mimi若闻
时间序列构成要素有四种,它们是趋势(T)、季节变动(S)、周期性或循环波动(C)和不规则波动(I)。趋势也称为长期趋势,是指时间序列在长时期内呈现出来的某种持续向上或持续下降的变动。它是由某种固定性的因素作用于序列而形成的。它可以是线性的,也可以是非线性的。季节变动是指时间序列在一年内重复出现的周期性波动。循环波动或周期性波动是指时间序列中呈现出来的围绕长期趋势的一种波浪形或振荡式变动。它不同于趋势变动,不是朝着单一的方向持续运动,也不同于季节变动,季节变动有比较固定的规律,且变动周期为一年,而循环波动则无固定的规律,变动周期多为一年以上,且周期长短不一。周期性通常是由于经济环境的变化而引起的。随机性或不规则波动是由于一些偶然性的因素产生的。
一森有你
(一)时间数列的构成因素 长期趋势( T )现象在较长时期内受某种根本性因素作用而形成的总的变动趋势 季节变动( S )现象在一年内随着季节的变化而发生的有规律的周期性变动 循环变动( C )现象以若干年为周期所呈现出的波浪起伏形态的有规律的变动 不规则变动(I )是一种无规律可循的变动,包括严格的随机变动和不规则的突发性影响很大的变动两种类型
雪蓝的枫叶
我们用机器学习模型通过对历史数据来学习拟合,从而来对未来进行预测。这次分享我们主要以传统 主要从这三个方面来展开对时序分析 时序分析是一个比较有特点研究领域,这个领域始于对金融业,例如股市趋势预测、投资风险评估。后来有渗透到其他领域,对未来市场预测、动态定价、用电量预测以及在生物医药也有其一席之地。数学定义一般都是比较简短、严谨和抽象的语言来描述一个概念。按时间序列排序的一组随机数变量. 表示一个随机事件的时间序列,简记为 在时序预测中,每一个数据也就是我们看到的数值其实都是一个随机变量的观察值,随机变量服从一定分布。其实我们看到值也可以称为观察值其实是时间随机序列的一个实现,或者叫做实例,所有我们看到历史数据就是随机时间序列一组样本。 其实我们通过分析来把握这个随机时序的性质 因为我们知道每一个点都是服从整体分布。只要我们通过数据得到这些随机时序的性质,也就是掌握随机变量的模样。其实就是一个数理统计过程,也有点类似机器学习中生成模型。 其实上面就简述了时间序列任务总体方案 有了整体方案,我们一步一步按照这些步骤去去做,然后把需要填填上就完成时序预测。 上面内容一看任务的关键步骤就是时间序列分析,那么什么是时间序列分析呢?一句话时间序列分析就是对时间序列进行统计分析。 那么具体分析方法有那些呢?主要有两种,分别是描述性时序分析和统计时序分析。 时间序列分析理论中有两种平稳性定义 所谓严就是说严平稳的所有统计性质都不随时间的变化而变化。这是严平稳性质也是严平稳的定义. 以后我们对于一些概念都可以尝试用数学语言描述一下,也称协方差平稳(covariance stationary)、二阶平稳(second-order stationary)或宽平稳(wide-sense stationary),弱平稳时间序列的一阶矩和二阶矩不随时间的变化而变化。 判断时间序列的平稳性有助随后选择模型,那么的平稳性是时间序列一个重要性质,可以用来给时间序列进行分类。 我们会谈谈严平稳和弱平稳之间的关系,满足严平稳的序列具有弱平稳性,但是严平稳并不能全部涵盖弱平稳。为什么说严平稳并不能全部涵盖弱平稳?这是因为柯西分布是严平稳时间序列,但是不存在二阶矩或一阶矩,所以柯西分布就是不满足弱平稳的严平稳。 当时间序列为正态分布序列,则由二阶矩描述了正态分布的所有统计性质,此时弱平稳的正态序列也是严平稳。 因为在实际中多数时间序列都是弱平稳,所以今天我们也要重点谈谈弱平稳。 如果时间序列 的二阶矩有限 我们看随着时间变化,时间序列的均值是一个常数。 方差同均值一样也是常数,方差是二阶矩 协方差也是二阶矩,不同时刻的点是否有规律性,因为弱平稳的协方差或者准确地说自协方差是一个时间间隔的函数。当时间间隔协方差是相当的,当间隔不相同的时候对应协方差就不相同,当 s 变化 就会变化 其实我们就是在找 和 之间的关系,这里用 s 表示不同的时间间隔,例如 那么也就是说弱平稳时间序列的自协方差只与时滞 s 有关,与时间的起始位置 t 无关。 自协方差 简记为仅与时滞s 相关的一元函数形式 当 时, 就等同于方差 平稳时间序列的自相关系数也可以简记为与时滞 s 相关的一元函数形式 如果一个模型生成时间序列是平稳的,那么就说明该模型是平稳,否则就是非平稳的 这里有一段话大家可以理解一下,AR、MA和ARMA模型都是常用的平稳序列的拟合模型,但并非所有的AR、MA和ARMA模型都是平稳的。 好我们回到线性差分方程,我们重点说一下差分方程两种表达方式,其中我们先说一下什么是滞后算子。 假设已知时间序列 和 有如下关系 其实就是我们不用 来表示 是的y 而表达成为 就是我们在程序中看到 lag 也有用 B 表示的,以此类推 所以用滞后算子表达出多项式典型的 p 阶线性差分方程为今天我们主要说时间序列的一些推导公式,之前看些资料,其中关于时间序列中常用AR模型、MA模型背后推导说的比较深,不易于理解。最近看了一些资料,适当地总结一些。 时间序列虽然简单、但是要是想真正弄懂也需要花费一些功夫,将序列分解为一下形式。