• 回答数

    5

  • 浏览数

    230

青木震雷
首页 > 学术期刊 > 贝叶斯模型毕业论文

5个回答 默认排序
  • 默认排序
  • 按时间排序

草泥马叔叔

已采纳

概率图模型是用图来表示变量概率依赖关系的理论,结合概率论与图论的知识,利用图来表示与模型有关的变量的联合概率分布。由图灵奖获得者Pearl开发出来。

如果用一个词来形容概率图模型(Probabilistic Graphical Model)的话,那就是“优雅”。对于一个实际问题,我们希望能够挖掘隐含在数据中的知识。概率图模型构建了这样一幅图,用观测结点表示观测到的数据,用隐含结点表示潜在的知识,用边来描述知识与数据的相互关系, 最后基于这样的关系图获得一个概率分布 ,非常“优雅”地解决了问题。

概率图中的节点分为隐含节点和观测节点,边分为有向边和无向边。从概率论的角度,节点对应于随机变量,边对应于随机变量的依赖或相关关系,其中 有向边表示单向的依赖,无向边表示相互依赖关系 。

概率图模型分为 贝叶斯网络(Bayesian Network)和马尔可夫网络(Markov Network) 两大类。贝叶斯网络可以用一个有向图结构表示,马尔可夫网络可以表 示成一个无向图的网络结构。更详细地说,概率图模型包括了朴素贝叶斯模型、最大熵模型、隐马尔可夫模型、条件随机场、主题模型等,在机器学习的诸多场景中都有着广泛的应用。

长久以来,人们对一件事情发生或不发生的概率,只有固定的0和1,即要么发生,要么不发生,从来不会去考虑某件事情发生的概率有多大,不发生的概率又是多大。而且概率虽然未知,但最起码是一个确定的值。比如如果问那时的人们一个问题:“有一个袋子,里面装着若干个白球和黑球,请问从袋子中取得白球的概率是多少?”他们会想都不用想,会立马告诉你,取出白球的概率就是1/2,要么取到白球,要么取不到白球,即θ只能有一个值,而且不论你取了多少次,取得白球的 概率θ始终都是1/2 ,即不随观察结果X 的变化而变化。

这种 频率派 的观点长期统治着人们的观念,直到后来一个名叫Thomas Bayes的人物出现。

托马斯·贝叶斯Thomas Bayes(1702-1763)在世时,并不为当时的人们所熟知,很少发表论文或出版著作,与当时学术界的人沟通交流也很少,用现在的话来说,贝叶斯就是活生生一民间学术“屌丝”,可这个“屌丝”最终发表了一篇名为“An essay towards solving a problem in the doctrine of chances”,翻译过来则是:机遇理论中一个问题的解。你可能觉得我要说:这篇论文的发表随机产生轰动效应,从而奠定贝叶斯在学术史上的地位。

这篇论文可以用上面的例子来说明,“有一个袋子,里面装着若干个白球和黑球,请问从袋子中取得白球的概率θ是多少?”贝叶斯认为取得白球的概率是个不确定的值,因为其中含有机遇的成分。比如,一个朋友创业,你明明知道创业的结果就两种,即要么成功要么失败,但你依然会忍不住去估计他创业成功的几率有多大?你如果对他为人比较了解,而且有方法、思路清晰、有毅力、且能团结周围的人,你会不由自主的估计他创业成功的几率可能在80%以上。这种不同于最开始的“非黑即白、非0即1”的思考方式,便是 贝叶斯式的思考方式。

先简单总结下频率派与贝叶斯派各自不同的思考方式:

贝叶斯派既然把看做是一个随机变量,所以要计算的分布,便得事先知道的无条件分布,即在有样本之前(或观察到X之前),有着怎样的分布呢?

比如往台球桌上扔一个球,这个球落会落在何处呢?如果是不偏不倚的把球抛出去,那么此球落在台球桌上的任一位置都有着相同的机会,即球落在台球桌上某一位置的概率服从均匀分布。这种在实验之前定下的属于基本前提性质的分布称为 先验分布,或着无条件分布 。

其中,先验信息一般来源于经验跟历史资料。比如林丹跟某选手对决,解说一般会根据林丹历次比赛的成绩对此次比赛的胜负做个大致的判断。再比如,某工厂每天都要对产品进行质检,以评估产品的不合格率θ,经过一段时间后便会积累大量的历史资料,这些历史资料便是先验知识,有了这些先验知识,便在决定对一个产品是否需要每天质检时便有了依据,如果以往的历史资料显示,某产品的不合格率只有,便可视为信得过产品或免检产品,只每月抽检一两次,从而省去大量的人力物力。

