• 回答数

    6

  • 浏览数

    176

优优来来
首页 > 学术期刊 > 初中数学小论文800字

6个回答 默认排序
  • 默认排序
  • 按时间排序

realnextgen

已采纳

"数学是一切科学之母"、"数学是思维的体操",它是一门研究数与形的科学,它不处不在。要掌握技术,先要学好数学,想攀登科学的高峰,更要学好数学。 数学,与其他学科比起来,有哪些特点?它有什么相应的思想方法?它要求我们具备什么样的主观条件和学习方法?本讲将就数学学科的特点,数学思想以及数学学习方法作简要的阐述。 一、数学的特点(一) 数学的三大特点严谨性、抽象性、广泛的应用性所谓数学的严谨性,指数学具有很强的逻辑性和较高的精通性,一般以公理化体系来体现。 什么是公理化体系呢?指得是选用少数几个不加定义的概念和不加逻辑证明的命题为基础,推出一些定理,使之成为数学体系,在这方面,古希腊数学家欧几里得是个典范,他所著的《几何原本》就是在几个公理的基础上研究了平面几何中的大多数问题。在这里,哪怕是最基本的常用的原始概念都不能直观描述,而要用公理加以确认或证明。 中学数学和数学科学在严谨性上还是有所区别的,如,中学数学中的数集的不断扩充,针对数集的运算律的扩充并没有进行严谨的推证,而是用默认的方式得到,从这一点看来,中学数学在严谨性上还是要差很多,但是,要学好数学却不能放松严谨性的要求,要保证内容的科学性。 比如,等差数列的通项是通过前若干项的递推从而归纳出通项公式,但要予以确认,还需要用数学归纳法进行严格的证明。 数学的抽象性表现在对空间形式和数量关系这一特性的抽象。它在抽象过程中抛开较多的事物的具体的特性,因而具有十分抽象的形式。它表现为高度的概括性,并将具体过程符号化,当然,抽象必须要以具体为基础。 至于数学的广泛的应用性,更是尽人皆知的。只是在以往的教学、学习中,往往过于注重定理、概念的抽象意义,有时却抛却了它的广泛的应用性,如果把抽象的概念、定理比作骨骼,那么数学的广泛应用就好比血肉,缺少哪一个都将影响数学的完整性。高中数学新教材中大量增加数学知识的应用和研究性学习的篇幅,就是为了培养同学们应用数学解决实际问题的能力。 二、高中数学的特点往往有同学进入高中以后不能适应数学学习,进而影响到学习的积极性,甚至成绩一落千丈。为什么会这样呢?让我们先看看高中数学和初中数学有些什么样的转变吧。 1、理论加强2、课程增多3、难度增大4、要求提高三、掌握数学思想高中数学从学习方法和思想方法上更接近于高等数学。学好它,需要我们从方法论的高度来掌握它。我们在研究数学问题时要经常运用唯物辩证的思想去解决数学问题。数学思想,实质上就是唯物辩证法在数学中的运用的反映。中学数学学习要重点掌握的的数学思想有以上几个:集合与对应思想,初步公理化思想,数形结合思想,运动思想,转化思想,变换思想。 例如,数列、一次函数、解析几何中的直线几个概念都可以用函数(特殊的对应)的概念来统一。又比如,数、方程、不等式、数列几个概念也都可以统一到函数概念。 再看看下面这个运用"矛盾"的观点来解题的例子。 已知动点Q在圆x2+y2=1上移动,定点P(2,0),求线段PQ中点的轨迹。 分析此题,图中P、Q、M三点是互相制约的,而Q点的运动将带动M点的运动;主要矛盾是点Q的运动,而点Q的运动轨迹遵循方程x02+y02=1①;次要矛盾关系:M是线段PQ的中点,可以用中点公式将M的坐标(x,y)用点Q的坐标表示出来。 x=(x0+2)/2 ②y=y0/2 ③显然,用代入的方法,消去题中的x0、y0就可以求得所求轨迹。 数学思想方法与解题技巧是不同的,在证明或求解中,运用归纳、演绎、换元等方法解题问题可以说是解题的技术性问题,而数学思想是解题时带有指导性的普遍思想方法。在解一道题时,从整体考虑,应如何着手,有什么途径?就是在数学思想方法的指导下的普遍性问题。 有了数学思想以后,还要掌握具体的方法,比如:换元、待定系数、数学归纳法、分析法、综合法、反证法等等。只有在解题思想的指导下,灵活地运用具体的解题方法才能真正地学好数学,仅仅掌握具体的操作方法,而没有从解题思想的角度考虑问题,往往难于使数学学习进入更高的层次,会为今后进入大学深造带来很有麻烦。 在具体的方法中,常用的有:观察与实验,联想与类比,比较与分类,分析与综合,归纳与演绎,一般与特殊,有限与无限,抽象与概括等。 要打赢一场战役,不可能只是勇猛冲杀、一不怕死二不怕苦就可以打赢的,必须制订好事关全局的战术和策略问题。解数学题时,也要注意解题思维策略问题,经常要思考:选择什么角度来进入,应遵循什么原则性的东西。一般地,在解题中所采取的总体思路,是带有原则性的思想方法,是一种宏观的指导,一般性的解决方案。 中学数学中经常用到的数学思维策略有: 以简驭繁、数形结全、进退互用、化生为熟、正难则反、倒顺相还、动静转换、分合相辅如果有了正确的数学思想方法,采取了恰当的数学思维策略,又有了丰富的经验和扎实的基本功,一定可以学好高中数学。 四、学习方法的改进身处应试教育的怪圈,每个教师和学生都不由自主地陷入"题海"之中,教师拍心某种题型没讲,高考时做不出,学生怕少做一道题,万一考了损失太惨重,在这样一种氛围中,往往忽视了学习方法的培养,每个学生都有自己的方法,但什么样的学习方法才是正确的方法呢?是不是一定要"博览群题"才能提高水平呢? 现实告诉我们,大胆改进学习方法,这是一个非常重大的问题。 (一) 学会听、读我们每天在学校里都在听老师讲课,阅读课本或者资料,但我们听和读对不对呢? 让我们从听(听讲、课堂学习)和读(阅读课本和相关资料)两方面来谈谈吧。 学生学习的知识,往往是间接的知识,是抽象化、形式化的知识,这些知识是在前人探索和实践的基础上提炼出来的,一般不包含探索和思维的过程。因此必须听好老师讲课,集中注意力,积极思考问题。弄清讲得内容是什么?怎么分析?理由是什么?采用什么方法?还有什么疑问?只有这样,才可能对教学内容有所理解。 听讲的过程不是一个被动参预的过程,在听讲的前提下,还要展开来分析:这里用了什么思想方法,这样做的目的是什么?为什么老师就能想到最简捷的方法?这个题有没有更直接的方法? "学而不思则罔,思而不学则殆",在听讲的过程中一定要有积极的思考和参预,这样才能达到最高的学习效率。 阅读数学教材也是掌握数学知识的非常重要的方法。只有真正阅读和数学教材,才能较好地掌握数学语言,提高自学能力。一定要改变只做题不看书,把课本当成查公式的辞典的不良倾向。阅读课本,也要争取老师的指导。阅读当天的内容或一个单元一章的内容,都要通盘考虑,要有目标。 比如,学习反正弦函数,从知识上来讲,通过阅读,应弄请以下几个问题: (1) 是不是每个函数都有反函数,如果不是,在什么情况下函数有反函数? (2)正弦函数在什么情况下有反函数?若有,其反函数如何表示? (3)正弦函数的图象与反正弦函数的图象是什么关系? (4)反正弦函数有什么性质? (5)如何求反正弦函数的值? (二) 学会思考爱因斯坦曾说:"发展独立思考和独立判断的一般能力应当始终放在首位",勤于思考,善于思考,是对我们学习数学提出的最基本的要求。一般来说,要尽力做到以下两点。 1、善于发现问题和提出问题2、善于反思与反求

