• 回答数

    4

  • 浏览数

    118

尛嘴亂吃
首页 > 学术期刊 > 数形结合思想论文的研究主要内容

4个回答 默认排序
  • 默认排序
  • 按时间排序

哒Q小巧

已采纳

数形结合是数学解题中常用的思想方法,数形结合的思想可以使某些抽象的数学问题直观化、生动化,能够变抽象思维为形象思维,有助于把握数学问题的本质;另外,由于使用了数形结合的方法,很多问题便迎刃而解,且解法简捷。 2. 所谓数形结合,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的思想,实现数形结合,常与以下内容有关:(1)实数与数轴上的点的对应关系;(2)函数与图象的对应关系;(3)曲线与方程的对应关系;(4)以几何元素和几何条件为背景建立起来的概念,如复数、三角函数等;(5)所给的等式或代数式的结构含有明显的几何意义。如等式 。 3. 纵观多年来的高考试题,巧妙运用数形结合的思想方法解决一些抽象的数学问题,可起到事半功倍的效果,数形结合的重点是研究“以形助数”。 4. 数形结合的思想方法应用广泛,常见的如在解方程和解不等式问题中,在求函数的值域、最值问题中,在求复数和三角函数解题中,运用数形结思想,不仅直观易发现解题途径,而且能避免复杂的计算与推理,大大简化了解题过程。这在解选择题、填空题中更显其优越,要注意培养这种思想意识,要争取胸中有图见数想图,以开拓自己的思维视野。 【例题分析】 例1. 若关于 的方程 的两根都在 之间,求 的取值范围。 分析:令 ,其图象与 轴交点的横坐标就是方程 的解,由 的图象可知,要使二根都在 之间,只需 同时成立,解得 ,故 例2. 解不等式 常规解法:原不等式等价于(I) 或(II) 解(I)得 ;解(II)得 综上可知,原不等式的解集为 数形结合解法:令 ,则不等式 的解就是使 的图象在 的上方的那段对应的横坐标。 如下图,不等式的解集为 ,而 可由 解得 ,故不等式的解集为 例3. 已知 ,则方程 的实根个数为( ) A. 1个 B. 2个 C. 3个 D. 1个或2个或3个 分析:判断方程的根的个数就是判断图象 的交点个数,画出两个函数图象,易知两图象只有两个交点,故方程有2个实根,选B。 例4. 如果实数 满足 ,则 的最大值为( ) A. B. C. D. 分析:等式 有明显的几何意义,它表坐标平面上的一个圆,圆心为 ,半径 ,(如图),而 则表示圆上的点 与坐标原点(0,0)的连线的斜率,如此以来,该问题可转化为如下几何问题:动点 在以(2,0)为圆心,以 为半径的圆上移动,求直线 的斜率的最大值,由下图可见,当点 在第一象限,且与圆相切时, 的斜率最大,经简单计算,得最大值为 例5. 已知 满足 的最大值与最小值。 分析:对于二元函数 在限定条件 下求最值问题,常采用构造直线的截距的方法来求之。 令 ,原问题转化为:在椭圆 上求一点,使过该点的直线斜率为3,且在 轴上的截距最大或最小,由图形知,当直线 与椭圆 相切时,有最大截距与最小截距。 由 ,得 ,故 的最大值为13,最小值为 。 例6. 若集合 ,集合 ,且 ,则 的取值范围为__。 分析: ,显然, 表示以(0,0)为圆心,以3为半径的圆在 轴上方的部分,(如图),而 则表示一条直线,其斜率 ,纵截距为 ,由图形易知,欲使 ,即是使直线 与半圆有公共点,显然 的最小逼近值为 ,最大值为 ,即 例7. 点 是椭圆 上一点,它到其中一个焦点 的距离为2, 为 的中点, 表示原点,则 ( ) A. B. C. 4 D. 8 分析:(1)设椭圆另一焦点为 ,(如下图),则 而 又注意到 各为 的中点 是 的中位线 (2)若联想到第二定义,可以确定点 的坐标,进而求 中点的坐标,最后利用两点间的距离公式求出 ,但这样就增加了计算量,方法较之(1)显得有些复杂。 例8. 已知复数 满足 ,求 的模与辐角主值的范围。 分析:由于 有明显的几何意义,它表示复数 对应的点到复数 对应的点之间的距离,因此满足 的复数 对应的点 在以(2,2)为圆心,半径为 的圆上,(如下图),而 表示复数 对应的点 到原点 的距离,显然,当点 ,圆心 ,点 三点共线时, 取得最值, 的取值范围为 同理,当点 在圆上运动变化时,当且仅当直线 与该圆相切时,在切点处的点 的辐角主值取得最值,利用直线与圆相切,计算,得 ,即 即 例9. 求函数 的值域。 解法一(代数法):由 得 , ,解不等式得 函数的值域为 解法二(几何法): 的形式类似于斜率公式 , 表示过两点 的直线的斜率。 由于点 在单位圆 上(见下图) 显然, 设过 的圆的切线方程为 ,则有 ,解得 即 函数值域为 例10. 求函数 的最值。 分析:由于等号右端根号内 同为 的一次式,故作简单换元 ,无法转化出一元二次函数求最值;倘若对式子平方处理,将会把问题复杂化,因此该题用常规解法显得比较困难,考虑到式中有两个根号,故可采用两步换元。 解:设 ,则 且 所给函数化为以 为参数的直线族 ,它与椭圆 在第一象限的部分(包括端点)有公共点,(如图)