而 后验分布 π(θ|X)一般也认为是在给定样本X的情况下的θ条件分布,而使π(θ|X)达到最大的值θMD称为 最大后验估计 ,类似于经典统计学中的 极大似然估计 。

综合起来看,则好比是人类刚开始时对大自然只有少得可怜的先验知识,但随着不断观察、实验获得更多的样本、结果,使得人们对自然界的规律摸得越来越透彻。所以,贝叶斯方法既符合人们日常生活的思考方式,也符合人们认识自然的规律,经过不断的发展,最终占据统计学领域的半壁江山,与经典统计学分庭抗礼。

条件概率 (又称后验概率)就是事件A在另外一个事件B已经发生条件下的发生概率。条件概率表示为P(A|B),读作“在B条件下A的概率”。

比如上图,在同一个样本空间Ω中的事件或者子集A与B,如果随机从Ω中选出的一个元素属于B,那么这个随机选择的元素还属于A的概率就定义为在B的前提下A的条件概率:

联合概率:

边缘概率(先验概率):P(A)或者P(B)

贝叶斯网络(Bayesian network),又称信念网络(Belief Network),或有向无环图模型(directed acyclic graphical model),是一种概率图模型,于1985年由Judea Pearl首先提出。它是一种模拟人类推理过程中因果关系的不确定性处理模型,其网络拓朴结构是一个有向无环图(DAG)。

贝叶斯网络的有向无环图中的节点表示随机变量

它们可以是可观察到的变量,或隐变量、未知参数等。认为有因果关系(或非条件独立)的变量或命题则用箭头来连接。若两个节点间以一个单箭头连接在一起,表示其中一个节点是“因(parents)”,另一个是“果(children)”,两节点就会产生一个条件概率值。

例如,假设节点E直接影响到节点H,即E→H,则用从E指向H的箭头建立结点E到结点H的有向弧(E,H),权值(即连接强度)用条件概率P(H|E)来表示,如下图所示:

简言之,把某个研究系统中涉及的随机变量,根据是否条件独立绘制在一个有向图中,就形成了贝叶斯网络。其主要用来描述随机变量之间的条件依赖,用圈表示随机变量(random variables),用箭头表示条件依赖(conditional dependencies)。

此外,对于任意的随机变量,其联合概率可由各自的局部条件概率分布相乘而得出:

1. head-to-head

依上图,所以有:P(a,b,c) = P(a) P(b) P(c|a,b)成立,即在c未知的条件下,a、b被阻断(blocked),是独立的,称之为head-to-head条件独立。

2. tail-to-tail

考虑c未知,跟c已知这两种情况:

3. head-to-tail

还是分c未知跟c已知这两种情况:

wikipedia上是这样定义因子图的:将一个具有多变量的全局函数因子分解,得到几个局部函数的乘积,以此为基础得到的一个双向图叫做因子图(Factor Graph)。

通俗来讲,所谓因子图就是对函数进行因子分解得到的 一种概率图 。一般内含两种节点:变量节点和函数节点。我们知道,一个全局函数通过因式分解能够分解为多个局部函数的乘积,这些局部函数和对应的变量关系就体现在因子图上。

举个例子,现在有一个全局函数,其因式分解方程为:

其中fA,fB,fC,fD,fE为各函数,表示变量之间的关系,可以是条件概率也可以是其他关系。其对应的因子图为:

在概率图中,求某个变量的边缘分布是常见的问题。这问题有很多求解方法,其中之一就是把贝叶斯网络或马尔科夫随机场转换成因子图,然后用sum-product算法求解。换言之,基于因子图可以用 sum-product 算法 高效的求各个变量的边缘分布。

详细的sum-product算法过程,请查看博文: 从贝叶斯方法谈到贝叶斯网络

朴素贝叶斯(Naive Bayesian)是经典的机器学习算法之一,也是为数不多的基于概率论的分类算法。朴素贝叶斯原理简单,也很容易实现,多用于文本分类,比如垃圾邮件过滤。**朴素贝叶斯可以看做是贝叶斯网络的特殊情况:即该网络中无边,各个节点都是独立的。 **

朴素贝叶斯朴素在哪里呢? —— 两个假设 :

贝叶斯公式如下:

下面以一个例子来解释朴素贝叶斯,给定数据如下:

现在给我们的问题是,如果一对男女朋友,男生想女生求婚,男生的四个特点分别是不帅,性格不好,身高矮,不上进,请你判断一下女生是嫁还是不嫁?

