• 回答数

    6

  • 浏览数

    268

糖醋jiang
首页 > 学术期刊 > 初中数学小论文初二300字

6个回答 默认排序
  • 默认排序
  • 按时间排序

爱中爱帼

已采纳

噢噢111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111

290 评论

畅吃无阻

数学小论文一 关于“0” 0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。 “105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示…… 爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。

100 评论

度兰度兰

勾股定理是几何学中的明珠,所以它充满魅力,千百年来,人们对它的证明趋之若骛,其中有著名的数学家,也有业余数学爱好者,有普通的老百姓,也有尊贵的政要权贵,甚至有国家总统。也许是因为勾股定理既重要又简单,更容易吸引人,才使它成百次地反复被人炒作,反复被人论证。1940年出版过一本名为《毕达哥拉斯命题》的勾股定理的证明专辑,其中收集了367种不同的证明方法。实际上还不止于此,有资料表明,关于勾股定理的证明方法已有500余种,仅我国清末数学家华蘅芳就提供了二十多种精彩的证法。这是任何定理无法比拟的。 在这数百种证明方法中,有的十分精彩,有的十分简洁,有的因为证明者身份的特殊而非常著名。 首先介绍勾股定理的两个最为精彩的证明,据说分别来源于中国和希腊。

153 评论

妮子125940

我也和你一样啊..还是自己想吧

173 评论

永丰YF窗帘窗饰

首先题目要吸引人,很简单的,只要你智商有20以上就写得出来 o(∩_∩)o...接着一个很简单的引入,中间加入一些有规律的式子或定义,或者发现,然后写出自己的见解。如果是有规律的式子那么可以总结出公式(用n代替);如果是定义,那就举例说明一下定义;如果是自己的发现,那就写出发现的内容和它与数学的关系。结尾也可以很简单,可以总结,可以感叹。以下是我自己写的一篇论文可以参考参考哦平方的奥妙最近我发现,平方有很多的奥妙,在求这个数的平方时,我发现:一、1 =0 +(0+1)=12 =1 +(1+2)=43 =2 +(2+3)=9……10 =9 +(9+10)=10011 =10 +(10+11)=12112 =11 +(11+12)=144……20 =19 +(19+20)40021 =20 +(20+21)=44122 =21 +(21+22)=484……总而言之,一个正整数的平方等于比它小1的数的平方加上这两个数的和的结果:n =(n-1) +(n-1+n)利用这条公式,我又进行推算,如果n=0和负整数,是否合适这条公式:0 =(-1) +((-1)+0)=0(-1) =(-2) +((-2)+(-1))=1(-2) =(-3) +((-3)+(-2))=4(-3) =(-4) +((-4)+(-3))=9(-4) =(-5) +((-5)+(-4))=16从这几个算式看出,0和负整数也符合这条公式。通过这些说明n =(n-1) +(n-1+n)适合所有的整数。二、一个算式:(3+4) =?这道题看似很简单,但是如果换成是字母,如:(A+B) =?那你还会做吗?(A+B) =(A+B)×(A+B)把后面的(A+B)看成一个整体,利用乘法分配律,得=A×(A+B)+ B×(A+B)再利用乘法分配律,得A +AB+BA+B合并同类项,得A +2AB +B所以(A+B) = A +2AB +B最后验算一次。那如果算式是(A-B) =?是否也能用刚才的方法算出来呢?(A-B) =(A-B) ×(A-B)= A×(A-B) -B×(A-B)=A -AB-BA+B= A -2AB+B最后验算一次。看来平方里也有这么多得奥秘,值得我们细细观察!

