产生更敏锐的理解力和鉴赏力。” [5] 1977年,美国学者McBride和Rollins发现数学史在提高学生数学学习积极性方面是十分有效的[6].Wilson和Chauvot指出,让学生和教师思考“谁做数学”、“数学怎么做”、“数学是什么”等问题,让学生了解数学与其他学科、数学与社会的广泛联系,能拓宽对数学本质的看法[7].英国数学史家J. Fauvel曾总结了20条将数学史运用于数学教学的理由,其中之一是数学史可以改变学生的数学观[8].Breugel指出有关数学概念是怎样发展的历史知识有助于学生理解概念,并向学生指明了数学是人类在特定历史时期所创造的,而不是历来就有、永恒不变的[9].自从1972年“数学史与数学教育之关系国际研究小组”(International Study Group on the Relations between History and Pedagogy of Mathematics,简称HPM)成立以来,欧美更多的学者对数学史与数学教育的关系进行了大量研究。国内也有一些学者再关注数学史与数学教育的关系。但数学史能否改变学生的数学观,从而影响他们的数学学习,国内外有关实证研究仍不多见。本文既受历史的启发,又拟在前人研究成果的基础上,进一步探索数学史对高中生数学观究竟是否产生影响。2、被试的确定实验班:苏高工校区03预科4班;控制班:苏高工校区03预科3班.实验班和控制班是随机选定的.两个班的数学教学由笔者一人承担.3、实验过程⑴前测.对两个班学生数学成绩进行测试,结果见表3 .对两个班学生数学观进行问卷调查(见附录一),结果见表4.⑵实验方法①结合教学内容,介绍相关历史为期一年的教学过程中,在实验班每周至少介绍一项有关的数学史知识,在控制班以解题和练习代之.②选择部分内容,测试对比研究实验一:对数概念学习对数概念时,在两个班采用了不同的教学方式.一是按课本体系组织教学;另外是结合阅读材料《对数与指数发展简史》,解答学生的各种问题,同时也引发了一堂意想不到的对数课[10].课后测试(见附录二)结果统计如下:表1 两个班对数概念学习前、后测试统计表结果表明:学习“对数发展简史”之后,控制班对“对数”学习的难度明显降低,对学习对数的兴趣明显提高,对学习对数的目的更加明确,对对数产生的过程更加清楚.实验二:复数概念在两个班按不同方式组织教学.在控制班按课本内容和体系组织教学.在实验班从复数发展的历程组织教学.调查(见附录三)结果如下:表2 两个班对复数概念学习测试统计表结果表明:实验班对虚数的接受程度高于控制班,把虚数看成是有意义的、真实存在的数的比例大于控制班;将数系看成是动态发展的比例高于控制班.从课后交流中也了解到:历史过程的引入使学生对数的概念的认识更加充分、更加准确、更加深刻.① 复数是按一定方式构造的.复数的产生是从“运算可以无限制地进行的原理”出发,数学内容的组织化、系统化的过程[11].这是人类构造数系的一种方式,也是学生建构数系认知结构的方式之一.② 复数的产生是一个历史发展过程.通过对复数发展过程的剖析,学生认识到复数是几代人共同努力的产物;是一个从无到有、从疑惑到接受、从模糊到清晰、从片面到完善的过程;是随着社会的发展、数学本身的发展而发展的.复数是对实数理论补充和推广后产生的.这是数学本身内部成果积累,引导新的抽象阶段,向新的概括性概念上升的必然结果 [12].③ 虚数不是神秘莫测、绝对权威的.从虚数概念“生长”过程来看,即使是数学家的认识也是逐步深入的.最初人们对虚数持怀疑和不接受的态度.莱布尼兹称虚数是“理想世界的奇异创造”,是“神灵的美妙的庇护者,几乎介于存在和不存在之间的两栖物”[13].欧拉尽管用它,但也认为虚数只存在于想象之中.直到哈密尔顿把复数建立在实数理论基础之上,以及复数在物理学等领域中的应用加强时,人们才开始真正接受虚数.这与学生学习时,缺乏了解它们的实际应用而造成对概念理解和接受上有一定的心理障碍是一致的.但历史的呈现有助于学生打消神秘的心态和权威的心理,减少排斥的情绪.④ 复数产生和发展是人们思想观念的突破.象这样的方程没有实数解在学生心目中已成定论,既然没有实数解,为什么还要讨论它?既然负数不能开平方,又为什么要承认是有意义的?这是一种心理上的矛盾、认知上的冲突,更是观念上的封闭.辩证法告诉我们:世界上没有任何东西是完全不变和无论如何也不发展的.任何数学概念,不管它是怎样被精确定义,也还是要随着科学的发展而发展的.人们对事物的认识总是螺旋式上升的.通过对历史的考察,大家体会到虚数的引入是一种创造,一种发明,一种思维上突破,一种观念上的更新.⑤辨析古人的数学观,促进学生数学观的形成学习立体几何时,让学生讨论欧几里得的数学观.学习解析几何时,让学生讨论笛卡儿的数学观与解析几何的诞生.⑶后测:一学年结束后,再对两个班统一测试和问卷调查(见附录一),结果如下:表3 两个班期初、期末考试成绩统计表注:⑴实验班与控制班期初成绩,所以两个班学生成绩无显著差异.⑵实验班与控制班期末成绩,故不能认为数学史对学生成绩没有影响.表4 两个班期初、期末问卷调查统计表结果表明:数学史的介绍明显提高了实验班学生数学学习兴趣;加强了学生数学学习动机,转变了数学观念;让学生更加了解了数学的本质,也促进了数学成绩的提高.4 结论通过一年的调研发现,数学史一定程度上能改变学生的数学观,从而影响数学学习.① 通过对历史的了解,学生可以缩短心理上接受某一观念的时间.② 通过对历史的分析,学生可以接受数学是人类社会活动的结果.③ 数学史有助于培养学生动态的数学观.④ 数学史有助于培养学生的创造发明观.⑤ 数学史有助于培养学生的数学文化价值观.⑥ 数学史有助于学生了解数学形式化、抽象化、精确化的过程.⑦ 数学史有助于改变教师的数学观从而影响学生的数学观.5几点建议基于本文的研究,我建议:高度重视学生数学观的培养;认真处理数学史与数学教材的关系;组织编写合适的历史材料;认真组织在职教师的数学史培训;大力开展HPM研究.