这是一个典型的分类问题,转为数学问题就是比较p(嫁|(不帅、性格不好、身高矮、不上进))与p(不嫁|(不帅、性格不好、身高矮、不上进))的概率,谁的概率大,我就能给出嫁或者不嫁的答案!这里我们联系到朴素贝叶斯公式:

我们需要求p(嫁|(不帅、性格不好、身高矮、不上进),这是我们不知道的,但是通过朴素贝叶斯公式可以转化为好求的三个量,这三个变量都能通过统计的方法求得。

等等,为什么这个成立呢?学过概率论的同学可能有感觉了,这个等式成立的条件需要特征之间相互独立吧!对的!这也就是为什么朴素贝叶斯分类有朴素一词的来源,朴素贝叶斯算法是假设各个特征之间相互独立,那么这个等式就成立了!

但是为什么需要假设特征之间相互独立呢?

根据上面俩个原因,朴素贝叶斯法对条件概率分布做了条件独立性的假设,由于这是一个较强的假设,朴素贝叶斯也由此得名!这一假设使得朴素贝叶斯法变得简单,但有时会牺牲一定的分类准确率。

朴素贝叶斯优点 :

朴素贝叶斯缺点 :

理论上,朴素贝叶斯模型与其他分类方法相比具有最小的误差率。但是实际上并非总是如此,这是因为朴素贝叶斯模型假设属性之间相互独立,这个假设在实际应用中往往是不成立的,在属性个数比较多或者属性之间相关性较大时,分类效果不好。

朴素贝叶斯模型(Naive Bayesian Model)的 朴素(Naive)的含义是"很简单很天真" 地假设样本特征彼此独立. 这个假设现实中基本上不存在, 但特征相关性很小的实际情况还是很多的, 所以这个模型仍然能够工作得很好。

新闻分类 GitHub: 点击进入

【 机器学习通俗易懂系列文章 】

从贝叶斯方法谈到贝叶斯网络

126 评论

敏芳在上海

各位老师,下午好!我叫***,是**级**班的学生,我的论文题目是--------------------,论文是在**导师的悉心指点下完成的,在这里我向我的导师表示深深的谢意,向各位老师不辞辛苦参加我的论文答辩表示衷心的感谢,并对三年来我有机会聆听教诲的各位老师表示由衷的敬意。下面我将本论文设计的目的和主要内容向各位老师作一汇报,恳请各位老师批评指导。首先,我想谈谈这个毕业论文设计的目的及意义。作为计算机应用的一部分,图书销售管理系统对图书销售进行管理,具有着手工管理所无法比拟的优点,极大地提高图书销售管理效率及在同行业中的竞争力.因此,图书销售管理系统有着广泛的市场前景和实际的应用价值.其次,我想谈谈这篇论文的结构和主要内容。本文分成五个部分.第1部。。第2部。。第3部~第5部这篇论文的写作以及系统开发的过程,也是我越来越认识到自己知识与经验缺乏的过程。虽然,我尽可能地收集材料,竭尽所能运用自己所学的知识进行论文写作和系统开发,但论文还是存在许多不足之处,系统功能并不完备,有待改进.请各位评委老师多批评指正,让我在今后的学习中学到更多。谢谢!开场白就这个样子了至于提问么,这要看老师了,但问题都出自你的论文,你必须的熟悉你写的内容。顺便看熟自己的参考文献,别老师问了打不出。的明确自己为什么要写这篇论文,用意何在,所论内容问题何在,你的解决方法是什么。至于具体问题我就说不出来了。

290 评论

爱美食的飘飘

我前几天刚刚答辩完毕,首先会给你几分钟自述,我准备的蛮多的 但是老师只叫我说下论文的结构和内容,只要把论文的东西说清楚就行。 问问题的话 老师分组都不一样 我们学院是一轮自述完毕再问问题 给你准备时间准备回答 所以问的比较专业吧 我的是针对论文中理论部分提出的 如果像是我们学校其他学院的答辩 是一个人自述接着问问题就回答的话 不给你准备时间 这样的话问题不会很难 起码不会很专业的 总体还是围绕论文展开 把论文前后都弄熟就行了 大概就是这样吧 我们答辩的时候也蛮紧张的 祝你好运咯~

