空想城城主
数学思想方法是联系知识和能力的纽带,是数学科学的灵魂。为了提高教学质量,使学生更好地理解数学知识、获取解决问题的有效策略,我们必须重视数学思想方法的教学。化归方法是数学中最基本的思想方法之一。它是指数学家们把待解决的问题通过某种转化过程,归结到一类已经解决或者比较容易解决的问题中,最终获得原问题的解答的一种手段和方法。在小学数学中蕴藏着各种可运用化归的方法进行解答的内容,我们在教学中可逐步渗透这种思想方法,让学生逐步领悟直至到高年级能进行简单的应用。笔者现在担任教学的两个班是从二年级开始带起的,在这几年的教学过程中我进行了化归方法的渗透教学,到五年级时,我发现学生已能自然地想到使用它来解决数学问题了。我在教学中深刻体会到化归方法的是一种行之有效的思想方法,它有着较为广泛的用途,掌握了它将使我的学生们终身受益。以下是笔者的一些探索和心得:一、寻找生长点,化未知为已知。在学习新知时,我总是先启发学生从自己已有的知识中设法去寻找与新知识的相似之处,将新问题中陌生的形式或内容转化为比较熟悉的形式和内容。例如:数的大小比较学生从低年级起就学习了,随着对数的研究的不断深入,学生要进行两位数与三位数、万以内的数、多位数以及小数、百分数、分数的大小比较。刚开始学整数的大小比较时,我就让学生搞清:每个数位上的数字所表示的含义是不同的,因为计数单位不同。接着我再让他们理解整数的大小比较的基本方法:位数多的数比较大(计数单位大);相同位数的数,先从高位比起(计数单位最大的数位上的数比起),依次比较,直到比出大小来。有了这些基础知识的铺垫,学生在学习“万以内数的大小比较”一课时,已能通过老师的启发、同学的讨论和自己的思考来解决例题了。学习“小数的大小比较”一课时,学生能借助于自己的旧知解决整数部分的大小比较,小数部分的大小比较学生又有小数的意义为支点,理解了小数与整数大小比较的方法的相似性以及旧知识的铺垫,学生自然地将“小数的大小比较”化归为类似“整数的大小比较”问题,这一内容很快在学生的思考与讨论中解决了。小学数学教材中经常有类似的内容出现,找出新知识与旧知识的相似之处,找准知识的生长点,就能将未知的内容化归为我们熟悉的内容,学生在化归方法的渗透过程中也渐渐地学会了思考问题的方法。二、掌握规律,化繁为简。随着年级的升高,对数学知识的不断深入,在学习过程中学生们所遇到的问题也越来越复杂。而化归方法却可使比较复杂的形式、关系结构变为比较简单的形式和关系结构,这种方法的有效性在中、高年级时表现的更为突出。在中年级时,学生就开始接触到一些平面图形的面积问题。学生在学习了长方形面积公式之后,通过剪、拼、割、补等方法相继得到了平行四边形、三角形以及梯形的面积公式,这时学生对化归方法已有了朦胧的认识。有了这样的学习经验的,接下去在高年级求组合图形面积或较复杂的图形面积时,学生自然地想到了通过分割或拼接的方式也将它们化归为已学过的图形,然后得到其面积的方法。三、拓展思路,化难为易。高年级学生学过的数学知识逐渐丰富起来,在我的不断鼓励之下,学生们遇到问题总是喜欢做一做、想一想、议一议,然后在自己的独立思考过程之后大胆提出看法。随着化归思想方法的不断渗透,学生们认识到几乎所有的难题经过老师的启发或同学之间的讨论,看清其实质,总能化归为比较简单的问题来解决。这种思想方法也就在他们解题时经常被想到。《新课程标准》要求教师鼓励学生独立思考,引导学生自主探究、合作交流。在实际教学中我正是这么做的。学生对数学的学习越深入,对于问题的理解和思考方法也越来越多样化。在课堂上,许多同学都争先恐后地发表自己的意见,还能对自己的观点进行合理地解释。例如:在学习了相关的内容之后,教材中出现了1/5<( )<1/4,要求填写出合适的分数。我知道这是一道很有挑战性的习题,答案不是唯一的,学生们如果能灵活应用已有的知识就可以轻松得到答案。于是,我就将这道题交给学生,让他们自己想办法来解决。学生们刚开始面对它时紧锁眉头,接着他们或低头沉思,或埋头计算,或小声议论,经过了一段时间的思考、酝酿,他们都自信满满地举起了手。学生们根据自己对题意的理解将它化归为以下题目:①同分母分数的大小比较。8/40<(9/40)<10/40 ②异分母分数的大小比较。2/10<(2/9)<2/8 ③两位小数的大小比较。<(6/25)< ④大数(小数)接近法。1/5<(23/100)<25/100或<5/25<(6/25)<1/4。对于学生们获得的这些答案,我感到非常满意,不仅因为他们都按自己的思路大胆地去尝试获得了成功,而且他们都想到了利用化归的思想方法将难题转化为较简单的问题,然后合理利用旧知来灵活解决。