梁朝伟可爱
贝叶斯定理由英国数学家贝叶斯 ( Thomas Bayes 1702-1761 ) 发展,用来描述两个条件概率之间的关系,比如 P(A|B) 和 P(B|A)。按照乘法法则,可以立刻导出:P(A∩B) = P(A)*P(B|A)=P(B)*P(A|B)。如上公式也可变形为:P(B|A) = P(A|B)*P(B) / P(A)。
贝叶斯的统计学中有一个基本的工具叫贝叶斯公式、也称为贝叶斯法则, 尽管它是一个数学公式,但其原理毋需数字也可明了。如果你看到一个人总是做一些好事,则那个人多半会是一个好人。
这就是说,当你不能准确知悉一个事物的本质时,你可以依靠与事物特定本质相关的事件出现的多少去判断其本质属性的概率。 用数学语言表达就是:支持某项属性的事件发生得愈多,则该属性成立的可能性就愈大。
贝叶斯公式又被称为贝叶斯定理、贝叶斯规则是概率统计中的应用所观察到的现象对有关概率分布的主观判断(即先验概率)进行修正的标准方法。
所谓贝叶斯公式,是指当分析样本大到接近总体数时,样本中事件发生的概率将接近于总体中事件发生的概率。但行为经济学家发现,人们在决策过程中往往并不遵循贝叶斯规律,而是给予最近发生的事件和最新的经验以更多的权值,在决策和做出判断时过分看重近期的事件。
面对复杂而笼统的问题,人们往往走捷径,依据可能性而非根据概率来决策。这种对经典模型的系统性偏离称为“偏差”。由于心理偏差的存在,投资者在决策判断时并非绝对理性,会行为偏差,进而影响资本市场上价格的变动。但长期以来,由于缺乏有力的替代工具,经济学家不得不在分析中坚持贝叶斯法则。
yechenchao77
贝叶斯公式直接的应用就是学习,啥意思,就是根据经验对新发生的事物进行判断。抽象地说就是这样。应用的原因就是为了预测未来,规避风险。就和你知道很多鸟都是黑色的,但是其中乌鸦是黑色的可能性最大,于是当你再看到一只黑色的鸟的时候,你就会想着这只鸟是不是乌鸦。包括你学习贝叶斯也是这样的,别人都说贝叶斯很厉害[先验],然后你找了很多案例,最后想看看贝叶斯成功的概率是多少[后验],其本质就是这个
janjan3344
观点应该跟着事实不断修订。坚定不移不对,听风就是雨也不对——科学的修订,就是贝叶斯方法。贝叶斯公式在概率论与数理统计中必学的概念,要真正的达到应用这个概念还得稍微理解一下公式: 贝叶斯公式完全是建立在一个等式P(A)*P(B|A) = P(B) * P(A|B)之上,而P(A)*P(B|A)和P(B)*P(A|B)的结果都是P(AB),意思是事件A和事件B同时发生的概率。等式中P(A|B)指的是条件概率,即在B已经发生的情况下,A发生的概率,如果B代表下雨的概率,A代表一个人出门带伞的概率,那P(A|B)本质上还是带伞的概率,不过是下雨天的情况下一个人出门带伞的概率。根据经验可以得出,P(A|B)应该是大于P(A)的。平时我们对存在外星人(记作事件A)这一观点的相信的概率可以用P(A)来表示,一般而言咱都不怎么相信外星人存在的,P(A)应该无限趋于0,可是突然有一天一个正儿八经的专家说证明确实有外星人存在(记为事件B),那此时,我们相信外星人存在的概率已经不是P(A)了,而是P(A|B),而这个值可能就要比0大不少了。要是某一天,大半个地球的人都说看到了外星人(记为C),那我们此时相信外星人存在的概率P(A|C)可能就要提高到1,也就是几乎确定就是有外星人存在。 对上面的等式稍微一变形,就可以得到贝叶斯公式 : P(A|B) = P(A) * P(B|A) / P(B) ,其中P(A)是我们原来对一件事的原有的判断,叫做先验概率;P(A|B)就代表了我们在得到一些证据B之后对原来事物的概率,叫做后验概率。别看公式形式比较复杂,但是有个简单的理解方法:我们把等式右边 P(B|A) / P(B) 看作一个整体,称之为似然比(可以简单理解成证据的有效程度),那么整个公式便可以简单理解成P(你后来的观点)= 似然比 * P(你一开始的观点)。当有新的证据出现之后,别忙着不变,也别忙着立马推翻自己的态度,看看证据的有效性如何,如果真的有效,那就多调整一点自己的态度,如果证据的力度不大,那就少调整一点。