211 评论

小龙女kelly

初中数学小论文今天,在我们数学俱乐部里,老师给我们研究了一道有趣的题目,其实也是一道有些复杂的找规律题目,题目是这样的“有一列数:1,2,3,2,1,2,3,4,3,2,3,4,5,4,3,4,5,……。这列数字中前240个数字的和是多少?”我一拿到题目,心里猛然想到,这题目必须得按照规律来做!!!想法一:开始我便先试着先3个一组来求和,6,5,10,9,12,15,14……。这样一看,这些数字各有特征,关键就是找不出合适的规律。于是,我又找4个一组来求和,8,10,12,16,20……。仔细一看,好像也没什么规律,我只好再试着找5个一组来求和,9,14,19,24……,这样一来就非常明显的看出它们是等数列,我非常高兴,再把240÷5=48(组),5个一组,(1、2、3、2、1),(2、3、4、3、2),(3、4、5、4、3),(4、5、6、5、4)……那么就可以求出末项的和,9+47×5=244,把首项加末项的和乘项数除以2,(9+244)×48÷2=6072。这样就完成了!想法二:我又发现每组开头第一个数字恰好分别是1,2,3,4……48,那么另一种方法就产生了,(1+48)×48÷2×2+(2+49)×48÷2×2+(3+50)×48÷2×2=6072。这样想也合乎情理,也是一个理得清楚而且又实用的方法!想法三:我又发现有n组时,他的和也是把(1+2+3+4+……+n)×5+4n=你要求那n组数的和,比如(1+2+3+4+……+48)×5+4×48=6072。这个规律也是要通过不断来细心观察与研究得来的,这个规律虽然有些抽象,但如果是自己弄明白了,那还要比其他两种方法更容易些。我做的只是其中的三种解法,其实方法还有很多,但是要靠自己来找其中的规律,解其中的奥秘!

179 评论

是淡淡的忧伤啊

自己网上去查一篇啊 而且悬赏分也没有.....