257 评论

lincolnsuper

我们描述潜在的狄利克雷分配(LDA),它是一种用于离散数据集合(如文本语料库)的生成概率模型。 LDA是一个三层次的贝叶斯模型,其中一个集合中的每个项目都被建模为一组潜在的话题(主体)类型的有限混合。反过来,每个主题都被建模为一组潜在主题概率的无限混合。 在文本建模的背景下,主题概率提供了文档的明确表示。我们提出了基于变分方法和经验贝叶斯参数估计的EM算法的高效近似推理技术。 我们会报告LDA在文档建模,文本分类和协作过滤上的实验结果,并与一元混合模型( unigrams model)和概率LSI模型相比较。

在本文中,我们考虑建模文本语料库和其他离散数据集合的问题。我们的目标是找到对一个集合的成员的简短描述,它不仅可以高效处理大型集合,同时保留对分类,异常检测,摘要(概括)以及相似性和相关性判断等基本任务有用的必要统计关系。

信息检索(IR)领域的研究人员已经在这个问题上取得了重大进展(Baeza-Yates和Ribeiro-Neto,1999)。IR研究人员为文本语料库提出的基本方法 (一种在现代互联网搜索引擎中成功部署的方法)将语料库中的每个文档变为实数表示的向量,每个实数都表示(词汇的)计数比率。流行的tf-idf方案(Salton和McGill,1983),对于文集中的每个文档选择了“词”或“术语”作为基本单位,并且计数由每个词的出现次数。在适当的归一化之后,将该术语频率计数与逆向文档频率计数进行比较,该逆向文档频率计数度量整个语料库中的词的出现次数(通常以对数刻度,并且再次适当标准化)。 最终结果是文档术语矩阵X,其列包含文档集中每个文档的tf-idf值。 因此,tf-idf方案将任意长度的文档缩减为固定长度的数字列表。

尽管tf-idf规约具有一些吸引人的特征 - 特别是(在对集合中的文档进行区分的)单词集合的基本识别中,但是在(对文档的)描述长度上,该方法并没有减少多少,并且揭示出很少的文档内或文档间的统计结构。为了解决这些缺点,IR研究人员提出了其他几种降维技术,其中最著名的是潜在语义索引(LSI)(Deerwester等,1990)。LSI使用X矩阵的奇异值分解来标识tf-idf特征空间中的线性子空间,该子空间捕获集合中的大部分变异数(variance)。这种方法可以在大型集合中实现显着压缩。此外,Deerwester等人 认为LSI的衍生特征(即原始tf-idf特征的线性组合),可以捕捉基本语言学概念的某些方面,比如同义词和多义词等。

为了证实关于LSI的主张,并研究其相对的优缺点,开发文本语料库的生成概率模型和研究LSI从数据中恢复生成模型方面的能力是有用的(Papadimitriou et al。,1998)。然而,目前尚不清楚,考虑文本的生成模型的时候,为什么应该采用LSI方法 - (其实)可以尝试更直接地进行,(比如)使用最大似然法或贝叶斯方法将模型与数据相匹配(即得到数据的模型)。

Hofmann(1999)在这方面迈出了重要的一步,他将LSI的概率LSI(pLSI)模型(也称为特征模型aspect model)作为LSI的替代品。我们在第节中详细描述的pLSI方法将文档中的每个单词作为混合模型中的样本进行建模,其中混合组件是多项随机变量,可以将其视为“主题topics”的表示。因此,每个单词都是从单个主题生成的,而文档中的不同单词可以从不同的主题生成。每个文档都被表示为这些混合组件的混合比例列表,从而将其简化为一组固定主题的概率分布。 这种分布是与文档相关的“简化描述”。

虽然霍夫曼的工作是向文本概率建模迈出的有用的一步,但它并不完整,因为它没有提供文档层面的概率模型。在pLSI中,每个文档都被表示为一个数字列表(数字的值是主题的混合比例),并且这些数字没有生成概率模型。这导致了几个问题:(1)模型中参数的数量与语料库的大小成线性增长,这导致过度拟合的严重问题;(2)不清楚如何将概率分配给训练集之外的文档。

要了解如何超越pLSI,让我们考虑包括LSI和pLSI在内的一类降维方法的基本概率假设。所有这些方法都基于“词袋”的假设 - 文档中的单词顺序可以忽略不计。此外,尽管不经常正式说明,但这些方法也假定文档是可相互交换的; 文集中文档的具体排序也可以忽略不计。