说明几年潜移默化的教学已经深入人心,他们开始自觉地想到和应用它了,这正是我的教学目标之一。波利亚说:“完善的思想方法,犹如北极星,许多人通过它而找到了正确的道路。”化归思想方法在新知识学习、问题解决和知识结构梳理等方面都有重要的应用。它能帮助学生化未知为已知,化难为易,化繁为简,化曲为直。这种思想方法的渗透和简单应用的教学不仅对学生现在的学习具有辅助和促进作用,我想在他们未来的工作和学习将有更加广泛的应用。我在将来的教学过程中将一如既往地进行其他数学思想方法的渗透和简单应用,把它们与数学知识有机结合起来,帮助学生学好知识,进而优化他们的知识结构,提高学生的数学素养。
小也安安
化归思想是初中数学中常见的一种思想方法。 “化归”是转化和归结的简称。我们在处理和解决数学问题时,总的指导思想是把问题转化为能够解决的问题,这就是化归思想。 正如古之“围魏救赵”是战史上“避实就虚”的典型战例,军事上的这种策略思想迁移到数学解题方面,可以这样理解它:“实”是指繁、难、隐蔽、曲折,“虚”是指简、易、明显、径直。在解题中表现为:化难为易,避繁从简,转暗为明,化生为熟。具体的说,即把生疏的问题转化为熟悉的问题,把抽象的问题转化为具体的问题,把复杂的问题转化为简单的问题,把一般的问题转化为特殊的问题,把高次的问题转化为低次的问题,把未知转化为已知,把一个综合的问题转化为几个基本的问题等等。
会员2764311
1、 转化与化归的思想方法转化与化归的思想方法是数学中最基本的思想方法,数学中一切问题的解决(当然包括解题)都离不开转化与化归,数形结合思想体现了数与形的相互转化;函数与方程思想体现了函数、方程、不等式间的相互转化;分类讨论思想体现了局部与整体的相互转化,以上三种思想方法都是转化与化归思想的具体体现。各种变换方法、分析法、反证法、待定系数法、构造法等都是转化的手段。所以说,转化与化归是数学思想方法的灵魂。2、 转化包括等价转化和非等价转化,非等价转化又分为强化转化和弱化转化等价转化要求在转化过程中的前因后果既是充分的又是必要的,这样的转化能保证转化的结果仍为原问题所需要的结果,非等价转化其过程则是充分的或必要的,这样的转化能给人带来思维的启迪,找到解决问题的突破口,非等价变形要对所得结论进行必要的修改。非等价转化(强化转化和弱化转化)在思维上带有跳跃性,是难点,在压轴题的解答中常常用到,一定要特别重视!3、 转化与化归的原则将不熟悉和难解的问题转化为熟知的易解的或已经解决的问题,将抽象的问题转化为具体的直观的问题,将复杂的问题转化为简单的问题,将一般性的问题转化为直观的特殊的问题;将实际问题转化为数学问题,使问题便与解决。4、 转化与化归的基本类型(1) 正与反、一般与特殊的转化;(2) 常量与变量的转化;(3) 数与形的转化;(4) 数学各分支之间的转化;(5) 相等与不相等之间的转化;(6) 实际问题与数学模型的转化。
aprileatapple
论文开题报告基本要素
各部分撰写内容
论文标题应该简洁,且能让读者对论文所研究的主题一目了然。
摘要是对论文提纲的总结,通常不超过1或2页,摘要包含以下内容:
目录应该列出所有带有页码的标题和副标题, 副标题应缩进。
这部分应该从宏观的角度来解释研究背景,缩小研究问题的范围,适当列出相关的参考文献。
这一部分不只是你已经阅读过的相关文献的总结摘要,而是必须对其进行批判性评论,并能够将这些文献与你提出的研究联系起来。
这部分应该告诉读者你想在研究中发现什么。在这部分明确地陈述你的研究问题和假设。在大多数情况下,主要研究问题应该足够广泛,而次要研究问题和假设则更具体,每个问题都应该侧重于研究的某个方面。
呵呵 这个很简单啊 只要写1500字就好了啊 “这个CVD金刚石涂层刀具的热力研究”你去网上查下他的用处 怎么做出来的。。。然后在说明哪里哪里设计的好 哪里哪里
数学思想方法是联系知识和能力的纽带,是数学科学的灵魂。为了提高教学质量,使学生更好地理解数学知识、获取解决问题的有效策略,我们必须重视数学思想方法的教学。化归方
数形结合思想在解题中的应用 1. 数形结合是数学解题中常用的思想方法,数形结合的思想可以使某些抽象的数学问题直观化、生动化,能够变抽象思维为形象思维,有助于把握
沈 阳 工 程 学 院毕业设计(论文)开题报告锐钛型纳米二氧化钛粉体制备方法系 部: 能源与动力工程系 专 业: 应用化学
数学系开题报告范文 开题报告是随着现代科学研究活动计划性的增强和科研选题程序化管理的需要而产生的。下面是我为大家整理的数学系开题报告范文,欢迎阅读。 课题名称: