长草的燕窝
中学数学中的数形结合比较明显的地方当然是函数这一块了,函数中的值域,最值,单调性以及函数的工具导数这几方面比较具体,你可以找些具体的题目,在高三总复习资料上对应的部分一定有的。希望可以帮到你。
姹紫嫣红NEI
数 形 结 合江苏省阜宁中学 黄爱华 224400数形结合是根据数量与图形之间的关系,认识研究对象的数学特征、寻找解决问题的一种数学思想。通常情况下,在应用数形结合思想方法解决问题时,往往偏重于"形"对"数"的作用,也就是经常地利用图形的直观性来解决某些数学问题。数形结合思想方法是近些年来高考重点考查的思想方法之一,每年的高考试题(特别是客观题)能够用此方法解决者均占相当的比例。其特点是形象、直观、快捷,因此是高考备考中应予重视的重要数学解题方法。例1 (1995年全国理)已知I为全集,集合M、NI,若M∩N=N,则( )A、 B、M C、 D、分析:集合M、N比较抽象,欲具体考察其关系有困难,若能借助集合的图示(文氏图),就能化抽象为具体,故可作出文氏图加以解决。可作出文氏图加以解决:解:用文氏图来表示M、N(如图1),显然CIMCIN ,故选C评注:对于抽象集合问题,只须按题设作出文氏图即可解决。例2、(2003年新课程理)设函数f(x)=,若f(x)>1,则x0的取值范围是A.(-1,1) B.(-1,+∞) C.(-∞,-2)∪ (0,+∞) D.(-∞,-1)∪ (1,+∞)分析:常规思路:分段函数进行分段处理,因为f(x0)>1,当x0≤0时,2-x0-1>1,2-x0>2,∴x0<-1;当x0>0时,∴x0>1综上,x0的取值范围是(-∞,-1)∪(1,+∞)本题若作出函数图象,就能回避分类讨论。解:首先画出函数y=f(x)与y=1的图象(图2),结合图象,关注选项特征,易得f(x)>1时,所对应的x的取值范围,选D。评注:对于与分段函数相联系的相关问题(如不等式,最值),均可借助图象法优化解题,另外,对于一些简单不等式,特别是解无理不等式,抽象不等式,均可考虑数形结合法,请看例3 。例3、(1)已知奇函数f(x)的定义域为{x|x≠0,x∈R},且在(0,+∞)上单调递增,若f(1)=0,则满足x·f(x)<0的x的取值范围是_________。(2)解不等式>x+1分析(1):函数f(x)比较抽象,欲化归为具体目标不等式困难,注意到x·f(x)<0表明自变量与函数值异号,故可作出函数f(x)的图象加以解决。解:作出符合条件的一个函数图象(示意图)如图3,观察图象易知,满足x·f(x)<0的x的取值范围是(-1,0)∪(0,1)。分析(2):令y1=的图象为C1,y2=x+1的图象为C2,则解不等式就归结为寻求C1在C2上方时x的取值范围。解:在同一坐标系内分别作出y1=和y2=x+1的图象(图4),由=x+1解得A(2,3),观察图象易得原不等式的解集{x|- ≤x<2}。例4、(2004年上海)若函数f(x)=a|x-b|+2在[0,+∞)上为增函数, 则实数a,b的取值范围是______。分析:①当a>0时,需x-b恒为非负数,满足题意,即a>0,b≤0。②当a<0时,x-b恒为非正数,又∵x∈(0.+∞),∴不成立。综合①②知a>0且b≤0。这是给出的参考答案,本题若能从函数f(x)的图象考虑,不难迅速确定答案。解:先作出函数f(x)的图象,由图象变换理论,只须将O(0,0)移至O'(b,0),在新系下,只须作出y=a|x|+2图象,若b>0,结合图象知,f(x)在[0,+∞)不单调。∴b≤0,此时要使f(x)在[0,+∞)递增,结合图象分析得a>0。评注:图象法是解决函数单调性问题的最基本方法。例5、(2004年上海)已知二次函数y=f1(x)的图象以原点为顶点且过点(1,1),反比例函数y=f2(x)的图象与直线y=x的两个交点间的距离为8,f(x)=f1(x)+f2(x)(1)求函数f(x)的表达式。(2)证明:当a>3时,关于x的方程f(x)=f(a)有三个实数解。分析:由(1) ∴方程f(x)=f(a)即为,若去分母则得到关于x的三次方程,从“数”上处理较难,若能从“形”上考虑,“数形结合”问题可找到解决的方案。解(2):由f(x)=f(a)得,在同一坐标系内作出f2(x)=和f3(x)=+的大致图象(图5),易知f2(x)与f3(x)在第三象限只有一个交点,即f(x)=f(a)有一个负数解。又f2(2)=4,f3(2)=+-4当a>3时,∴当a>3时,在第 一象限f3(x)的图象上存在点(2,f3 (2))在f2(x)图象的上方。∴f2(x)与f3(x)在第一象限有两个交点,即f(x)=f(a)有两个正数解。