• 回答数

    6

  • 浏览数

    113

夏沫儿6652
首页 > 学术期刊 > 数学小论文500字初二

6个回答 默认排序
  • 默认排序
  • 按时间排序

威达天下

已采纳

数学小论文一 关于“0” 0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。 “105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示…… 爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。 数学小论文二 各门科学的数学化 数学究竟是什么呢?我们说,数学是研究现实世界空间形式和数量关系的一门科学.它在现代生活和现代生产中的应用非常广泛,是学习和研究现代科学技术必不可少的基本工具. 同其他科学一样,数学有着它的过去、现在和未来.我们认识它的过去,就是为了了解它的现在和未来.近代数学的发展异常迅速,近30多年来,数学新的理论已经超过了18、19世纪的理论的总和.预计未来的数学成就每“翻一番”要不了10年.所以在认识了数学的过去以后,大致领略一下数学的现在和未来,是很有好处的. 现代数学发展的一个明显趋势,就是各门科学都在经历着数学化的过程. 例如物理学,人们早就知道它与数学密不可分.在高等学校里,数学系的学生要学普通物理,物理系的学生要学高等数学,这也是尽人皆知的事实了. 又如化学,要用数学来定量研究化学反应.把参加反应的物质的浓度、温度等作为变量,用方程表示它们的变化规律,通过方程的“稳定解”来研究化学反应.这里不仅要应用基础数学,而且要应用“前沿上的”、“发展中的”数学. 再如生物学方面,要研究心脏跳动、血液循环、脉搏等周期性的运动.这种运动可以用方程组表示出来,通过寻求方程组的“周期解”,研究这种解的出现和保持,来掌握上述生物界的现象.这说明近年来生物学已经从定性研究发展到定量研究,也是要应用“发展中的”数学.这使得生物学获得了重大的成就. 谈到人口学,只用加减乘除是不够的.我们谈到人口增长,常说每年出生率多少,死亡率多少,那么是否从出生率减去死亡率,就是每年的人口增长率呢?不是的.事实上,人是不断地出生的,出生的多少又跟原来的基数有关系;死亡也是这样.这种情况在现代数学中叫做“动态”的,它不能只用简单的加减乘除来处理,而要用复杂的“微分方程”来描述.研究这样的问题,离不开方程、数据、函数曲线、计算机等,最后才能说清楚每家只生一个孩子如何,只生两个孩子又如何等等. 还有水利方面,要考虑海上风暴、水源污染、港口设计等,也是用方程描述这些问题再把数据放进计算机,求出它们的解来,然后与实际观察的结果对比验证,进而为实际服务.这里要用到很高深的数学. 谈到考试,同学们往往认为这是用来检查学生的学习质量的.其实考试手段(口试、笔试等等)以及试卷本身也是有质量高低之分的.现代的教育统计学、教育测量学,就是通过效度、难度、区分度、信度等数量指标来检测考试的质量.只有质量合格的考试才能有效地检测学生的学习质量. 至于文艺、体育,也无一不用到数学.我们从中央电视台的文艺大奖赛节目中看到,给一位演员计分时,往往先“去掉一个最高分”,再“去掉一个最低分”.然后就剩下的分数计算平均分,作为这位演员的得分.从统计学来说,“最高分”、“最低分”的可信度最低,因此把它们去掉.这一切都包含着数学道理. 我国著名的数学家关肇直先生说:“数学的发明创造有种种,我认为至少有三种:一种是解决了经典的难题,这是一种很了不起的工作;一种是提出新概念、新方法、新理论,其实在历史上起更大作用的、历史上著名的正是这种人;还有一种就是把原来的理论用在崭新的领域,这是从应用的角度有一个很大的发明创造.”