158 评论

黄某某007luffy

噢噢111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111

137 评论

a淡淡小雨

恰当及时反馈,优化初中数学课堂教学

论文摘要: 教学是一个有目的、有方向的、完整有序的复杂信息传递系统,在这一系统中,教师起主导作用,既是教学信息的传输者,又是反馈信息的接受者,如学生的作业、试卷、行为、表情、语言乃至课堂气氛都是一种教学反馈。教学反馈是教学系统有效发展的关键环节,优化教学反馈是改革和优化数学教学、提高教学质量的前提和保证。本文对恰当及时反馈,优化初中数学课堂教学进行了研究。

关键词: 初中数学 ; 教学反馈 ; 优化

教与学是交往、互动的,师生双方相互启发、相互交流、相互沟通、相互补充,在这个过程中老师与学生分享彼此的思考、经验和知识,交流情感,体验观念,从而达到共识,实现教学相长和共同发展。

作为起到主导作用的初中数学教师,一定要通过各种方式发现并及时关注教学中的信息反馈,恰当处理和调整教学思路、教学进程以及教学节奏,从而有效优化初中数学课堂教学。教学中常采用以下不同的反馈方式对学生进行评价,可以记录效果,总结归纳数据,评定反馈方式的使用效果。

一、课堂提问

课堂提问是教学过程中常用的反馈手段,有效的提问要做到以下几方面:

1.必须充分备教材和备学生

老师首先要吃透教材,才能活用教材,不同的课型提问的侧面也不尽相同,要灵活设问,引导学生思考,有难度或综合性强的题目要学会把问题分解,对学生进行分层提问,做到提问及时,问在有疑问处,有疑问处才有争论,有争论才能辩是非。

2.提问要适当,不能太难也不能太易

根据前苏联心理学家维果茨基的“最近发展区”理论,要让学生“跳一跳能把果子摘下来”,这就是说,要让学生经过思考,努力,交流合作基础上把问题解决,特别是基础差的学生,提问一些较简单的题目,增强他们学习的信心,也许比学会知识更重要。

二、小组合作学习在课堂教学中的反馈作用

安排课堂训练或操作练习,教师行间巡视,深入到小组中去,了解学生合作的效果,讨论的焦点,避免盲目合作,发现问题,了解个体差异,以便因材施教,有针对性地进行个别指导。

三、课堂检测与矫正对课堂教学的优化作用

教师要重视过程反馈的设计,选准反馈时机,制定恰当的反馈方式,辩准反馈信息,迅速采取相应的教学措施,调整教学进程,甚至不惜临时改变教学内容和计划,求得理想的教学调节效应。

教师要善于提出问题,巧设难局,启发思维,使学生经常面临反馈的情景,提高学生分析、解决问题的能力。指导学生经常进行自我反馈训练,掌握自我评价、自我调节、自我调整的方法,为学生自我反馈创造必要的条件。

1.教学反馈的优化原则

(1)明确性原则。教师对学生学习的评价应明确、具体、简洁、精辟、深刻,初中数学论文网切忌笼统、含糊、模棱两可。例如课堂提问,学生回答后教师应重视对其回答作出恰如其分的评价,如果不加可否或讲几句含糊其词的意见,学生从教师处得到的反馈信息就是糊涂的、有害的,就会因结果不明而导致学习效率低下。

(2)及时性原则。根据心理学的有关实验表明:及时反馈的教学效果,要大大优于隔日反馈。很多学习成绩差的学生,就是因为教师忽视了教学反馈,未能及时发现学生学习中出现的偏差并进行矫正和补救,以至给以后的学习造成了困难。

(3)针对性原则。即教师针对学生的个体差异,从所面对的学生的特定情况出发,充分考虑到他们身心发展的特点和实际的接受能力,给予其客观而恰当的评价。

2.教学反馈的优化功能

(1)激发功能。教学反馈对教和学双方都具有激发新动机的作用。

一方面,教师依据教学目标,对照学生的学习状态,向学生传递评价、启发、指导等反馈信息;学生接受后,会从中受到教益和激励,增强学习信心和兴趣,从而强化所学知识的巩固性,激发起学生进一步获得成功的新动机;或因得到的评价不高,自尊心受到影响而调整、改进学习活动。

另一方面,学生的学习效果以及对教学内容的理解或疑惑,对教师的肯定或否定、接受或拒绝等反馈信息,也能激发教师的教学积极性,或激起教师对自己的教作出调整、改进。

(2)检测功能。教师通过学生的反馈信息,了解到学生学习过程中遇到的疑点、难点,诊断出其思维障碍的具体症结,在教学中做到有的放矢,因势利导。

在检测功能中不可忽视的是前馈的作用。前馈是在没有出现偏差之前进行判断和调控,即教师根据以往教学中获得的反馈信息,在教学前就已了解到学生的已有水平和准备状态,估计到学生可能出现的反馈情况,从而可加强教学的针对性,提高教学效率。