251 评论

相关问答

  • 小学数学主题教学论文

    小学数学教学实践活动是小学数学教学过程中的一个重要部分,加强小学数学教学实践水平有助于提高小学数学教学效率,进一步增强学生对数学的学习兴趣。下面是我为大家整理的

    余文文214 3人参与回答 2023-12-11
  • 五年级数学小论文以雪为主题

    以雪为话题的作文_哦,是雪的快乐春天,是风的世界;夏天,是花的季节;秋天,是叶的领地;而冬天,是雪的王国!不知为什么,记忆中的童年总会和雪结下不解之缘。我与雪的

    品尝滋味real 3人参与回答 2023-12-07
  • 以爱为主题的教学论文

    幼儿教育是爱的教育,真心、无私地去关爱每个幼儿,是幼儿教师的师德要求;让每一个幼儿学会爱,更是幼教工作者孜孜以求的教育目标。下面是我给大家推荐的有关爱的教育的幼

    美丽苗条龙龙 3人参与回答 2023-12-12
  • 数学史与数学教育论文

    数学史选讲的新课标要求:通过生动、丰富的事例,了解数学发展过程中若干重要事件、重要人物与重要成果,初步了解数学产生与发展的过程,体会数学对人类文明发展的作用,提

    不落的恺1994 4人参与回答 2023-12-06
  • 以数字媒为主题的论文

    数字媒体艺术下动漫设计与制作探析论文 现代科学技术的不断深化发展,为数字动画的设计与制作提供了良好的发展空间与环境。当前我国动漫产业的发展,呈现出不断向上的趋势

    添喜lucklily 2人参与回答 2023-12-07