我们在这里所说的,正是第三种发明创造.“这里繁花似锦,美不胜收,把数学和其他各门科学发展成综合科学的前程无限灿烂.” 正如华罗庚先生在1959年5月所说的,近100年来,数学发展突飞猛进,我们可以毫不夸张地用“宇宙之大、粒子之微、火箭之速、化工之巧、地球之变、生物之谜、日用之繁等各个方面,无处不有数学”来概括数学的广泛应用.可以预见,科学越进步,应用数学的范围也就越大.一切科学研究在原则上都可以用数学来解决有关的问题.可以断言:只有现在还不会应用数学的部门,却绝对找不到原则上不能应用数学的领域. 数学小论文三 数学是什么 什么是数学?有人说:“数学,不就是数的学问吗?” 这样的说法可不对。因为数学不光研究“数”,也研究“形”,大家都很熟悉的三角形、正方形,也都是数学研究的对象。 历史上,关于什么是数学的说法更是五花八门。有人说,数学就是关联;也有人说,数学就是逻辑,“逻辑是数学的青年时代,数学是逻辑的壮年时代。” 那么,究竟什么是数学呢? 伟大的革命导师恩格斯,站在辩证唯物主义的理论高度,通过深刻分析数学的起源和本质,精辟地作出了一系列科学的论断。恩格斯指出:“数学是数量的科学”,“纯数学的对象是现实世界的空间形式和数量关系”。根据恩格斯的观点,较确切的说法就是:数学——研究现实世界的数量关系和空间形式的科学。 数学可以分成两大类,一类叫纯粹数学,一类叫应用 数学。 纯粹数学也叫基础数学,专门研究数学本身的内部规律。中小学课本里介绍的代数、几何、微积分、概率论知识,都属于纯粹数学。纯粹数学的一个显著特点,就是暂时撇开具体内容,以纯粹形式研究事物的数量关系和空间形式。例如研究梯形的面积计算公式,至于它是梯形稻田的面积,还是梯形机械零件的面积,都无关紧要,大家关心的只是蕴含在这种几何图形中的数量关系。 应用数学则是一个庞大的系统,有人说,它是我们的全部知识中,凡是能用数学语言来表示的那一部分。应用数学着限于说明自然现象,解决实际问题,是纯粹数学与科学技术之间的桥梁。大家常说现在是信息社会,专门研究信息的“信息论”,就是应用数学中一门重要的分支学科, 数学有3个最显著的特征。 高度的抽象性是数学的显著特征之一。数学理论都算有非常抽象的形式,这种抽象是经过一系列的阶段形成的,所以大大超过了自然科学中的一般抽象,而且不仅概念是抽象的,连数学方法本身也是抽象的。例如,物理学家可以通过实验来证明自己的理论,而数学家则不能用实验的方法来证明定理,非得用逻辑推理和计算不可。现在,连数学中过去被认为是比较“直观”的几何学,也在朝着抽象的方向发展。根据公理化思想,几何图形不再是必须知道的内容,它是圆的也好,方的也好,都无关紧要,甚至用桌子、椅子和啤酒杯去代替点、线、面也未尝不可,只要它们满足结合关系、顺序关系、合同关系,具备有相容性、独立性和完备性,就能够构成一门几何学。 体系的严谨性是数学的另一个显著特征。数学思维的正确性表现在逻辑的严谨性上。早在2000多年前,数学家就从几个最基本的结论出发,运用逻辑推理的方法,将丰富的几何学知识整理成一门严密系统的理论,它像一根精美的逻辑链条,每一个环节都衔接得丝丝入扣。所以,数学一直被誉为是“精确科学的典范”。 广泛的应用性也是数学的一个显著特征。宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日用之繁,无处不用数学。20世纪里,随着应用数学分支的大量涌现,数学已经渗透到几乎所有的科学部门。不仅物理学、化学等学科仍在广泛地享用数学的成果,连过去很少使用数学的生物学、语言学、历史学等等,也与数学结合形成了内容丰富的生物数学、数理经济学、数学心理学、数理语言学、数学历史学等边缘学科。 各门科学的“数学化”,是现代科学发展的一大趋势。