(3)调控功能。维纳认为,世界上任何系统只有通过反馈信息才能实现控制。教学反馈是对教学系统实现动态的目标控制最优化的根本条件,其中学生学习行为活动和结果的反馈,是教师自我调控和对整个教学过程进行有效调控的依据;而学生也根据教学的反馈,进行自我判定、自我调控,以应对下一步的学习活动。只有教学双方的相互适应、积极调控,教学系统才能正常、高效地运行和发展。

四、反馈教学的优化途径

1.充分备课,及时预测

在开放式教学中,课堂教学过程是动态发展的,是适时变化的,学生的课堂表现、课堂需求应成为调整教学活动进程的基本依据。开放式教学在课堂上没有固定不变的教学内容和教学过程。

除了教材内容外,往往会因解决问题的需要而加以调整;教师事先拟就的教学计划被打乱、教学进度或者加快或者减慢的情况也时有发生。经验丰富的教师在备课时能预测到学生在课堂上对知识的理解、技能的掌握、方法的运用所出现的问题,并有针对性地设计教法。

2.立足课堂,勤于捕捉

课堂是获取信息的主渠道。教师仅凭过去的经验或主观愿望去估计是不行的,必须在课堂上认真观察学生反应,及时调整教法。有的教师讲授时不注意观察学生的神态,也不去听取学生的反映,等到批改作业或阅卷时才发现问题一大堆,这样就不利于及时反馈与矫正。

3.课后反思,及时小结

讲课后反思、小结并非被大多数教师所重视,其实讲课后立即回顾本堂课的成功之处和值得改进的地方,以及学生中出现的主要问题和产生这些问题的原因,及时分析应采取的矫正措施,并简明地记在本节课教案后面,这样既可作为下节课的矫正内容,又可作为下一次再教时的重要参考资料。若能长期坚持,注意积累和整理,便是切合实际的难得的教学经验。

初中数学教学要养成反思的习惯

论文关键词:初中数学教学 反思 习惯

随着新课改的不断深入,教学反思已经成为了教师自我教学行为反省、自我教学方式矫正和不断提高知识素养、教学水平的重要过程。教学反思即是教师通过对自己教学活动过程的理性观察和教学结果的宏观判断,查漏补缺,及时矫正,从而提高其教学能力及课堂效率的活动。

从事初中数学教育多年,认为要想提高教学质量,教师就必须在每一节课,或是每一段时间的教育和学习后,针对教学现象和教学结果,对自己的教学过程进行深刻的自我反思,提高对教学问题的敏感度,从而养成自觉反思的行为习惯,挣脱束缚,常教常新,从操作型教师走向学者型教师,提高教学能力和教学质量。

一、反思教学设计

教学设计是指在该节课学生需要理解的概念、掌握的方法、熟悉的技巧、领会的数学思想等,是教师进一步教学的基础和前提,是学生提高自身综合能力的必具条件。

教师反思教学目标,实际就是要通过反思教学过程真正弄清楚学生到底有没有理解概念的内涵和外延、定理的前提和结论;会不会灵活运用定理解题,定理本身包含的思想方法、定理的适用范围如何、本节课所要掌握的基本方法是否已经掌握等。要知道这一切,首先我们必须留意学生在课堂上的一举一动。

如果上课学生精力集中、反映积极、动作迅速、心情愉快等,则意味着学生态度热情、主动参与、学有所得、学有所乐。如果上课学生无精打采、置若罔闻、拖拉疲塌、焦头烂额等则意味着课堂气氛沉闷、学生积极性不高、学习很吃力,效果欠佳。

其次检查学生做课堂练习的情况。若多数同学能在规定的时间里正确完成规定的题目,则教学目标可以说基本达到;若多数同学迟迟动不了笔或只能做题目的某些步骤或即使做了也存在这样那样的问题,则说明学生对本节内容没有真正弄懂,知识技能没有过关。

再次是批阅学生课后作业情况。如果学生做题思路清晰、推理有据、定理公式运用得当、计算准确、步骤有详有略,说明学生已掌握了基本的数学知识和思维方法。相反如果学生做题颠三倒四、乱套公式、乱用定理、计算错误不断等说明学生基础知识不过关、技能不过关。

通过以上一系列的方法手段,找出问题所在,思考补救的措施。该补充的就一定要补充,该纠正的错误一定要纠正;该集体强调的一定要集体强调,该个别辅导的就要个别辅导。将当堂课内容补起来,以便进行下面的学习。

二、反思教学方法

教学方法是为完成教学任务、达到教学目标所采取的措施手段及所借助的辅助工具。俗话说:“教学有法,教无定法。”教学方法的选择,取决于学生的实际认知水平。通常根据教学内容的不同,我们可以采用讲授式、启发式、发现式、问题式等教学方法,也可以利用挂图、模型、实物、小黑板、多媒体课件等辅助教学。