268 评论

筱晓鱼T3Y

数形结合是将代数和几何图形互相结合的一种解题方法 应用这种方法时应将题设转化为几何图形 或者将抽象的题意用图形表示 具体方法千变万化 建议网上看看

151 评论

凯利的心窝

文献综述格式文献综述格式与般研究性论文格式所同研究性论文注重研究结文献综述要求向读者介绍与主题关详细资料、态、进展、展望及面评述文献综述格式相总说般都包含具体格式:综述题目;作者单位;摘要;关键词;引言;文;总结;参考文献() 题目题目限20字内(包括副标题)能够准确反映文章主要内容(二) 摘要关键词摘要限200字内摘要要具独立性自含性应现图表、冗公式非公知符号、缩略语摘要须给3-5关键词间应用号;隔(三) 引言部引言部主要说明写作目介绍关概念、定义及综述范围扼要说明关主题研究现状或争论焦点使读者全文要叙述问题初步轮廓综述引言(或者导言、介绍)部要写清内容:(1)首先要说明写作目定义综述主题、问题研究领域(2)指关综述主题已发表文献总体趋势阐述关概念定义(3)规定综述范围、包括专题涉及科范围间范围必须声明引用文献起止份解释、析比较文献及组织综述序准则(4)扼要说明关问题现况或争论焦点引所写综述核主题广读者关兴趣写作综述主线(四)主题部主题部综述主体其写没固定格式按文献发表代顺序综述按同问题进行综述按同观点进行比较综述管用种格式综述都要所搜集文献资料归纳、整理及析比较阐明引言部所确立综述主题历史背景、现状发展向及些问题评述主题部应特别注意代表性强、具科性创造性文献引用评述主题内容根据综述类型灵选择结构安排主题层标题应简短明15字限用标点符号其层划及编号律使用阿拉伯数字级编号(含引言部)般用两级第三级用圆括号()间加数字形式标识插图应精选具自明性勿与文文字表格重复插图应注明图序图名表格应精设计结构简洁便于操作并具自明性内容勿与文、插图重复表格应采用三线表适加注辅助线能用斜线竖线表格应注明表序表名(五) 总结部总结部与研究性论文结些类似全文主题进行扼要总结与前言部呼应指现研究主要研究优缺点或知识差距若作者所综述主题已经所研究能提自见解(六)参考文献参考文献虽放文末却文献综述重要组部仅表示引用文献作者尊重及引用文献依据且读者深入探讨关问题提供文献查找线索应认真待参考文献编排应条目清楚查找便内容准确误参考文献应限于作者直接阅读、主要、发表式版物文献要求少于30篇 .文献综述引言包括撰写文献范围、文标题及基本内容提要;二.文献综述文包括课题研究历史 (寻求研究问题发展历程)、现状、基本内容 (寻求认识进步) 研究析(寻求研究借鉴)已解决问题尚存问题重点、详尽阐述前影响及发展趋势便于解该课题研究起点切入点三.文献综述结论概括指自该课题研究意见存同意见待解决问题四.文献综述附录列参考文献说明文献综述所依据资料增加综述信度便于读者进步检索格式排版说明:1. 文献综述做word格式文档打印(A4纸)2. 标题四号字居3. 作者信息五号居4. 摘要五号字行距倍5. 关键词五号左齐6. 文五号字段落书字 行距倍7. 参考文献五号字左齐行距倍8. 注释五号字左齐行距倍9. 参考文献序号(1)、(2)……形式进行标注10.注释序号右标①、②……形式录入参考文献①、②……形式进行序号标注