受益于Finetti(1990),一个经典表示理论认为:任何可交换随机变量的集合都具有混合分布(通常是无限混合)的表示。因此,如果我们想考虑文件和单词的可交换表示,我们需要考虑能捕获单词和文档的可交换性的混合模型。这一思路促使我们在当前论文中提出潜在狄利克雷分配(LDA)模型。

需要强调的是,可交换性的假设并不等同于随机变量独立同分布的假设。相反,可交换性本质上可以被解释为“条件独立且分布相同”,其中的条件是与概率分布的潜在隐参数有关的。在一定条件下,随机变量的联合分布是简单的,但如果围绕隐参数考虑,联合分布可能相当复杂。因此,虽然可交换性的假设是文本建模领域的一个主要的简化假设,并且其主要理由是它是一种会导致计算效率较高的方法,但可交换性假设对简单频率的计数或线性操作并不是一个必要的条件。在当前的论文中,我们的目标是,通过认真考虑de Finetti定理,可以通过混合分布获取重要的文档内统计结构。

同样值得注意的是,可交换性的基本概念有大量的总结概括,包括各种形式的部分可交换性,并且上面提到的表示法也可用于部分可交换的情况(Diaconis,1988)。因此,虽然我们在当前论文中讨论的工作集中在简单的“词袋”模型上(这表现为单个单词(unigrams)的混合分布),但我们的方法也适用于涉及较大结构混合的更丰富的模型,如n-grams或段落。

本文的结构如下: 在第2节中,我们介绍基本的表示法和术语。 LDA模型在第3节中介绍,并与第4节中的相关潜变量模型进行比较。我们在第5节讨论LDA的推理和参数估计。第6节提供了LDA拟合数据的一个说明性例子。文本建模,文本分类和协作过滤的实验结果在第7节中给出。最后,第8节给出我们的结论。

我们在整篇论文中使用 文本集合 的说法,指的是诸如“单词”,“文档”和“语料库”等实体。这很有用,因为它有助于指导靠直觉来感知的知识的处理(intuition),特别是当我们引入旨在捕捉抽象概念(如主题)的潜在变量时(潜在变量和隐变量说的是一回事)。然而,需要指出的是,LDA模型不一定与文本相关,并且可应用于涉及数据集合的其他问题,包括来自诸如协同过滤,基于内容的图像检索和生物信息学等领域的数据。 事实上,在节中,我们将呈现在协同过滤领域的实验结果。

在形式上,我们定义下列术语: • 单词是离散数据的基本单位,假设有一个V个词组成的词汇表(词典),索引通过{1......V}表示,里面每一项代表一个单词。我们使用单位向量表示单词,它里面一项等于1其他项等于零。我们使用上标来表示第几个成分,因此第v个词在V维向量w中表示为:w v = 1 and w u = 0 for u ≠ v • 文档中的词来自一个包含N个词的词典,一个文档可以表示成N个词组成的序列,可以表示为 w = (w 1 ,w 2 ......w N ),下标表示第几个词。(注意,每个词用一个V维的向量表示,每篇文档有最多有N个不同的词,不要搞混了) • 一个语料库是含有M个文档的集合,用 D = ( w 1 , w 2 ...... w M )----注意有加粗

我们希望找到一个语料库的概率模型,它不仅为语料库成员分配高概率,而且为其他“类似”文档分配高概率。(意思就是说,语料库中某一文档的某个topic概率比较高,那么测试相似文档。也能得到相同的概率分布)

隐在狄利克雷分配(LDA)是语料库的生成概率模型。 其基本思想是文档被表示为潜在主题的随机混合,每个主题都是有不同的文字(词)分布特征的。

LDA为语料库 D 中的每个文档 w 假定以下生成过程:

在这个基本模型中做了几个简化的假设,其中一些我们在后面的章节中会删除。首先,Dirichlet分布的维度k(以及主题变量z的维度)被假定为已知并且是固定的。其次,单词概率通过k×V矩阵 β 进行参数化,其中 β ij = p(w j = 1 | z i = 1)(猜测:它表示在某个主题中索引为i的词出现的条件下,文档中第j个词出现的概率),现在我们将其视为待估计的固定量。最后,泊松假设对随后的任何事情都不是关键的,并且可以根据需要使用更真实的文档长度分布。此外,请注意,N与所有其他数据生成变量(θ和z)无关。 因此它是一个辅助变量,我们通常会忽略它在随后发展中的随机性。