教育论文反思教学方法,首先要根据学生在当堂课的表现,从他们学习中最吃力、最不易理解、最不易掌握的地方突破,从他们最无聊、最无味的地方入手,从他们容易忽略却很富有教学价值的地方拓展。其次教师要寻求最利于学生接受、学生也最乐于接受、最利于调动学生学习积极性、最利于培养学生科学的创造性、最利于学生各方面协调发展的最佳教学形式。

如果课题引入得太平淡,激不起学生的学习兴趣,可以给学生讲解数学家的成长历程、新奇的数学问题、身边的数学问题等;如果是定理公式的推导证明仅仅限于教材、学生不好理解,可以挖掘新意改变策略,以充实的内容、浅显易懂、循序渐进的形式满足同学们的求知欲,同时激发其科学知识的创造性。

如果是例题习题的处理缺乏深度,学生不好掌握,可以层层深入、举一反三,在同学们掌握基本方法、基本技能的前提下尽量培养他们的集中思维和发散思维。只要我们善于观察、善于思考,就一定能逐步提高自身的教学水平,教学质量也一定能够提高。

三、 反思自身教育行为

自身教育行为是指教师对自己的教学进行自我观察、自我监控、自我调节、自我评价后提出一系列的问题,以促进自身反思能力的提高。这种方法适用于教学的全过程。

如设计教学方案时,可自我提问:“学生已有哪些生活经验和知识储备”,“怎样依据有关理论和学生实际设计易于为学生理解的教学方案”,“学生在接受新知识时会出现哪些情况”,“出现这些情况后如何处理”等。

备课时,尽管教师会预备好各种不同的学习方案,但在实际教学中,还是会遇到一些意想不到的问题,如学生不能按计划时间回答问题,师生之间、同学之间出现争议等。这时,教师要根据学生的反馈信息,反思“为什么会出现这样的问题,我如何调整教学计划,采取怎样有效的策略与措施”,从而顺着学生的思路组织教学,确保教学过程沿着最佳的轨道运行。

教学后,教师可以这样自我提问:“我的教学是有效的吗”,“教学中是否出现了令自己惊喜的亮点环节,这个亮点环节产生的原因是什么”,“哪些方面还可以进一步改进”,“我从中学会了什么”等。

四、反思教学评估

教学评估是在教师完成教学目标,学生完成学习任务的情况下,教学意义、思维培养、陶冶道德情操的升华,是教育教学的更高境界。有一句教育格言说得好“教育是一项事业,需要我们无私的奉献;教育是一门科学,需要我们刻苦的钻研;教育是一门艺术,需要我们不断的创新。”反思教学价值,就是挖掘该节课富含的认识教育价值、情感教育价值、行为教育价值。

要知道每一种数学思想都包含着一种人生哲理,每一种解题方法都丰富着学生的价值观和世界观,每一点滴的数学知识都净化着学生的心灵。只要我们细心观察、认真分析、深入思考、努力拓展,不放过课堂教学中的蛛丝马迹,不放过教材中的一字一句,我们一定能做到,我们也一定能做好。

如分类讨论的思想教学生辨证地看问题,函数的思想教学生既要注重问题的现象更要认识到问题的本质;数形结合的方法教学生认识什么是数学美、怎样欣赏数学美、如何运用数学美,反证法让学生认识到解决问题不一定要正面出击、有时侧面迂回效果更好;数学家的成长历程可以给学生树立榜样、激励学生刻苦学习;我国悠久灿烂的数学发展史可以让学生产生强烈的民族自豪感,激起同学们的爱国主义热情,从而奋发读书献身祖国的现代化建设。

现代教育不是要教出一群书呆子,不是要教出一群高分低能儿,而是要为学生未来着想,为他们丰富多彩的人生作必要的知识准备和心理准备。知识是死的,不知道是可以从书本上学到,而能力素质却是无形的、是无法教会的。

一个人的素质决定了他的生存能力和发展前景。归根结底,教学的价值在于塑造人,交给学生做人的道理,交给学生科学的思维方式和自我发展的基本素质,让他们都成为对社会有用的人。

