伊可grace
首先看积分曲线是不是闭曲线,不是闭曲线的话只能用最一般的方法做,就是用复数的各种表达式进行转化,如果是闭曲线,就有许多很好的方法。这是要找出函数所有不解析的点,看闭曲线内部有没有不解析的点,如果没有,根据柯西古萨基本定理,这个积分就等于0,如果有不解析的点,先看被积函数的表达式,如果是简单的f(z)dz/(z-z0)形式的可使用柯西积分公式(某些较复杂的形式往往可以通过变形变成这种形式),否则就要用留数定理计算了,这就需要进一步确定奇点的类型(可去,极点,本性),然后根据相应的法则求出各奇点的留数,再用留数定理求积分。
大飞猪猪
复变函数通常作曲线积分,因此下面讨论的也是曲线积分
以下是形式上的变换
由上式的第二行末尾可以看出,积分结果的实部和虚部都是关于函数实部和虚部的第二型曲线积分,如果有曲线C的参数方程
那么上式就可以化为定积分。
当然要求x(t)和y(t)满足一阶可导。
另外当然第二型曲线积分可以化为第一型曲线积分,这一点不作深入讨论。
如果要问积分的意义是什么,关于第二型曲线积分,就可以理解为变力对做曲线运动的物体所做的功。把第二型曲线积分化为定积分,就是用变力乘上路径导数得到功率,再由功率对时间积分,得到变力所做的功。
实变函数的积分是这样,复变函数的积分也可以这样理解。
而复变函数,是指以复数作为自变量和因变量的函数,而与之相关的理论就是复变函数论。解析函数是复变函数中一类具有解析性质的函数,复变函数论主要就是研究复数域上的解析函数,因此通常也称复变函数论为解析函数论。
以上内容参考 百度百科-复变函数
张凉凉2779
|z|=2的内部有两个奇点,z=±i,而且都是一阶极点.
原式=2πi[Res(f(z),i)+Res(f(z),-i)]
=2πi[lim(z→i)sinz/(z+i)+lim(z→-i)sinz/(z-i)]
=2πi(sini/2i+sin(-i)/(-2i))
=2πi*2sini/2i
=2πi*[e^(i*i)-e^(-i*i)]/2i²
=π/i*(1/e-e)
设f(z)=(z^10)/(z-3)。∴f(z)有一个一阶极点z1=3,但z1不在丨z丨=1内。
故,f(z)在丨z丨=1的留数Res[f(z),z1]=0。∴由柯西积分定理,有原式=(2πi)Res[f(z),z1]=0。
设f(z)=1/[(z^2)(z-1)(z+4)],∵(z^2)(z-1)(z+4)=0,则z1=0、z2=1、z3=-4,其中z1是二阶极点、z2、z3是一阶极点。∴丨z丨=3内,f(z)有两个极点z1、z2。
故,由柯西积分定理,原式=(2πi){Res[f(z),z1]+Res[f(z),z2]}。
而,Res[f(z),z1]=lim(z→z1)[(z^2)f(z)]'=-{(2z+3)/[(z-1)(z+4)]^2}丨(z=0)=-3/16、Res[f(z),z2]=lim(z→z2)(z-z2)f(z)=1/5。∴原式=πi/40。
扩展资料:
复变函数论在应用方面,涉及的面很广,有很多复杂的计算都是用它来解决的。比如物理学上有很多不同的稳定平面场,所谓场就是每点对应有物理量的一个区域,对它们的计算就是通过复变函数来解决的。比如俄国的茹柯夫斯基在设计飞机的时候,就用复变函数论解决了飞机机翼的结构问题,他在运用复变函数论解决流体力学和航空力学方面的问题上也做出了贡献。
复变函数论不但在其他学科得到了广泛的应用,而且在数学领域的许多分支也都应用了它的理论。它已经深入到微分方程、积分方程、概率论和数论等学科,对它们的发展很有影响。
参考资料来源:百度百科-复变函数
实积分与复积分的比较研究一。对于理科类学科的学习而言,最重要的一点莫过于概念的清晰程度,因此有实积分与复积分的比较研究一。复变函数是以复数作为自变量和因变量的函
国内:现如今二重积分基础理论的研究已经相当成熟,在实际应用中的研究还比较少,任何一门学问在历史发展过程中都会与时俱进,所以二重积分的发展趋势会在现有的基础上日益
建模论文(或实验报告)的格式要求: ①写作顺序:标题、作者所在省份、城市、学校名称、班级、作者姓名、指导教师姓名、摘要及关键词、正文、参考文献。②参考文献的书写
复变函数complex function 自变量与函数值均为复数的函数的总称。一般将单变量复变函数简称为复变函数,而多变量复变函数称为多复变函数,除此之外还
《实变函数》和《复变函数》都是数学系本科的专业课程。简单的说《实变函数》主要研究的是定义域为实数的函数的性质,而《复变函数》主要研究的是定义域为复数的函数的性质