卡尔·萨根说过一句话:“超乎寻常的论断需要超乎寻常的证据”,在贝叶斯看来这句话的意思不过是,要想从根本上说服我,你必须拿出唬得住我的东西来。而佛说:哪有什么一定之论,在我眼里,全是概率。 如果只想知道哲学上的东西,看官可就此打住,可如果看知道贝叶斯的具体威力,我们不妨来搞一下数学。在狼来了的故事中,我们用A表示小孩可信,B表示小孩说谎。不妨设我们过去对小孩子的印象为P(A)=,P(~A)=。现在我们来计算P(A|B),即小孩说了一次慌滞后的可信程度。在公式中P(B)表示在任何条件下小孩子说谎的概率,可以拆分为P(A)*P(B|A)和P(~A)*P(B|~A),P(B|A)和P(B|~A)分别表示在我们相信他时他说谎的概率和我们不相信他时他说谎的概率,分为设之为和。有一天小孩是说狼来了,80%的可能性狼来了,我们想吃狼肉,于是我们第一次上山打狼,发现狼没有来,即小孩子说了谎。此时P(A|B) = P(A) * P(B|A) / P(B) = * / (* + *) = ,表明我们上一次当之后对这个小孩的可信程度从下降到了。在此基础之上,有一天小孩又说狼来了,有的可能性狼来了,本来不想去的,但是上次没吃到狼肉心里痒痒,于是我们又上山打狼,结果小孩又对我们撒了一次谎,狼没有来。我们对他的可信程度P(A|B) =* /(* +*) = ,我们上了这小孩两次当,对小孩的可信程度由原来的下降到了。第三次小孩又喊狼来了,我们把小孩子吃了。 有时候明明可以很快用贝叶斯公式解决问题谋得巨大财富,结果我们却迟迟不动,很多时候,并不是贝叶斯公式太难,只不过是我们不知道贝叶斯公式使用的时机。贝叶斯的应用领域极其广泛,语音识别、垃圾邮件过滤、油井钻探、FDA批准新药、Xbox给你的游戏水平打分……各种你想到和想不到的应用,都在使用贝叶斯方法。但是扯这些东西和我们有点儿远,我们的市井生活中什么时候该用贝叶斯公式呢?很简单: 只要还没得到最终结果,就可以请贝叶斯爸爸出场帮你作弊。 你和两位猥琐而胆小的基友在操场上看到了一位身材火辣的性感女神,决定写纸条抽签选一人去要联系方式。每人抽到一个签,中彩概率都是1/3,很公平。你抽到了一张签,觉得自己不会那么背中彩,刚准备看,突然一个基友摊出了自己的纸条,哈哈大笑说:“看不是我,你们两个其中之一中彩了。”此时,天真的你觉得那有啥,反正大家中彩的概率 依旧 还是1/3,而且我运气好,不可能是我。在准备亮出你的纸条的一刹那见,你虎躯一震,隐隐约约感到有些不对劲: 三个人只有一个出了结果,还没有得到最终结果,我可以叫贝叶斯爸爸来帮忙算一下概率 。 贝叶斯看了,笑了,说:我们记你中彩为事件A,P(A)=1/3,那个已经摊出纸条的基友没有中彩为事件B,P(B)=2/3,傻子,你现在中彩的概率P(A|B)=P(A) * P(B|A) / P(B) = (1/3) * 1 /(2/3)= 1/2。心中暗自骂到:卧槽,他看了一眼他自己的纸条,我的gay率就由1/3变成1/2了,还好发现得早。于是机智的你抢过另一个基友还没看的纸条,把它和你的纸条一起吃掉,说:“我太饿了,我们重新抽签吧。“
大学本科论文写作格式规范 在日常学习和工作生活中,大家对论文都再熟悉不过了吧,借助论文可以有效训练我们运用理论和技能解决实际问题的的能力。相信写论文是一个让许多
论文的格式要求 在日常学习和工作生活中,大家都有写论文的经历,对论文很是熟悉吧,借助论文可以有效训练我们运用理论和技能解决实际问题的的能力。那么一般论文是怎么写
老师们同学们,大家上午好,我是某专业某班的某某,我的毕业设计题目是***,这个题目是我在(什么样的背景下,什么什么样的契机)选的,通过什么样的方法进行的研究,想
概率图模型是用图来表示变量概率依赖关系的理论,结合概率论与图论的知识,利用图来表示与模型有关的变量的联合概率分布。由图灵奖获得者Pearl开发出来。 如果用一个
贝叶斯网络写论文有用。使用贝叶斯网络写论文可以有效地提高文章的分析和报告的准确性,因为它能够帮助作者更精确的把握有关概念和科学技术的逻辑,以便更好的描述学习主题