341 评论

无锡捞王

数学是研究客观世界的数量关系和空间形式的科学,数和形是数学研究的两个重要方面,在研究过程中,数形结合既是一个重要的数学思想,又是一种常用的数学方法。华罗庚先生曾指出:“数缺形时少直观,形少数时难入微。数形结合百般好,隔裂分家万事休。” 数形结合包括“以形助数”和“以数辅形”两个方面,高中阶段用的较多的是以形助数,高考中时有出现,在选择、填空题的解答中更能体现其优越性,近年在解答题中也加重了对数形结合的考查。 本文仅就以形助数解决代数问题做粗略的探讨。 在代数问题的解决中,许多数量关系的抽象概念和解析式,若赋予其几何意义,往往变得非常直观形象,从而使问题简单化,达到事半功倍优化解题途径的目的,这种“数”与“形”的信息转换,相互渗透,不仅可以使一些题目的解决简捷明快,同时还可以大大开拓我们的解题思路。1. 数形结合是数学解题中常用的思想方法,数形结合的思想可以使某些抽象的数学问题直观化、生动化,能够变抽象思维为形象思维,有助于把握数学问题的本质;另外,由于使用了数形结合的方法,很多问题便迎刃而解,且解法简捷。 2. 所谓数形结合,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的思想,实现数形结合,常与以下内容有关:(1)实数与数轴上的点的对应关系;(2)函数与图象的对应关系;(3)曲线与方程的对应关系;(4)以几何元素和几何条件为背景建立起来的概念,如复数、三角函数等;(5)所给的等式或代数式的结构含有明显的几何意义。如等式 。 3. 纵观多年来的高考试题,巧妙运用数形结合的思想方法解决一些抽象的数学问题,可起到事半功倍的效果,数形结合的重点是研究“以形助数”。 4. 数形结合的思想方法应用广泛,常见的如在解方程和解不等式问题中,在求函数的值域、最值问题中,在求复数和三角函数解题中,运用数形结思想,不仅直观易发现解题途径,而且能避免复杂的计算与推理,大大简化了解题过程。这在解选择题、填空题中更显其优越,要注意培养这种思想意识,要争取胸中有图见数想图,以开拓自己的思维视野。

106 评论

相关问答

  • 论文数学的主要研究内容

    数学论文范文参考 数学论文范文参考,说到论文相信大家都不陌生,在生活中或多或少都有接触过一些论文,很多时候论文的撰写是不容易的,写一份论文要参考很多的文献,接下

    流浪的好吃狗 3人参与回答 2023-12-12
  • 数形结合思想的毕业论文大纲

    985位粉丝数形结合思想是一种数学思想方法。数与形是数学中的两个最古老,也是最基本的研究对象,它们在一定条件下可以相互转化。中学数学研究的对象可分为数和形两大部

    楞大个肚兜 5人参与回答 2023-12-06
  • 论文主要研究的内容

    论文的研究内容这样写: 1、选题的背景和意义,主要说明所选课题的历史背景、国内外研究现状和发展趋势。 历史背景部分着重说明本课题前人研究过,研究成果如何。国内外

    城阳高升移门 3人参与回答 2023-12-09
  • 小学数形结合思想案例研究论文

    著名数学家华罗庚说过:“数缺形时少直观,形少数时难入微,数形结合百般好,隔裂分家万事休。”这句话形象、简明、扼要地指出了数和形的相互依赖、相互制约的辩证关系。“

    优尼makeup 3人参与回答 2023-12-07
  • 英雄形象类论文主要研究内容摘要

    从“革命历史小说”到“新革命历史小说”内容摘要:“十七年”时期的“革命历史小说”构成了“新时期”以来的重要文学资源,近年来流行的“新革命历史小说”即在延续“革命

    霍爾因斯基 6人参与回答 2023-12-11