• 回答数

    4

  • 浏览数

    320

拎拎同学
首页 > 学术期刊 > 有关蛋白质论文的题目

4个回答 默认排序
  • 默认排序
  • 按时间排序

Diana~蜜桃

已采纳

你的论文准备往什么方向写,选题老师审核通过了没,有没有列个大纲让老师看一下写作方向? 老师有没有和你说论文往哪个方向写比较好?写论文之前,一定要写个大纲,这样老师,好确定了框架,避免以后论文修改过程中出现大改的情况!!学校的格式要求、写作规范要注意,否则很可能发回来重新改,你要还有什么不明白或不懂可以问我,希望你能够顺利毕业,迈向新的人生。 1,论文应该是单一主题还是面面俱到?大学生碰到的第一个诱惑是想在论文里写很多东西。比如有个学生对文学感兴趣,他第一个念头就是给论文起一个《今日文学》这样的标题。如果迫不得已要缩小范围,他会选择《从战后到70年代的西班牙文学》。这类论文是非常危险的。这种题目会让即使是成熟得多的研究者们也直挠头的。对一个20a多岁的大学生来说这是不可能完成的挑战。它要么会变成各种名字和主流观点的简单罗列,要么对原始材料的引用会有失偏颇(这常常是由于省略了不该省略的东西引起的)。1961年,当代作家冈萨罗·托兰特·巴雷斯特写了一本《当代西班牙文学面面观》(瓜德拉玛版),然而,如果这是一篇博士论文的话,人们是一定会把它毙了的,虽然它厚达几百页。它被指责出于疏忽或者无知而没有提到一些被认为非常重要的人物的名字,或者他有时会花一整个章节来写一些“不怎么样”的作家,而对于一些被认为是“重要人物”的则只给了寥寥数笔。当然,我们知道该作者的历史学识以及批评能力都是得到认可的,所以这些遗漏或者比例失调都是有意为之,对某个人物避而不谈比为他洋洋洒洒地写上一整页更能够说明问题。不过如果同样的事情发生在一个二十二岁的大学生身上,谁又能保证他的沉默背后不是别有用心呢?或者他的避而不谈是因为会在其他地方花上几页纸来讨论这个问题?或者这个作者到底知不知道应该怎样写啊?写这种论文的学生常常会向评审委员会的成员抱怨说他们没看懂自己的意思,但是那些成员实际上“无法”看懂他的意思,所以一篇面面俱到的论文常常被看作是傲慢的表现。并不是说(论文中所体现的)学术上的傲慢就一定要被否定掉,我们甚至可以说但丁是个糟糕的诗人,但必须至少先写个300页,对但丁的文本进行深入的分析之后才能说。而这些在一片面面俱到的论文中是看不到的。正因为这样,对于一个大学生来说,与其写什么《从战后到70年代的西班牙文学》,还不如选一个更切实际的低调一点的题目。我可以很直接地告诉你什么才是好题目,它并不是《阿尔代科阿的小说》,而是《“天堂鸟”的两种不同版本》。听上去是不是有点无趣?可能吧,不过那会是更加有趣的挑战。只要好好想一想你就会看到归根到底这是一个如何讨巧的问题。如果写一篇关于四十年的文学的面面俱到的论文,学生将会面对各种可能的反对声音。如果有个提案人或者评审委员会的成员正好想要标榜自己知道某个不太知名的作家,如果那个学生正好又没有把那个作家包括在论文内,他将如何面对前者的发难呢?只要每个评审委员会的成员在看目录时都发现了三个没有被提到的人,那个学生就将在一顿猛烈的轰炸中变得脸色惨白,他的论文顿时好像变成了屁话连篇。相反的,如果学生认真地选择一个范围很小的题目,他就只需要牢牢把握住一份评审委员会大多数成员都不知道的材料就可以了。我并不是在兜售什么下三滥的伎俩,这的确是一种伎俩,但并不低俗,而且它很管用。只要学位申请人以“专家”的面目出现在不如他专业的公众面前,而且看得出为了成为专家他是花了一番心血的,这样占一点便宜是无可厚非的。在这两种极端之间(也就是写四十年文学史的面面俱到的论文以及两种文本之间区别这样严格的单一主题论文)存在着许多中间形式。比如我们可以写《四十年代先锋派文学家的经历》或者《胡安·贝内特和桑切斯·菲尔罗西奥对地理的文学处理》,甚至《卡洛斯·埃德蒙多·德·奥利,埃杜瓦多·奇恰罗以及格罗里亚·富埃尔特斯:三位后岛屿诗人的异同》。我们来看一下一本小册子上的一段话,虽然那是科学领域的,但它所给出的建议适用于所有学科:比如说,《地质学》这个题目就太宽泛了。《火山学》是地质学的一个分支,但是也太大了。《墨西哥的火山》是个不错的着手点,但是同样不够深入。我们把范围在缩小一点就有可能引出非常有价值的研究了:《波波卡莱佩伊尔火山的历史》(科尔特斯的征服者中的某人可能在1591年登上过那里,直到1702年它都没有猛烈喷发过)。