因此,方程f(x)=f(a),有三个实数解。评注:关于方程根的个数问题,使用数形结合处理比较方便、直观。综上,从内容上讲,可以用数形结合思想方法解决的问题,主要有以下几类:(1)集合的图示;(2)与函数性质有关的问题;(3)与方程、不等式有关的问题;(4)最值问题;(5)与解析几何有关的问题。在使用数形结合方法时,要注意以下两点:(1)数形结合常用来解选择题,填空题,属简缩思维模式,若用来处理解答题,要特别注意说理的严密性,如例5中两函数在第 一象限的交点的说明。(2)在数形结合时,要注意对函数的优化选择,达到简洁、容易的目的,如将函数转化为=+处理。
笨笨的2003
文献综述格式文献综述格式与般研究性论文格式所同研究性论文注重研究结文献综述要求向读者介绍与主题关详细资料、态、进展、展望及面评述文献综述格式相总说般都包含具体格式:综述题目;作者单位;摘要;关键词;引言;文;总结;参考文献() 题目题目限20字内(包括副标题)能够准确反映文章主要内容(二) 摘要关键词摘要限200字内摘要要具独立性自含性应现图表、冗公式非公知符号、缩略语摘要须给3-5关键词间应用号;隔(三) 引言部引言部主要说明写作目介绍关概念、定义及综述范围扼要说明关主题研究现状或争论焦点使读者全文要叙述问题初步轮廓综述引言(或者导言、介绍)部要写清内容:(1)首先要说明写作目定义综述主题、问题研究领域(2)指关综述主题已发表文献总体趋势阐述关概念定义(3)规定综述范围、包括专题涉及科范围间范围必须声明引用文献起止份解释、析比较文献及组织综述序准则(4)扼要说明关问题现况或争论焦点引所写综述核主题广读者关兴趣写作综述主线(四)主题部主题部综述主体其写没固定格式按文献发表代顺序综述按同问题进行综述按同观点进行比较综述管用种格式综述都要所搜集文献资料归纳、整理及析比较阐明引言部所确立综述主题历史背景、现状发展向及些问题评述主题部应特别注意代表性强、具科性创造性文献引用评述主题内容根据综述类型灵选择结构安排主题层标题应简短明15字限用标点符号其层划及编号律使用阿拉伯数字级编号(含引言部)般用两级第三级用圆括号()间加数字形式标识插图应精选具自明性勿与文文字表格重复插图应注明图序图名表格应精设计结构简洁便于操作并具自明性内容勿与文、插图重复表格应采用三线表适加注辅助线能用斜线竖线表格应注明表序表名(五) 总结部总结部与研究性论文结些类似全文主题进行扼要总结与前言部呼应指现研究主要研究优缺点或知识差距若作者所综述主题已经所研究能提自见解(六)参考文献参考文献虽放文末却文献综述重要组部仅表示引用文献作者尊重及引用文献依据且读者深入探讨关问题提供文献查找线索应认真待参考文献编排应条目清楚查找便内容准确误参考文献应限于作者直接阅读、主要、发表式版物文献要求少于30篇 .文献综述引言包括撰写文献范围、文标题及基本内容提要;二.文献综述文包括课题研究历史 (寻求研究问题发展历程)、现状、基本内容 (寻求认识进步) 研究析(寻求研究借鉴)已解决问题尚存问题重点、详尽阐述前影响及发展趋势便于解该课题研究起点切入点三.文献综述结论概括指自该课题研究意见存同意见待解决问题四.文献综述附录列参考文献说明文献综述所依据资料增加综述信度便于读者进步检索格式排版说明:1. 文献综述做word格式文档打印(A4纸)2. 标题四号字居3. 作者信息五号居4. 摘要五号字行距倍5. 关键词五号左齐6. 文五号字段落书字 行距倍7. 参考文献五号字左齐行距倍8. 注释五号字左齐行距倍9. 参考文献序号(1)、(2)……形式进行标注10.注释序号右标①、②……形式录入参考文献①、②……形式进行序号标注
数形结合的思想,其实质是将抽象的数学语言与直观的图象结合起来,也就是对题目中的条件和结论既分析其代数含义又挖掘其几何背景,在代数与几何的结合上寻找解题思路。实现
数学作为一门工具性的学科,是高中数学最基础的课程。相应的,数学课程的教学也是教育界一直在关注的重点内容。下文是我为大家搜集整理的关于数学毕业论文参考范文下载的内
著名数学家华罗庚说过:“数缺形时少直观,形少数时难入微,数形结合百般好,隔裂分家万事休。”这句话形象、简明、扼要地指出了数和形的相互依赖、相互制约的辩证关系。“
1、谈谈计算教学的改革2、小学数学数与计算教学的回顾与思考3、小学数学教材结构的研究与探讨4、小学数学应用题的研究(一)5、改进教学方法培养创新技能6、21世纪
【初中】数形结合思想的初探 数形结合思想简而言之就是把数学中“数”和数学中“形”结合起来解决数学问题的一种数学思想。数形结合具体地说就是将抽象数学语言与