一个k维Dirichlet随机变量θ可以从(k − 1)-simplex(单形或单纯形)中取值,并且在这个单纯形中有以下概率密度:

α 参数是一个k维向量,并且 α 的每一项都满足α i > 0,另外Γ(x)是 伽马函数 。狄利克雷分布在单形(属于指数族)上是一种实用的分布,具有有限维数的充分统计量,并且与多项分布共轭。

在第5节中,这些属性将有助于开发LDA的推理和参数估计算法。

给定参数α和β,主题混合分布θ、主题 z 和文档 w 的联合分布为:

上式表示给定参数α和β的条件下,文档的概率分布。

最后,利用单个文档边际概率的乘积,得到一个语料库的概率分布:

区分LDA和简单的Dirichlet多项式聚类模型很重要。 经典的聚类模型会涉及到一个两层模型:其中,一个Dirichlet为一个语料库抽样一次,一个多项式聚类变量为语料库中的每个文档选择一次,并且以聚类变量为条件,为文档选择一组词语 。与许多聚类模型一样,这种模型将文档限制为与单个主题相关联。另一方面,LDA涉及三个层次,特别是主题节点在文档中被重复采样。在这种模式下,文档可以与多个主题相关联。

图1所示类似结构通常在贝叶斯统计建模中研究,它们被称为分层模型(Gelman等,1995),或者更准确地说,是条件独立的分层模型(Kass和Steffey,1989)。这种模型通常也被称为参数经验贝叶斯模型(parametric empirical Bayes models),这个术语不仅指特定的模型结构,而且还指用于估计模型参数的方法(Morris,1983)。事实上,正如我们在第5节中讨论的那样,我们采用经验贝叶斯方法来估计一个LDA简单实现中的参数(比如,α和β等),但我们也考虑了更充分的贝叶斯方法。

如果联合分布对于置换是不变的,那么一个有限的随机变量集{z 1 ......z N }被认为是可交换的。 如果π(此π非彼π)表示某种整数从1到N的置换规则,则:

p(z 1 ......z N ) = p(z π(1) ......z π(N) )

如果每个有限的子序列是可交换的,则无限序列的随机变量是无限可交换的。

De Finetti的表示定理指出,随机变量的无限可交换序列的联合分布就好像从一些分布中抽取的一个随机参数,以该参数为条件,所讨论的随机变量是独立同分布的。

在LDA中,我们假设单词是由主题(通过固定的条件分布)生成的,而且这些主题在文档中是无限可交换的。根据菲内蒂定理,一组词汇和话题的概率必须具有以下这种形式:

θ是关于主题的多项式的随机参数。通过边缘化主题变量并赋予θ狄利克雷分布,在公式(3)中,我们获得了文档的LDA分布。

图1所示的LDA模型比传统分层贝叶斯文献中经常研究的两层模型要复杂得多。然而,通过边缘化隐藏的主题变量z,我们可以将LDA理解为两层模型。

特别是,让我们来构造单词分布p(w|θ,β):

请注意,这是一个随机量,因为它取决于θ。

我们现在为文档 w 定义下面的生成过程:(对每篇文档)

该过程将文档的边际分布定义为连续混合分布:(注意下式表示的是语料库,而非一篇文档 的分布)

图2说明了LDA的这种解释。 它描绘了LDA模型的一个特定实例引发的p(w| θ,β)的分布。请注意,在(V-1) - simplex中的这种分布仅通过k + kV个参数实现,但展现出非常有趣的多模式结构。

在本节中,我们将LDA与文本的简单潜(隐)变量模型(一元模型,一元模型的混合模型和pLSI模型)进行比较。 此外,我们提出了这些模型的统一几何解释,突出了它们的主要区别和相似之处。

在一元模型下,每个文档的单词都是独立的按照某个多项分布而绘制的,生成文档的概率为:

如果我们用一个离散的随机主题变量z(图3b)来扩充一元模型,我们就可以得到一个混合一元模型(Nigam et al.,2000)。在这个混合模型下,首先选择一个主题z,然后从条件多项式p(w | z)独立的生成N个单词,从而生成每个文档(该文档中的所有词都来自一个主题)。一篇文档的概率分布:

在每个文档仅显示一个主题的假设背景下,当从语料库做概率估计时,可以将词语分布视为主题的表示。正如第7节的实证结果所示,这种假设通常限制性太强,以至于无法有效地建模量大的文献。