一个范围更小,所涉及年份更少的题目是《帕里库丁火山的诞生和死亡》(它的生命仅仅从1943年2月20日延续到了到1952年3月4日)。好吧,我还是推荐最后一个题目。因为到了这个地步,只要申请人能够对那座不幸的火山知无不言,言无不尽就可以了。很久以前,有个学生跑来跟我说他要写一篇题为《当代思想中的符号》的论文。这样的论文是不可能的。连我也不知道“符号”到底指的是什么,实际上这个词在不同的作者那里具有不同的意思,有时,两个作者会用它来表达意思完全相反的两件东西。我们只要考虑一下形式逻辑学家或者数学家所理解的“符号”,它们是没有意义的,在计算公式中占据特定位置,具有特定功能的东西(比如代数公式中的a,b,x,y神马的),而其他一些作者则可能把它们看做充满了模棱两可含义的东西,比如梦中出现的那些图像,它们可能指一棵树,或者性器官,或者想要长大的愿望等等。所以,我们怎么能把这个作为论文的题目呢?我们必须分析当代文化中所有关于符号的理论,列出它们的共同点和不同点,在它们的不同点里寻找所有作者和理论共有的基本的单一概念,看一下这些不同在不同理论中是否是不相容的。没有当代的哲学家,语言学家或者心理分析学家能够令人满意地解决这个问题。一个初出茅庐的大学生,即使他早慧也只不过接受了最多六七年的成年人的教育,他又怎么能够完成这样的研究呢?最多又是一个像托兰特·巴雷斯那样有失偏颇的东西了。或者他会提出自己的关于符号的理论,而把前人所说的东西晾在一边,下一节我们还要再来说说这种做法值得商榷的地方。我和这个学生交谈了一会儿,我建议他可以写弗洛伊德和荣格的符号,他需要忘记其他各种观点,专心考虑上面的两个作者。可惜这个学生不懂德语(关于语言的问题我们会在第五节谈到)。最后我们决定将题目定为《皮尔士,弗莱和荣格的符号概念》,论文将讨论这三位分别是哲学家,评论家和心理分析家的不同作者那里的三个用同一个词表示的不同概念。由于他们用了同一个词结果造成了混乱,常常有人把其中一位的概念安到另一个人身上。在文章的最后,作为假设的结论,这个学生试图在这些同名异义的概念间寻找平衡,找出它们的相似点。他还提到了一些自己所知道的其他作者,但表示因为论文篇幅所限就无法对他们更多展开了。这样,虽然他的论文只提到了作者X,Y,Z,但没有人能够指责他没有考虑作者K。也没有人能指摘他对引述的那些其他作者不够详细,因为那是在论文的结尾处顺带说一下的,而论文的主体是讨论题目中所出现的那三位作者。现在我们看到了论文不必非要恪守单一主题,一篇面面俱到的论文也可以变得中规中矩,让所有人都接受。需要指出的是,“单一”这个词的意思比我们在这里所用的要多得多。一篇单一论文只涉及一个主题,与“XXX的历史”或者一本手册或者一本百科全书完全相反。从这个意义上来说,《中世纪作家的“颠倒的世界”这个主题》应该也是一个单一主题。它涉及许多作家,但全都是围绕一个具体的主题(从他们想象的假设到所举的例子,悖论和寓言,比如在天上飞的鱼,在水里游的鸟神马的)。看上去这是一个理想的单一主题。但事实上,为了写这样一篇论文,我们需要讨论所有与这个主题有关的作者,特别是那些没有得到公认的不知名作者。所以这个题目还是要被归在“具有单一主题的面面俱到式论文”中,它是很难写的,需要准备无数的材料。如果有人一定要写的话,我建议把题目改成《卡洛林王朝时期的诗人的“颠倒的世界”这个主题》,范围一缩小,我们就知道该到哪儿不该到哪儿去寻找材料了。当然,面面俱到的论文写起来更加有劲,毕竟花一两年甚至更长的时间研究一位作家显得很无聊。但是我们要明白,写一篇严格意义上的单一主题的论文并不意味着在视角上不能做到面面俱到。写一篇关于阿尔德科阿的小说的论文需要我们深入了解西班牙的现实主义,我们还需要读桑切斯·菲尔罗西奥或者加西亚·奥尔特拉诺,需要研究阿尔德科阿度过的美洲小说以及古典文学。只有把作者放到全景当中我们才能理解和诠释他。但是把全景用作背景和绘出一幅全景的图画是两回事。前者只是以一片田野和一条河流作为背景画了一幅骑士的肖像,后者则要画许多田野,山谷和河流。我们必须要改变技法,或者用摄影的术语来说,改变焦距。从单一作者的角度出发拍摄的全景是有点失焦的,不完整的和劣质的。最后我们要记住下面这个基本结论:范围越小,干起活来就越是省心和安心。单一主题由于面面俱到,论文看起来最好像是随笔,而不是历史或者百科全书。