342 评论

最爱串串香

可以自己删减删减。 数学论文 一、数学技能的含义及作用 技能是顺利完成某种任务的一种动作或心智活动方式。它是一种接近自动化的、复杂而较为完善的动作系统,是通过有目的、有计划的练习而形成的。数学技能是顺利完成某种数学任务的动作或心智活动方式。它通常表现为完成某一数学任务时所必需的一系列动作的协调和活动方式的自动化。这种协调的动作和自动化的活动方式是在已有数学知识经验基础上经过反复练习而形成的。如学习有关乘数是两位数的乘法计算技能,就是在掌握其运算法则的基础上通过多次的实际计算而形成的。数学技能与数学知识和数学能力既有密切的联系,又有本质上的区别。它们的区别主要表现为:技能是对动作和动作方式的概括,它反映的是动作本身和活动方式的熟练程度;知识是对经验的概括,它反映的是人们对事物和事物之间相互联系的规律性的认识;能力是对保证活动顺利完成的某些稳定的心理特征的概括,它所体现的是学习者在数学学习活动中反映出来的个体特征。三者之间的联系,可以比较清楚地从数学技能的作用中反映出来。 数学技能在数学学习中的作用可概括为以下几个方面: 第一,数学技能的形成有助于数学知识的理解和掌握; 第二,数学技能的形成可以进一步巩固数学知识; 第三,数学技能的形成有助于数学问题的解决; 第四,数学技能的形成可以促进数学能力的发展; 第五,数学技能的形成有助于激发学生的学习兴趣; 第六,调动他们的学习积极性。 二、数学技能的分类 小学生的数学技能,按照其本身的性质和特点,可以分为操作技能(又叫做动作技能)和心智技能(也叫做智力技能)两种类型。 l.数学操作技能。操作技能是指实现数学任务活动方式的动作主要是通过外部机体运动或操作去完成的技能。它是一种由各个局部动作按照一定的程序连贯而成的外部操作活动方式。如学生在利用测量工具测量角的度数、测量物体的长度,用作图工具画几何图形等活动中所形成的技能就是这种外部操作技能。操作技能具有有别于心智技能的一些比较明显的特点:一是外显性,即操作技能是一种外显的活动方式;二是客观性,是指操作技能活动的对象是物质性的客体或肌肉;王是非简约性,就动作的结构而言,操作技能的每个动作都必须实施,不能省略和合并,是一种展开性的活动程序。如用圆规画圆,确定半径、确定圆心、圆规一脚绕圆心旋转一周等步骤,既不能省略也不能合并,必须详尽地展开才能完成的任务。 2.数学心智技能。数学心智技能是指顺利完成数学任务的心智活动方式。它是一种借助于内部言语进行的认知活动,包括感知、记忆、思维和想象等心理成分,并且以思维为其主要活动成分。如小学生在口算、笔算、解方程和解答应用题等活动中形成的技能更多地是一些数学心智技能。数学心智技能同样是经过后天的学习和训练而形成的,它不同于人的本能。另外,数学心智技能是一种合乎法则的心智活动方式,“所谓合乎法则的活动方式是指活动的动作构成要素及其次序应体现活动本身的客观法则的要求,而不是任意的”。这些特性,反映了数学心智技能和数学操作技能的共性。数学心智技能作为一种以思维为主要活动成分的认知活动方式,它也有着区别于数学操作技能的个性特征,这些特征主要反映在以下三个方面。 第一,动作对象的观念性。数学心智技能的直接对象不是具有物质形式的客体本身,而是这种客体在人们头脑里的主观映象。如20以内退位减法的口算,其心智活动的直接对象是“想加法算减法”或其他计算方法的观念,而非某种物质化的客体。 第二,动作实施过程的内隐性。数学心智技能的动作是借助内部言语完成的,其动作的执行是在头脑内部进行的,主体的变化具有很强的内隐性,很难从外部直接观测到。如口算,我们能够直接了解到的是通过学生的外部语言所反映出来的计算结果,学生计算时的内部心智活动动作是无法看到的。 第三,动作结构的简缩性。数学心智技能的动作不像操作活动那样必须把每一个动作都完整地做出来,也不像外部言语那样对每一个动作都完整地说出来,它的活动过程是一种高度压缩和简化的自动化过程。因此,数学心智技能中的动作成分是可以合并、省略和简化的。如20以内进位加法的口算,学生熟练以后计算时根本没有去意识“看大数”、“想凑数”、“分小数”、“凑十”等动作,整个计算过程被压缩成一种脱口而出的简略性过程。 三、数学技能的形成过程 1.数学操作技能的形成过程。 数学操作技能作为一种外显的操作活动方式,它的形成大致要经过以下四个基本阶段。 (1)动作的定向阶段。这是操作技能形成的起始阶段,主要是学习者在头脑里建立起完成某项数学任务的操作活动的定向映象。包括明确学习目标,激起学习动机,了解与数学技能有关的知识,知道技能的操作程序和动作要领以及活动的最后结果等内容。概括起来讲,这一阶段主要是了解“做什么”和“怎样做”两方面的内容。如画角,这一阶段主要是了解需画一个多少度的角(即知道做什么)和画角的步骤(即怎么做),以此给画角的操作活动作出具体的定向。动作定向的作用是在头脑里初步建立起操作的自我调节机制;通过对“做什么”和“怎么做”的了解而明确实施数学活动的程序与步骤,从而保证在操作中更好地掌握其动作的活动方式。 (2)动作的分解阶段。这是操作技能进入实际学习的最初阶段,其作法是把某项数学技能的全套动作分解成若干个单项动作,在老师的示范下学生依次模仿练习,从而掌握局部动作的活动方式。如用圆规按照给定的半径画圆,在这一阶段就可把整个操作程序分解成三个局部动作:①把圆规的两脚张开,按照给定的半径定好两脚间的距离;②把有针尖的一脚固定在一点上,确定出圆心;③将有铅笔尖的一脚绕圆心旋转一周,画出圆。通过对这三个具有连续性的局部动作的依次练习,即可掌握画圆的要领。学生在这一阶段学习的方式主要是模仿,一方面根据老师的示范进行模仿;另一方面也可以根据有关操作规则的文字描述进行模仿,如根据几何作图规则对各个动作活动方式的表述进行模仿。模仿不一定都是被动的和机械的,“模仿可以是有意的和无意的;可以是再造性的,也可以是创造性的。”②模仿是数学操作技能形成的一个不可缺少的条件。 (3)动作的整合阶段。在这一阶段,把前面所掌握的各个局部动作按照一定的顺序连接起来,使其形成一个连贯而协调的操作程序,并固定下来。如画圆,在这一阶段就可将三个步骤综合起来形成一体化的操作系统。这时由于局部动作之间尚处在衔接阶段,所以动作还难以维持稳定性和精确性,动作系统中的某些环节在衔接时甚至还会出现停顿现象。不过,总的来讲这一阶段动作之间的相互干扰逐步得到排除,操作过程中的多余动作也明显减少,已形成完整而有序的动作系统。 (4)动作的熟练阶段。这是操作技能形成的最后阶段,在这一阶段通过练习而形成的数学活动方式能适应各种变化情况,其操作表现出高度完善化的特点。动作之间相互干扰和不协调的现象完全消除,动作具有高度的正确性和稳定性,并且不管在什么条件下全套动作都能流畅地完成。