251 评论

唐小七7

各门科学的数学化 数学究竟是什么呢?我们说,数学是研究现实世界空间形式和数量关系的一门科学.它在现代生活和现代生产中的应用非常广泛,是学习和研究现代科学技术必不可少的基本工具. 同其他科学一样,数学有着它的过去、现在和未来.我们认识它的过去,就是为了了解它的现在和未来.近代数学的发展异常迅速,近30多年来,数学新的理论已经超过了18、19世纪的理论的总和.预计未来的数学成就每“翻一番”要不了10年.所以在认识了数学的过去以后,大致领略一下数学的现在和未来,是很有好处的. 现代数学发展的一个明显趋势,就是各门科学都在经历着数学化的过程. 例如物理学,人们早就知道它与数学密不可分.在高等学校里,数学系的学生要学普通物理,物理系的学生要学高等数学,这也是尽人皆知的事实了. 又如化学,要用数学来定量研究化学反应.把参加反应的物质的浓度、温度等作为变量,用方程表示它们的变化规律,通过方程的“稳定解”来研究化学反应.这里不仅要应用基础数学,而且要应用“前沿上的”、“发展中的”数学. 再如生物学方面,要研究心脏跳动、血液循环、脉搏等周期性的运动.这种运动可以用方程组表示出来,通过寻求方程组的“周期解”,研究这种解的出现和保持,来掌握上述生物界的现象.这说明近年来生物学已经从定性研究发展到定量研究,也是要应用“发展中的”数学.这使得生物学获得了重大的成就. 谈到人口学,只用加减乘除是不够的.我们谈到人口增长,常说每年出生率多少,死亡率多少,那么是否从出生率减去死亡率,就是每年的人口增长率呢?不是的.事实上,人是不断地出生的,出生的多少又跟原来的基数有关系;死亡也是这样.这种情况在现代数学中叫做“动态”的,它不能只用简单的加减乘除来处理,而要用复杂的“微分方程”来描述.研究这样的问题,离不开方程、数据、函数曲线、计算机等,最后才能说清楚每家只生一个孩子如何,只生两个孩子又如何等等. 还有水利方面,要考虑海上风暴、水源污染、港口设计等,也是用方程描述这些问题再把数据放进计算机,求出它们的解来,然后与实际观察的结果对比验证,进而为实际服务.这里要用到很高深的数学. 谈到考试,同学们往往认为这是用来检查学生的学习质量的.其实考试手段(口试、笔试等等)以及试卷本身也是有质量高低之分的.现代的教育统计学、教育测量学,就是通过效度、难度、区分度、信度等数量指标来检测考试的质量.只有质量合格的考试才能有效地检测学生的学习质量. 至于文艺、体育,也无一不用到数学.我们从中央电视台的文艺大奖赛节目中看到,给一位演员计分时,往往先“去掉一个最高分”,再“去掉一个最低分”.然后就剩下的分数计算平均分,作为这位演员的得分.从统计学来说,“最高分”、“最低分”的可信度最低,因此把它们去掉.这一切都包含着数学道理. 我国著名的数学家关肇直先生说:“数学的发明创造有种种,我认为至少有三种:一种是解决了经典的难题,这是一种很了不起的工作;一种是提出新概念、新方法、新理论,其实在历史上起更大作用的、历史上著名的正是这种人;还有一种就是把原来的理论用在崭新的领域,这是从应用的角度有一个很大的发明创造.”我们在这里所说的,正是第三种发明创造.“这里繁花似锦,美不胜收,把数学和其他各门科学发展成综合科学的前程无限灿烂.”

282 评论

相关问答

  • 小论文300字初中数学

    思路:根据题目数学科普小论文展开,并结合实际情况加以说明。 今天,我在做题时被一道应用题给难住了。这道题的题目是:小华今年3岁,今年爸爸26岁,几年后爸爸的年龄

    小聪聪爱妈妈 5人参与回答 2023-12-08
  • 初中时政小论文300字

    、全球变暖与城市“热岛”全球变暖会引起世界各地区降水与干湿状况的变化,进而导致世界各国经济结构的变化。中纬度地区将会因气候变暖使蒸发强烈而变得干旱,现在农业发达

    yoyo爱生活2012 8人参与回答 2023-12-12
  • 初二数学论文2000字

    2的学生数学论文:《勾股定理的证明方法探究》勾股定理又叫毕氏定理:在一个直角三角形中,斜边边长的平方等于两条直角边边长平方之和。据考证,人类对这条定理的认识,少

    s290443260 4人参与回答 2023-12-12
  • 初中数学小论文初二300字

    噢噢111111111111111111111111111111111111111111111111111111111111111111111111111111

    糖醋jiang 6人参与回答 2023-12-12
  • 数学小论文初二300字

    初二数学小论文:《容易忽略的答案》 大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆

    张家阿婆 4人参与回答 2023-12-11