雯雯闯天涯
引入: 可测量圆轴界面直径d,关心:截面面积 定义设X是随机变量,函数y=g(x),则以随机变量X 作为自变量的函数Y=g(X)也是随机变量,称之为随机变量 的函数。例如: 问题:已知X的概率分布,求Y=g(X)的概率分布。
设X具有以下分布律,试求 的分布律。
解:(矩阵法)
有两种方法:分布函数求导法、公式法(必须单调函数)。 分布函数求导法: 已知连续型随机变量 的概率密度函数 ,和分布函数 ,而 ,求 的概率分布,概率密度 和分布函数 。 ①由分布函数定义,求Y=g(X)分布函数。 其中积分区间就是g(X)≤y的不等式解。 ②对 ,就可解出。
设随机变量 具有概率密度 求随机变量 的概率密度。 解:分布函数求导法 ①第一步: ②第二步: 此时, 是分段函数,因此要对 在分段函数中进行讨论。 因此就有
设随机变量X具有概率密度 求随机变量 的概率密度。 ① 当 是不可能事件,故 当 综上所述,就有: ②
定理:设随机变量X具有概率密度 。 如果 是x的单调可导函数,即恒有 或 则'Y=g(X)'是连续型随机变量,其概率密度为 其中x=h(y)是y=g(x)的反函数, 证明:讨论 情形,此时g(x)单调增加 ,h'(y),h(y)单调增加 当 不可能事件, 当 必然事件, 当 综上所述: 单调递增,就是乘导数 单调递减,就是乘导数的相反数。 注:若 在有限区间[a,b]以外等于零,则只需假设在[a,b]上恒有 ,此时
设随机变量 ,试证明X的线性函数 也服从正态分布。 证明: , 故 的概率密度为: 即: 的 故 最终
推论:正态分布的线性函数,依然服从正态分布。
设电压 ,其中是一个已知的正常数, 相角 是一个随机变量,且有 ,试求电压V的概率密度。 解: 很显然V在区间 上是严格单调的,导函数大于0,因此可以采用公式法。 很显然 那么 又 ,那么 ( 因均匀分布)。
太白小君
毕业论文答辩分组一般是由学院根据老师和学生的研究方向和专业进行分的,合个组之间老师的水平一般都差不多,不可能随机,也不能自己选择。 毕业论文答辩是一种有组织、有
复变函数complex function 自变量与函数值均为复数的函数的总称。一般将单变量复变函数简称为复变函数,而多变量复变函数称为多复变函数,除此之外还
《实变函数》和《复变函数》都是数学系本科的专业课程。简单的说《实变函数》主要研究的是定义域为实数的函数的性质,而《复变函数》主要研究的是定义域为复数的函数的性质
首先看积分曲线是不是闭曲线,不是闭曲线的话只能用最一般的方法做,就是用复数的各种表达式进行转化,如果是闭曲线,就有许多很好的方法。这是要找出函数所有不解析的点,
教育专业毕业论文题目只是需要题目吗?论文呢?