如这时的画圆,不需要意志控制就能顺利地完成全套动作,并且能充分保证其正确性。上述分析表明,数学操作技能的形成要经过“定向→分解→整合→熟练”的发展过程。在这一过程中每一个发展阶段都有自己的任务:定向阶段的主要任务是掌握操作的结构系统和每一个步骤操作的要领;分解阶段的主要任务是对活动的操作系列进行分解,并逐一模仿练习;整合阶段的主要任务是在动作之间建立联系,使活动协调一体化;熟练阶段的任务则主要是使整个操作过程高度完善化和自动化。 2.数学心智技能的形成过程。 关于数学心智技能形成过程的研究,人们比较普遍地采用了原苏联心理学家加里培林的研究成果。加里培林认为,心智活动是一个从外部的物质活动到内部心智活动的转化过程,既内化的过程。据此,在这里我们把小学生数学心智技能的形成过程概括为以下四个阶段。 (1)活动的认知阶段。这是数学心智活动的认知准备阶段,主要是让学生了解并记住与活动任务有关的知识,明确活动的过程和结果,在头脑里形成活动本身及其结果的表象。如学习除数是小数的除法计算技能,在这一步就是让学生回忆并记住除法商不变性质和除数是整数的小数除法法则等知识,在此基础上明确计算的程序和每一步计算的具体方法,以此在头脑里形成除数是小数除法计算过程的表象。认知阶段实际上也是一种心智活动的定向阶段,通过这一阶段,学习者可以建立起进行数学心智活动的初步自我调节机制,为后面顺利进行认知活动提供内部控制条件。这一阶段的主要任务是在头脑里确定心智技能的活动程序,并让这种程序的动作结构在头脑里得到清晰的反映。 (2)示范模仿阶段。这是数学心智活动方式进入具体执行过程的开始,这一阶段学生把在头脑里已初步建立起来的活动程序计划以外显的操作方式付诸执行。不过,这种执行通常是在老师指导示范下进行的,老师的示范通常是采用语言指导和操作提示相结合的方式进行的,即在言语指导的同时呈现活动过程中的某些步骤。如计算乘数是两位数的乘法时,一方面根据运算法则指导运算步骤;另一方面在表述运算规定的同时重点示范用乘数十位上的数去乘被乘数所得的部分积的对位,以此让学生在老师的帮助、指导下顺利地掌握两位数乘多位数计算的活动方式。在这一阶段,学生活动的执行水平还比较低,通常停留在物质活动和物质化活动的水平上。“所谓物质活动是指动作的客体是实际事物,所谓物质化活动是指活动不是借助于实际事物本身,而是以它的代替物如模拟的教具、学具,乃至图画、图解、言语等进行的”。③如解答复合应用题,在这一步学生通常就是借助线段图进行分析题中数量关系的智力活动的。 (3)有意识的言语阶段。这一阶段的智力活动离开了活动的物质和物质化的客体而逐步转向头脑内部,学生通过自己的言语指导而进行智力活动,通常表现为一边操作一边口中念念有词。如两位数加两位数的笔算,在这一步学生往往是一边计算,口中一边念:相同数位对位,从个位加起,个位满十向十位进1。很明显,这时的计算过程是伴随着对法则运算规定的复述进行的。在这一阶段,学生出声的外部言语活动还会逐步向不出声的外部言语活动过渡,如两位数加两位数的笔算,在本阶段的后期学生往往是通过默想法则规定的运算步骤进行计算的。这一活动水平的出现,标志着学生的活动已开始向智力活动水平转化。 (4)无意识的内部言语阶段。这是数学心智技能形成的最后的一个阶段,在这一阶段学生的智力活动过程有了高度的压缩和简化,整个活动过程达到了完全自动化的水平,无需去注意活动的操作规则就能比较流畅地完成其操作程序。如用简便方法计算45+99×99+54,在这一阶段学生无需去回忆加法交换律和结合律、乘法分配律等运算定律,就能直接先合并45和54两个加数,然后利用乘法分配律进行计算,即原式=(45+54)+99×99=99×(1+99)=99×100=9900,整个计算过程完全是一种流畅的自动化演算过程。在这一阶段,学生的活动完全是根据自己的内部言语进行思考的,并且总是用非常简缩的形式进行思考的,活动的中间过程往往简约得连自己也察觉不到了,整个活动过程基本上是一种自动化的过程。 四、数学技能的学习方法 1.数学操作技能的学习方法。学习数学操作技能的基本方法是模仿练习法和程序练习法。前者是指学生在学习中根据老师的示范动作或教材中的示意图进行模仿练习,以掌握操作的基本要领,在头脑里形成操作过程的动作表象的一种学习方法。用工具度量角的大小、测量物体的长短、几何图形的作图、几何图形面积和体积计算公式推导过程中的图形转化等技能一般都可以通过模仿练习法去掌握。如推导平行四边形面积计算公式时,把平行四边形转化成长方形的操作技能就可模仿(人教版)教材插图(如图所示)的操作过程去练习和掌握。小学生的学习更多的是模仿老师的示范动作,所以老师的示范对小学生数学动作技能的形成尤为重要。教师要充分运用示范与讲解相结合、整体示范与分步示范相结合等措施,让学生准确无误地掌握操作要领,形成正确的动作表象。所谓程序练习法,就是运用程序教学的原理将所要学习的数学动作技能按活动程序分解成若干局部的动作先逐一练习,最后将这些局部的动作综合成整体形成程序化的活动过程。如用量角器量角的度数、用三角板画垂线和平行线、画长方形等技能的学习都可以采用这种方法。用这种方法学习数学动作技能,分解动作时注意突出重点,重点解决那些难以掌握的局部动作,这样可以有效地提高学习效率。 2.数学心智技能的学习方法。学生的心智技能主要是通过范例学习法和尝试学习法去获得的。范例学习法是指学习时按照课本提供的范例,将数学技能的思维操作程序一步一步地展现出来,然后根据这种程序逐步掌握技能的心智活动方式。整数、小数、分数的四则计算,课本几乎都提供了计算的范例,学习时只需要根据范例有序地进行计算即可掌握计算方法。如被除数和除数末尾都有0的除法的简便算法,课本安排了如下范例,学习时只需要明确范例所反映的计算程序和方法,并按照这种程序和方法进行计算即可掌握被除数和除数末尾都有0的除法简便计算的技能。尝试学习法是指在学习中主要由学生自己去尝试探索问题解决的方法和途径,并在不断修正错误的过程中找出解决问题的操作程序,进而获得数学技能。这是一种探究式的发现学习法,总结运算规律和性质并运用它们进行简便计算、解答复合应用题、求某些比较复杂的组合图形的面积或体积等技能都可以运用这种学习方法去掌握。这种方法较多地运用于题目本身具有较强探究性的变式问题解决的学习,如用简便方法计算1001÷,由于学生在前面已经掌握除法商不变性质,练习时就可通过将除数和被除数部乘以8使除数变成100的途径去实现计算的简便。尝试学习法虽然有利于培养学生的探索精神和解决问题的能力,但耗时太多,学习时最好是将它和范例学习法结合起来,两种学习方法互为补充,这样数学技能的学习就会更加富有成效