258 评论

cindy5056315

数,数表,方程组:试论用数表形式简化运算假设有如下方程组2x+3y=7 ①3x+5y=10 ②将①*3 我们得到 6x+9y=21 ③将②*2 我们得到 6x+10y=20 ④用③-④ 我们还可以得到-y=1所以 y=-1将y=-1 带入①式子我们可以得到2x-3=7因此 2x=10所以x=5上面的例子我们可以看出解决一个二元一次方程组常用的方法——消元法那么当我们解决一个10元1次方程组的时候,可能就不能这么简单了。因为光是抄写这些方程就需要耗费巨大的精力,且不好找出其中的关系。又如上面的一个方程组。我们将所有的系数构和结果成一个数表,形如2 3 73 5 10那么解决的过程就变得明了了基于消元法的思维,一下运算是可以发生在这个数表中的第一,某行所有数同时乘以一个任意的实数第二,某两行互换第三,某行乘以一个不为0的数加到另外一行那么上述过程的解法被精简了2 3 73 5 10将第一行和第二行分别乘以3和2得到新数表6 9 216 10 20用第二行减第一行6 9 21 0 1 -1我们来看,如果某一行的系数出现了0,就思考是不是能还原成某个未知数=常数的形式上面的数表的第二行可以还原成 0x+1y=-1所以有y=-1此时,再将第一行还原6x+9y=21将y=-1带入上式有 6x-9=21所以6x=30所以x=5在二元一次方程中此方法只能简便抄写和部分运算,但是如果在三元一次、四元一次方程组中,乃至更高元的一次方程组中,这种数表法会帮助我们使得运算简便得多。* 本段话在交作业时请删去上面的小论文其实是线性代数学中关于矩阵运算在二元一次方程中的解释,用来解决所有一次方程组均可。在二元情况下,他的推倒是易于理解的,而且文中用于尽量通俗化看起来更像是一个初中生的创造。这样糊弄个作业还是没什么问题的,请采纳

112 评论

七月的尾巴

那是星期六的一天下午,我嚷着要吃西瓜,妈妈爽快地答应了.于是我和奶奶就去买西瓜.走进菜市场,我一眼就瞅住了一个西瓜堆儿.这里的西瓜是红瓤的,又大又圆,看着就让人垂涎三尺.奶奶说:“给我挑个熟的!”那个小贩在西瓜上敲了敲,说:“包熟!”于是放在电子秤上说:“一斤十块半,斤,17元8角.”奶奶说:“什么?17元8角,这么贵?不买了不买了!”小贩急了,说:“别,别,别,你去其它地方买就不贵吗?我这儿可是全市最便宜的了,我这儿一斤十块半,人家一斤半十五块五了!”奶奶数学本来就不好,被小贩这么一说便糊涂了,我当时也在想:一斤十块半,也就是1斤元,单价是:÷1=元,而一斤半十五块五,也就是斤元,它的单价是:÷,我没细算,想想可能应该比多,但是却犯了个致命的错误.算错就会犯错,我向奶奶使了个眼色,示意让她买,于是奶奶说:“价格能少一点吗?”“不能、不能,本能就比人家便宜,再少,我就亏大了,干脆别卖了.”看着小贩的“真诚”的态度,奶奶于是付了钱,拎着装好西瓜的袋子就走了.回到家,我把这件事告诉给妈妈.妈妈听了之后又问了一遍价钱.我说:“小贩说他这儿一斤十块半,别人那一斤半十五块五.”妈妈哭笑不得,问:“你怎么知道别人那儿贵呢?你再好好的算算”.“因为这儿是÷1=,而别人那儿是÷,反正他这儿便宜”我理直气壮.妈妈说:“你呀,太马虎了,÷……,谁便宜呀!”通过这件事,我知道了数学在我们日常生活中运用十分广泛,学好数学十分重要,另外还要记住:“不要利用数学人,也不能不懂数学而被人!