相反,LDA模型允许文档在不同程度上展示多个主题。这是以(增加)一个额外参数为代价实现的:在混合一元模型中有与p(z)相关的参数有k-1个,而在LDA中与p(θ | α)有关的参数有k个。

概率潜在语义索引(pLSI)是另一个广泛使用的文档模型(Hofmann,1999)。 如图3c所示,给定了未知的主题z,pLSI模型假设文档标签d和单词w n 是条件独立的:

使用pLSI的另一个困难(也是来自于通过训练文档进行索引的分布的使用)是必须估计的参数数量与训练文档的数量呈线性增长。k-主题pLSI模型的参数是在k个未知主题上,V和M混合大小的k个多项式分布。这给出了kV + kM个参数,因此在M中线性增长。参数的线性增长表明该模型容易出现过度拟合,并且根据经验确定,过拟合确实是一个严重的问题(参见第节)。在实践中,使用回火试探来平滑模型的参数以获得可接受的预测性能。 然而,已经表明,即使在使用回火时也可能发生过度拟合(Popescul et al.,2001)。

LDA通过将主题混合权重视为一个k个参数的隐藏的随机变量,而不是大量与训练集明确关联的单个参数,来克服这两个问题。如第3节所述,LDA是一个良好定义的生成模型,可轻松推广到新文档。此外,k-topic LDA模型中的k + kV个参数不会随着训练语料库的大小而增长。我们将在节看到,LDA不会遇到与pLSI相同的过度拟合问题。

说明LDA和其他潜在主题模型之间差异的一种好方法是考虑潜在空间的几何形状,并了解每个模型下文档在该几何体中的表示方式。

上述所有四种模型(unigram, mixture of unigrams, pLSI, and LDA)都是在单词分布空间中进行操作的。每个这样的分布可以被看作是(V-1) - simplex上的一个点,我们称之为词单纯形(the word simplex)。

一元模型在词单纯形上找到一个单一的点,并假定文集中的所有单词来自相应的分布。潜变量模型考虑词单纯形上的k个点,并根据这些点构成子单形体,我们称之为主题单纯形。请注意,主题单纯形上的任何一点也是单词单纯形上的一个点。不同的潜在变量模型以不同的方式使用主题单纯形来生成文档。

• 混合一元模型假设,对于每个文档,词单纯形中的k个点(即,主题单纯形的那些角中的一个)中的一个一旦随机选择后,文档的所有单词都从对应于那一点的分布中获取。

• pLSI模型假定训练文档的每个单词来自随机选择的主题。这些主题本身来自于文档在主题上的特征分布,也就是主题单纯形上的一个角点。每个文件有一个这样的分布,训练文档集因此定义了关于主题单纯形的经验分布。

• LDA假定观察到的(训练集)和未看到的(验证集)文档中的每个词都是由随机选择的主题生成的,该主题是从具有一个随机选择参数的分布中抽取的。 从主题单纯形的平滑分布中,每个文档对此参数进行一次采样。

这些差异在图4中突出显示。

我们描述了使用LDA背后的动机,并说明了其与其他潜在主题模型相比的概念优势。在本节中,我们将注意力转向LDA下的推理和参数估计。

为了使用LDA我们需要解决的关键推理问题是计算给定文档的隐藏变量的后验分布:

不幸的是,这种分布通常难以计算。 实际上,为了规范化分布,我们将忽视隐藏变量并根据模型参数重写方程(3):

这是一个由于在潜在主题的总和中θ和β之间的耦合,而难以处理的函数(Dickey,1983)。Dickey表示这个函数是在Dirichlet分布的特定扩展下的期望,可以用特殊的超几何函数表示。它在贝叶斯环境中可用于删除(或审查,censored 暂时不明白怎么翻译)离散数据,以表示θ的后验(在该设置中,θ是随机参数)(Dickey等,1987)。

尽管后验分布对于精确推断是难以处理的,但是对于LDA可以考虑各种各样的近似推理算法,包括拉普拉斯近似,变分近似和马尔可夫链蒙特卡罗(Jordan,1999)。在本节中,我们描述了一个简单的基于凸性的变分算法,用于推断LDA,并讨论了第8节中的一些替代方案。

基于凸性的变分推理的基本思想是利用Jensen不等式来获得对数似然的可调下界(Jordan et al。,1999)。本质上,人们考虑一系列下界,它们由一组变分参数索引。变分参数由优化程序选择,该程序试图找到最可能的下限。