246 评论

Huanglingying

蛋白质(protein)是生命的物质基础,没有蛋白质就没有生命。因此,它是与生命及与各种形式的生命活动紧密联系在一起的物质。机体中的每一个细胞和所有重要组成部分都有蛋白质参与。蛋白质占人体重量的,即一个60kg重的成年人其体内约有蛋白质。人体内蛋白质的种类很多,性质、功能各异,但都是由20多种氨基酸按不同比例组合而成的,并在体内不断进行代谢与更新。被食入的蛋白质在体内经过消化分解成氨基酸,吸收后在体内主要用于重新按一定比例组合成人体蛋白质,同时新的蛋白质又在不断代谢与分解,时刻处于动态平衡中。因此,食物蛋白质的质和量、各种氨基酸的比例,关系到人体蛋白质合成的量,尤其是青少年的生长发育、孕产妇的优生优育、老年人的健康长寿,都与膳食中蛋白质的量有着密切的关系[编辑本段]蛋白质的生理功能1、构造人的身体:蛋白质是一切生命的物质基础,是肌体细胞的重要组成部分,是人体组织更新和修补的主要原料。人体的每个组织:毛发、皮肤、肌肉、骨骼、内脏、大脑、血液、神经、内分泌等都是由蛋白质组成,所以说饮食造就人本身。蛋白质对人的生长发育非常重要。比如大脑发育的特点是一次性完成细胞增殖,人的大脑细胞的增长有二个高峰期。第一个是胎儿三个月的时候;第二个是出生后到一岁,特别是0---6个月的婴儿是大脑细胞猛烈增长的时期。到一岁大脑细胞增殖基本完成,其数量已达成人的9/10。所以0到1岁儿童对蛋白质的摄入要求很有特色,对儿童的智力发展尤关重要。2、修补人体组织:人的身体由百兆亿个细胞组成,细胞可以说是生命的最小单位,它们处于永不停息的衰老、死亡、新生的新陈代谢过程中。例如年轻人的表皮28天更新一次,而胃黏膜两三天就要全部更新。所以一个人如果蛋白质的摄入、吸收、利用都很好,那么皮肤就是光泽而又有弹性的。反之,人则经常处于亚健康状态。组织受损后,包括外伤,不能得到及时和高质量的修补,便会加速机体衰退。3、维持肌体正常的新陈代谢和各类物质在体内的输送。载体蛋白对维持人体的正常生命活动是至关重要的。可以在体内运载各种物质。比如血红蛋白—输送氧(红血球更新速率250万/秒)、脂蛋白—输送脂肪、细胞膜上的受体还有转运蛋白等。4、白蛋白:维持机体内的渗透压的平衡及体液平衡。5、维持体液的酸碱平衡。6、免疫细胞和免疫蛋白:有白细胞、淋巴细胞、巨噬细胞、抗体(免疫球蛋白)、补体、干扰素等。七天更新一次。当蛋白质充足时,这个部队就很强,在需要时,数小时内可以增加100倍。7、构成人体必需的催化和调节功能的各种酶。我们身体有数千种酶,每一种只能参与一种生化反应。人体细胞里每分钟要进行一百多次生化反应。酶有促进食物的消化、吸收、利用的作用。