319 评论

相关问答

  • 小论文300字初中数学

    思路:根据题目数学科普小论文展开,并结合实际情况加以说明。 今天,我在做题时被一道应用题给难住了。这道题的题目是:小华今年3岁,今年爸爸26岁,几年后爸爸的年龄

    小聪聪爱妈妈 5人参与回答 2023-12-08
  • 初中化学小论文800字左右

    化学是一门自然科学,是中学阶段的一门必修课,它是古往今来无数中外化学家的化学科学研究和实践的成就,它编入了一些化学基本概念、基础理论、元素化合物知识、化学反应的

    wuli小拧 4人参与回答 2023-12-11
  • 初中数学小论文800

    可以自己删减删减。 数学论文 一、数学技能的含义及作用 技能是顺利完成某种任务的一种动作或心智活动方式。它是一

    吹吹再吹 5人参与回答 2023-12-08
  • 初中数学小论文初二300字

    噢噢111111111111111111111111111111111111111111111111111111111111111111111111111111

    糖醋jiang 6人参与回答 2023-12-12
  • 数学小论文800字

    神奇的火柴棒常熟市实验小学六(6)班任芷仪火柴棒到处可见,用它来做游戏,简便易行,妙趣横生。而游戏时,你必须认真思考,探索规律,因此被人们公认是一项有利于训练思

    隐逸的军装梦 4人参与回答 2023-12-12