252 评论

厦门小鱼网

某网友写的:本学期,我们学习了许许多多的数学知识。从“几何”到“代数”再到“数形结合”。太多太多了。8个单元,分门别类,让我们看到了数学的精彩!其中我个人认为最有趣的就是第六单元“一次函数”。 一开始接触“函数”这个概念时还是非常陌生的。因为转眼望去,前面的单元基本是“小学”和“初一”接触过得。而对于“函数”来说确是几乎“一无所知”。只知道初一老师说过“可能性”和“函数”有着密切的关系。翻开这个单元时,真的有点“丈二和尚摸不着头脑”。 上面说了种种对“函数”概念的无知。所以自然在一开始学习的过程中会遇到“困难”。这单元的第一章从生活实际出发讲了“函数”的定义等等。这是一个比较“浮浅”的类容(从我现在的角度来说)。从这里我真正接触到了“函数”,但也许是学习没有完全进入。当时给我的印象就是:“函数好像是一个可有可无的好不重要的知识,甚至不明白为什么要学他。”第二章类容可以说就是对第一章的一个“浓缩”。好比第一章是个“橙子”,第二章就是把它榨成汁,然后就可以提高价值贩卖出去。学完后我对函数的印象还是那样,就像“橙子”和“橙汁”虽然“物态”不同,但味道还是差不多。真正的困难出现在第三章,谈到了“一次函数的图象”。可以老实说这章听得差不多是我本学期听的最累的一节课。老师发下来讲义,我那节课觉得您讲的奇快。我还没反应过来你就讲完了。我想班上大多数同学的感受也是如此吧!我终于意识到“函数”不是那么好学的。于是我就开始多做练习,慢慢的我对“函数”渐渐熟悉,随着课程的继续尤其是“函数的实际运用”这节课也使我对函数的印象大大改变。觉得“函数”好像是我们所学课程中与实际生活最紧密的一个单元了。 以上就是我学习“一次函数”的经历。下面我们在来分析一下“一次函数”。从类别上讲,“一次函数”是一个“数形结合”的“典范”。它体现了“代数”和“几何”的“互利”关系,说明二者“缺一不可”。使我们对“代数”“几何”有了全新认识,觉得他们的界线渐渐模糊了。其次“一次函数”我认为是一个有趣,神奇的类容。它有趣在千变万化的图象,它神奇在只用几笔简捷的线条就可以表达出需要“长篇大论”的文字所表达的变化规律。不能不觉得“一次函数”充满了“魔力”。此外这章的编排也是十分“成功”的,与前一章“位置的确定”联系紧密,可以使学过的知识由此得到“巩固”,更可以“由此及彼,举一反三,一通百通”。我想2章的联合编排更是教会我们“复习整理”的学习方法。所以由“一次函数”可以看出,北师大教材的编派不仅注重“知识”还注重“方法”。“一次函数”也使我对这本教材有了全新的认识和看法。 “一次函数”不仅有趣而且更是“历届”中考的“重中之重”。所以无论从“素质教育”和“应试教育”的角度来说“一次函数”都是一节非常好的类容。供参考。

283 评论

wangeunice

本学期,我们学习了许许多多的数学知识。从“几何”到“代数”再到“数形结合”。太多太多了。8个单元,分门别类,让我们看到了数学的精彩!其中我个人认为最有趣的就是第六单元“一次函数”。 一开始接触“函数”这个概念时还是非常陌生的。因为转眼望去,前面的单元基本是“小学”和“初一”接触过得。而对于“函数”来说确是几乎“一无所知”。只知道初一老师说过“可能性”和“函数”有着密切的关系。翻开这个单元时,真的有点“丈二和尚摸不着头脑”。 上面说了种种对“函数”概念的无知。所以自然在一开始学习的过程中会遇到“困难”。这单元的第一章从生活实际出发讲了“函数”的定义等等。这是一个比较“浮浅”的类容(从我现在的角度来说)。从这里我真正接触到了“函数”,但也许是学习没有完全进入。当时给我的印象就是:“函数好像是一个可有可无的好不重要的知识,甚至不明白为什么要学他。”第二章类容可以说就是对第一章的一个“浓缩”。好比第一章是个“橙子”,第二章就是把它榨成汁,然后就可以提高价值贩卖出去。学完后我对函数的印象还是那样,就像“橙子”和“橙汁”虽然“物态”不同,但味道还是差不多。真正的困难出现在第三章,谈到了“一次函数的图象”。可以老实说这章听得差不多是我本学期听的最累的一节课。老师发下来讲义,我那节课觉得您讲的奇快。我还没反应过来你就讲完了。我想班上大多数同学的感受也是如此吧!我终于意识到“函数”不是那么好学的。于是我就开始多做练习,慢慢的我对“函数”渐渐熟悉,随着课程的继续尤其是“函数的实际运用”这节课也使我对函数的印象大大改变。觉得“函数”好像是我们所学课程中与实际生活最紧密的一个单元了。 以上就是我学习“一次函数”的经历。下面我们在来分析一下“一次函数”。从类别上讲,“一次函数”是一个“数形结合”的“典范”。它体现了“代数”和“几何”的“互利”关系,说明二者“缺一不可”。使我们对“代数”“几何”有了全新认识,觉得他们的界线渐渐模糊了。其次“一次函数”我认为是一个有趣,神奇的类容。它有趣在千变万化的图象,它神奇在只用几笔简捷的线条就可以表达出需要“长篇大论”的文字所表达的变化规律。不能不觉得“一次函数”充满了“魔力”。此外这章的编排也是十分“成功”的,与前一章“位置的确定”联系紧密,可以使学过的知识由此得到“巩固”,更可以“由此及彼,举一反三,一通百通”。我想2章的联合编排更是教会我们“复习整理”的学习方法。所以由“一次函数”可以看出,北师大教材的编派不仅注重“知识”还注重“方法”。“一次函数”也使我对这本教材有了全新的认识和看法。 “一次函数”不仅有趣而且更是“历届”中考的“重中之重”。所以无论从“素质教育”和“应试教育”的角度来说“一次函数”都是一节非常好的类容。 以上就是我的这篇“数学小论文-一次函数”,所有观点只是我个人之见,谢谢!