这通过加法模型将这些项来表示时间序列,其中趋势项和季节项我们是可以通过模型来拟合,因为他们都是有规律可循的,需要我们能够通过模型学出来GPD 就是一个趋势模型,而且是随着时间而不断成指数增长。 超市的人流,具有周期性,每周的人流在周末人流要相对于周一到周五人要多一些。每天人流下午要相对于上午人流要多一些。那么也就是说明我们对 ,我们之前讨论过时间序列是一个随机过程,也就是 的联合分布,通常我们研究一个联合分布是一个比较复制的问题。 这是我们在统计模型时候,最早的NPL 分析用到链式法则来表示联合概率一种 学习过概都知道条件概率,时序每一个时刻随机变量都是和他之前的随机时间点的概率是相关。这就是联合概率,要计算这个联合概率是需要相当大的计算量。当 a 小于 1 说明模型是稳定,反之说明模型是不稳定,为什么会有这样结论。我们可以结合小球的落地原理来项这个问题。 其实我们非齐次项差分方程 下面是差分方程通解其中 B 也即是滞后算子L,这里用 B 来表示,这里还是再演示一下吧接下来计算特征解,提取左边 可以表示无限变量只和形式,这个大家应该不会陌生,而且 类似 ,所以替换替换等比数列之和。重点相关性研究 和 可以用 计算出来。AR序列相关性是随着负指数衰减,MA(q) 模型是有限相关性, 有限时间序列相关 根据均方差最小原则,来进行预测 也就是我们讨论的AR模型,那么AR模型就可以用于时间序列分析这样时间序列步长间隔相同间分布是一致,这样时间序列才是平稳的时间序列。线性filter这是研究时间序列另一种模型,通过频域来研究时间序列
孤星泪新民
传统时间序列聚类的缺点: 1)时间序列聚类的研究一般采用等长划分,会丢失重要特征点,对聚类结果有负面影响。 2)采用时间序列测量值不能准确度量相似度。 如下埃博拉出血热、卫生部在数值上很相似,但教育部和卫生部在形状更相似。若是以形状作为度量传统的欧氏距离可能就不太合适了。 不等长时间序列滑窗STS聚类算法: 1)通过标准分数z_score预处理,消除时间序列观测值数量级差异的影响。 2)更改了相似度计算的方式,采用基于滑窗的方法计算不等长序列的距离。 3)采用类k-means的聚类算法的中心曲线计算方法。 时间序列数据因其趋势信息的直观展现形式,广泛应用于社交网络、互联网搜索和新闻媒体数据分析中。例如:Google应用搜索流感的相关信息的时间序列预测流感爆发趋势。根据某话题热度时间序列数据趋势的规律性,通过聚类区分不同类型的时间序列数据。同一类簇的Twitter话题具有相同或相似的发展趋势,进而应用于话题的发展趋势的预测。 时间序列聚类算法可以分为两类。 1)基于原始数据的时间序列聚类算法。 2)基于特征的时间序列聚类算法。 基于特征的时间序列聚类算法指根据原始数据从时间序列中提取形态特征(极值点位置、分段斜率)、结构特征(平均值、方差等统计值特征)、模型特征(模型的预测值),从而根据这些特征值进行聚类。这类方法的优点解决了不等长时间序列聚类问题,缺点是减弱了原始数据值得影响,聚类的形状趋势信息往往比较粗糙。 3. HOW 一、距离度量公式 STS距离计算的是累加时间序列间每个时间间隔斜率差的平方,公式 如上图所示,g1、g2和g2、g3的欧式距离的数值更相近。g1、g2的STS距离大于g2、g3的数值。在形状距离上,STS距离计算方式表现更好,一定程度上可以解决欧式距离度量时间序列局部特征信息确实和受观测数值数量级差异影响大的问题,但是依旧无法度量不等长时间序列的距离。 基于滑窗的STS距离公式。 如上图所示,当计算不同长度的时间序列的s和r的距离时,先不断平移时间序列s,然后找到s和r距离最近的字段,就如同上图虚线之间的位置,此时s和r距离最近,这个最近距离作为s和r之间的距离。 二、预处理过程 z-score标准分数用数据观测值和观测值平均值的距离代替原观测值。z-score处理后的数据平均值为0,标准差为1。标准差的作用是统一量纲,去除数值的数量级差异影响。 总结 本论文提出了形状距离的不等长时间序列的聚类方法。我们可以学到的有 1)z-score统一量纲,消除数值数量级差异,聚类效果更好。 2)计算x和y时间序列的STS距离,可以平移其中一个时间序列,求最小值作为STS距离值,这就消除了同一时间序列不同起始点的影响。
朋友,建 你自己写得了。现在论文都是要钞票,价格又高。我前几个月的硕士论文在那写的在天下文库写的,质量不错,虽然过了,但是用了不少钱。自己写得了,实在不行,你可
时代金融摘 要:关键词:一、 引言一个国家的国民经济有很多因素构成, 省区经济则是我国国民经济的重要组成部分, 很多研究文献都认为中国的省区经济是宏观经济的一个
改革开放以来,我国化工行业发展迅速,为国民经济发展做出了重要贡献。同时,我国化工行业经营环境也日趋复杂,面临的风险和安全隐患也越来越大。下面是我为大家推荐的化工
时间管理论文篇三:试论大学生时间管理 报告 前言 时间管理英文名:Time Management 大学的时间是我们人生
当前间谍的常用见面方式一般都是派遣入境,他们会以各种身份通过多种渠道入境之后开展这个活动,其次还有实际窃取,网络窃密和技术窃密;我们在日常生活当中一定要有反侦察