获得易处理的下界族的简单方法是考虑原始图形模型的简单修改,原始图形模型中一些边和节点已被移除。特别考虑图5(左)中所示的LDA模型。 θ和β之间的有问题的耦合是由于θ,z和w之间的边界而产生的。 通过丢弃这些边和w节点,并赋予所得到的简化图形模型以及自由变分参数,我们获得了潜在变量的一个分布族。这个分布族以下面这个变分分布为特征:

已经指定了简化的概率分布族,下一步是建立一个确定变分参数γ和Φ的值的优化问题。 正如我们在附录A中所示,找到对数似然的紧密下界的期望直接转化为以下优化问题:

因此,通过最小化变分分布和真实后验p(θ, z | w,α,β)之间的KullbackLeibler(KL)发散来找到变分参数的优化值。这种最小化可以通过迭代定点方法实现。 特别是,我们在附录中表明,通过计算KL散度的导数并将它们设置为零,我们得到以下一对更新方程:

最近有新的项目做,没时间翻译啦,以后有时间再填坑,此处省略3000字......

145 评论

匆匆来匆匆走

我也是法学专业的,前天刚答辩完,只不过我是刑法第一个出场,论文又涉及极具争议的邓玉娇案,所以答辩居然花了50分钟。根据我的答辩过程,说说我的感受吧,希望对你有用。自述方面,先向老师说问候语,然后介绍自己是某级某班的某某,自己论文的题目,论文主体研究的目的,意义。接着介绍论文的结构,分几个部分,每个部分写的是什么,以及自己的研究成果。最后结束语要感谢自己的导师,希望各位答辩老师指正。自述要尽量简练,让答辩老师熟悉论文的大概,尽量在5分钟内完成。你也可以上网搜一些答辩自述的范文来修改,然后背下来也行。接下来就是老师问问题了。问题只要根据你论文的内容来定,比如对于小产权房的一些法律问题发表你的观点,也会对你论文中的案例进行提问,也会问一些理论方面的问题等。每个老师的注重都不一样,根据你刚写的论文目录,我觉得你论文的每一个部分都可能被问,特别是法律界定、法律风险和小产权房问题的解决对策。所以一定要多看自己的论文,最好滚瓜烂熟,因为好多问题都是论文中会涉及到的,老师也想看看你对你论文研究的熟悉程度。一般来说,答辩需要15分钟左右(包括自述5分钟),老师会至少提2到3个问题,由易到难。我因为邓玉娇案子就杯具了,被问了十多个问题。最后,还有杀手锏,如果碰到一些很难的问题不会答,你就直接说:“老师,我水平有限,这个问题我还没有深入研究,请您指教。”这招屡试不爽,这样老师也不会为难你了。最后还是那句话,要熟悉自己的论文,答辩的时候要随即应变,不要跟老师降嘴,这样对你没好处。答辩时候没必要紧张,一般都会过的,除非你真的是答非所问,一问三不知。以上就是我的经验,祝你好运。

267 评论

相关问答

  • 茶叶论文模板

    茶文化 名字: 学号: 中国经历了几千年,中国文化也发展了几千年了。中国文化博大精深,源远流长,自古以来就以其独特的韵味吸引海内外的各界人士。

    花花要减肥 4人参与回答 2023-12-11
  • 模型建筑毕业论文

    建筑毕业论文参考文献 难忘的大学生活即将结束,我们都知道毕业前要通过毕业论文,毕业论文是一种有计划的、比较正规的检验学生学习成果的形式,那么问题来了,毕业论文应

    hdgjcxsgbjj 2人参与回答 2023-12-06
  • 贝叶斯分析毕业论文

    老师们同学们,大家上午好,我是某专业某班的某某,我的毕业设计题目是***,这个题目是我在(什么样的背景下,什么什么样的契机)选的,通过什么样的方法进行的研究,想

    我是新悦 6人参与回答 2023-12-08
  • 贝叶斯模型毕业论文

    概率图模型是用图来表示变量概率依赖关系的理论,结合概率论与图论的知识,利用图来表示与模型有关的变量的联合概率分布。由图灵奖获得者Pearl开发出来。 如果用一个

    青木震雷 5人参与回答 2023-12-08
  • 模型构建毕业论文

    随着互联网的迅猛发展,数据库系统在网络环境下的面临着一系列威胁如病毒感染、黑客攻击等。下文是我为大家搜集整理的关于网络数据库安全论文范文的内容,欢迎大家阅读参考

    闪耀的尾戒 2人参与回答 2023-12-07