91 评论

Lydia胖胖

古时候,埃及人用记号“┌”表示平方根。印度人在开平方时,在被开方数的前面写上ka。1840年前后,德国人用一个点“.”来表示平方根,两点“..”表示4次方根,三个点“...”表示立方根,比如,.3、..3、...3就分别表示3的平方根、4次方根、立方根。到十六世纪初,可能是书写快的缘故,小点上带了一条细长的尾巴。1525年,路多尔夫在他的代数著作中,首先采用了根号,比如他写 4是2, 9是3,并用 8, 8表示 , 。但是这种写法未得到普遍的认可与采纳。 与此同时,有人采用“根”字的拉丁文radix中第一个字母的大写R来表示开方运算,并且后面跟着拉丁文“平方”一字的第一个字母q,或“立方”的第一个字母c,来表示开的是多少次方。例如,现在的 ,当时有人写成。现在的 ,用数学家邦别利(1526—1572年)的符号可以写成╜,其中“?╜”相当于今天用的括号,P相当于今天用的加号(那时候,连加减号“+”“-”还没有通用)。 直到十七世纪,法国数学家笛卡尔(1596—1650年)第一个使用了现今用的根号“ ”。在一本书中,笛卡尔写道:“如果想求某数的平方根,就写作 ,如果想求某数的立方根,则写作 。” 这是出于什么考虑呢?有时候被开方数的项数较多,为了避免混淆,笛卡尔就用一条横线把这几项连起来,前面放上根号√(不过,它比路多尔夫的根号多了一个小钩)就为现在的根号形式。 现在的立方根符号出现得很晚,一直到十八世纪,才在一书中看到符号3^√的使用,比如25的立方根用“3^√”表示。以后,诸如“3^√”等等形式的根号渐渐使用开来。 由此可见,一种符号的普遍采用是多么地艰难,它是人们在悠久的岁月中,经过不断改良、选择和淘汰的结果,它是数家们集体智慧的结晶,而不是某一个人凭空臆造出来的,也不是从天上掉下来的。 平方根,又叫二次方根,对于非负实数来说,是指某个自乘结果等于的实数,表示为(√x),其中属于非负实数的平方根称算术平方根。(正数a的正的平方根,叫做a的算术平方根。)有时我们说的平方根指算术平方根。一个正数如果有平方根,那么必定有两个,它们互为相反数。如果我们知道了这两个平方根中的一个,那么立即可以得到它的另一个平方根。正数a的平方根可以记作“±√a”,a称为被开方数。正整数的平方根通常是无理数。 负数有平方根吗?其实,没有一个数的平方根是小于零的,所以负数没有平方根(没有意义)。 如果一个数x的立方等于a,即x的三次方等于a(x^3=a),那么这个数x就叫做a的立方根,也叫做三次方根。立方根,类似于平方根的表示方法,读作“三次根号a”其中,a叫做被开方数,3叫做根指数。(a不等于0) 求一个数a的立方根的运算叫做开立方。 所有实数都有且只有一个立方根。 正数的立方根是正数,负数的立方根是负数,0的立方根是0。 在现实生活中,我们可以通过平方(立方)运算来寻求平方根(立方根),并可以用来验证开平方(开立方)的正确性。 呢篇我同学噶.. 数学是生活中的一分子,它是在“生活”这个集体中生存的,离开了生活这个集体,数学将是一片死海,没有生活的数学是没有魅力的数学,同样,人类也离不开数学,离开了数学人类将无法生存。 我认为老师要相信学生,敢于放手。学生是学习的主体,他们有自己的思维方式,有一定的知识积累。我觉得每一位老师都应相信学生,一般的知识学生独立或通过合作是能够解决的。如果不相信学生的这种能力,课堂中是无法放手的,学生的主动学习也就无法落实。作为老师要相信学生,敢于放手,为全体学生创设一个主动探索的空间。在教学中,让学生唱戏展示自己,这个"台"搭得要大,四周不能有"框框",老师应该像听众那样仔细倾听,抓住关键进行点拨,为学生的表演"加油喝彩"! 著名数学家华罗庚说过:“宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日月之繁,无处不用到数学。”特别是二十一世纪的今天,数学的应用更是无所不在。那么,我们如何从小打下坚实的数学基础,究竟什么样的课堂教学才适合我们这些新一代的学生呢?我认为,在课堂中,由学生去担任学习的主角,才是我们的心愿。那么,数学活动课就是让我们充分体现自主学习的一种教学方式。 活动课上,在老师的指导下,我们可以分成小组,通过自己动手去测量、拼凑、剪切、计算,去探索发现的规律、掌握数学知识。这样,不仅培养了我们的动手能力,而且提高了我们的思维能力,又让我们初步尝到了数学家研究问题成功时的滋味,使我们对数学的学习兴趣倍增。例如,我们上《平行四边形面积的计算》这节课时,老师让我们分成几个小组,发一些平行四边形的小纸片,让同学们互相讨论,怎样使一个平行四边形经过剪贴、拼凑变成一个我们已经会计算面积的图形呢?大家七嘴八舌的讨论开了,有的同学发现可以用剪刀沿着平行四边形的高,把它剪成一个直角三角形和一个直角梯形,然后可以把它们拼成一个长方形;一些同学又发现还可以从平行四边形的任意一条高剪开,就得到两个直角梯形,依然可以拼成一个同样大小的长方形。同学们通过观察、思考,认识到拼成的长方形的“长”和“宽”,分别就是原来平行四边形的“底边”和“高”。由此,大家终于可以通过自己的动手能力而找到了平行四边形面积公式为:S=ah。 在数学的世界里,我们还可以使用图象法解数学习题。图象法解数学习题的特点是把繁琐的演算及逻辑推理过程,在函数图象的辅助下加以简化和形象直观,解题思路清淅、直观、明了、可靠.然而,怎样才能在图象法解题过程中做到顺手沾来、得心应手、准确无误呢?我认为关键是要有丰富的初等函数图象知识。而要达到这一点,就得掌握初等函数在复合过程中引起的图象变换规律,以规律求拓宽,为图象法解题创造良好的基础条件。 在教学中老师若能恰当地把握传授知识与增减能力的关系,动用灵活的教学方法,充分发挥课本的功能,就可以事半功倍,提高课堂教学效果.笔者在教学实践中,始终抓住课本这个“纲”,在课本教学上狠下功夫,减少复习资料,不搞题海战术,既减轻学生负担,又培养了学生的多种能力. 我还认为老师要重视课本概念的阅读,培养学生的学习能力。 中学生往往缺乏阅读数学课本的习惯,这除了数学难以读懂以外,另外一个原因是我们许多数学教师在讲课时,也很少阅读课本,喜欢滔滔不绝的讲,满满黑板的写,使学生产生了依赖性.数学课本是数学基础知识的载体,课堂上指导学生阅读数学课本,不仅可以正确理解书中的基础知识,同时,可以从书中字里行间挖掘更丰富的内容.此外,还可以发挥课本使用文字的垂范作用,潜移默化培养和提高学生准确说练的文字表达能力和学习能力. 重视阅读数学课本,首先要老师引导,特别在讲授新课时,应当纠正那种“学生闭着书,光听老师讲”的教学方法,在讲解概念时,应让学生翻开课本,老师按课本原文逐字,逐句,逐节的阅读.在阅读中,让学生反复琢磨,认真思考,对书中的叙述的概念,定理,定义中有本质特征的关键词句要仔细品味,深刻理解其语意,并不时地提出一些反问:如,换成其它词语行吗?省略某某字行吗?加上某某字行吗?等等.要读出书中的要点,难点和疑点,读出字里行间所蕴藏的内容,读出从课文中提炼的数学思想,观点和方法.教师在课堂上阅读数学课本,不仅可以节省不必要的板书时间,而且可以防止因口误,笔误所产生的概念错误,从而使学生能准确地掌握。 在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。 人人学有价值的数学;人人都能获得必要的数学;不同的人在数学上得到不同的发展。基于这个目的,对我们初中数学来说,老师们必须要改变原来“应试”教育的教学方法,让同学们亲自体验和经历,让他们自己去探索知识的来源。 我认为老师也要换个角度来教学,为每个学生着想 ,我不时会听到同学们反映:“书本儿上我看懂了的老师讲,而且不厌其烦的讲,不懂的老师一带而过,结果还是不懂”。这种讲课就是只备教材不备学生,没有为学生着想。比如讲一个概念,不要把定义直接抄在黑板上,接着就开始做题。而要讲如何去理解、体会它,从正面、反面、侧面去讲,并指出如何去理解它,运用它,提醒同学们理解中容易出现的误区,以及它与有关概念的差别和联系,把学生易犯的错误讲在前面。再如讲解一个结论的证明或一道题的解法时,重要的不是一步步按逻辑叙述,而是要指明其思考过程。一个班级里学生的知识水平,能力水平都有所差异,总有些思维水平较低的学生,老师要在备课时换个角度来教,效果就会有所提高。 总之,老师要引导学同学们善于思考生活中的数学,加强知识与实际联系,课堂上同学们通过活动获取知识,突出了知识的形成过程,掌握学习方法,训练学生思维。生活化课堂教学,能以课本为主源,又不受课本知识的禁锢,使同学们灵活掌握知识,培养同学们实践操作能力和思维能力,既能落实减轻学生负担,又能提高教学质量。

317 评论

相关问答

  • 初二数学论文2000字

    2的学生数学论文:《勾股定理的证明方法探究》勾股定理又叫毕氏定理:在一个直角三角形中,斜边边长的平方等于两条直角边边长平方之和。据考证,人类对这条定理的认识,少

    s290443260 4人参与回答 2023-12-12
  • 初二科技论文500字

    【一】科技小论文500字在烧纸船的实验中纸船里的水会怎样?纸船又会怎样?记得有一个星期的星期四下午第三节课,我们在上科学课,在科学课上,我们做了小实验,实验的方

    江河装饰 2人参与回答 2023-12-10
  • 初中数学小论文初二300字

    噢噢111111111111111111111111111111111111111111111111111111111111111111111111111111

    糖醋jiang 6人参与回答 2023-12-12
  • 数学小论文初二300字

    初二数学小论文:《容易忽略的答案》 大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆

    张家阿婆 4人参与回答 2023-12-11
  • 数学小论文初中500字

    游戏中的数学一天,熙熙姐姐交给我们一个游戏:两人轮流从1—10按顺序报数,每次只能报1、2或3个数,谁先报到10,谁就赢了.大家都想将对方“打倒”,但是,怎样才

    美林小姐 6人参与回答 2023-12-11