相应的酶充足,反应就会顺利、快捷的进行,我们就会精力充沛,不易生病。否则,反应就变慢或者被阻断。8、激素的主要原料。具有调节体内各器官的生理活性。胰岛素是由51个氨基酸分子合成。生长素是由191个氨基酸分子合成。7、构成神经递质乙酰胆碱、五羟色氨等。维持神经系统的正常功能:味觉、视觉和记忆。8、胶原蛋白:占身体蛋白质的1/3,生成结缔组织,构成身体骨架。如骨骼、血管、韧带等,决定了皮肤的弹性,保护大脑(在大脑脑细胞中,很大一部分是胶原细胞,并且形成血脑屏障保护大脑)9、提供热能。[编辑本段]蛋白质的作用蛋白质在细胞和生物体的生命活动过程中,起着十分重要的作用。生物的结构和性状都与蛋白质有关。蛋白质还参与基因表达的调节,以及细胞中氧化还原、电子传递、神经传递乃至学习和记忆等多种生命活动过程。在细胞和生物体内各种生物化学反应中起催化作用的酶主要也是蛋白质。许多重要的激素,如胰岛素和胸腺激素等也都是蛋白质。此外,多种蛋白质,如植物种子(豆、花生、小麦等)中的蛋白质和动物蛋白、奶酪等都是供生物营养生长之用的蛋白质。有些蛋白质如蛇毒、蜂毒等是动物攻防的武器。蛋白质和健康蛋白质是荷兰科学家格里特在1838年发现的。他观察到有生命的东西离开了蛋白质就不能生存。蛋白质是生物体内一种极重要的高分子有机物,占人体干重的54%。蛋白质主要由氨基酸组成,因氨基酸的组合排列不同而组成各种类型的蛋白质。人体中估计有10万种以上的蛋白质。生命是物质运动的高级形式,这种运动方式是通过蛋白质来实现的,所以蛋白质有极其重要的生物学意义。人体的生长、发育、运动、遗传、繁殖等一切生命活动都离不开蛋白质。生命运动需要蛋白质,也离不开蛋白质。球状蛋白质(三级结构)人体内的一些生理活性物质如胺类、神经递质、多肽类激素、抗体、酶、核蛋白以及细胞膜上、血液中起“载体”作用的蛋白都离不开蛋白质,它对调节生理功能,维持新陈代谢起着极其重要的作用。人体运动系统中肌肉的成分以及肌肉在收缩、作功、完成动作过程中的代谢无不与蛋白质有关,离开了蛋白质,体育锻炼就无从谈起。在生物学中,蛋白质被解释为是由氨基酸借肽键联接起来形成的多肽,然后由多肽连接起来形成的物质。通俗易懂些说,它就是构成人体组织器官的支架和主要物质,在人体生命活动中,起着重要作用,可以说没有蛋白质就没有生命活动的存在。每天的饮食中蛋白质主要存在于瘦肉、蛋类、豆类及鱼类中。蛋白质缺乏:成年人:肌肉消瘦、肌体免疫力下降、贫血,严重者将产生水肿。未成年人:生长发育停滞、贫血、智力发育差,视觉差。蛋白质过量:蛋白质在体内不能贮存,多了肌体无法吸收,过量摄入蛋白质,将会因代谢障碍产生蛋白质中毒甚至于死亡。[编辑本段]必需氨基酸和非必需氨基酸纤维状蛋白质(二级结构)食物中的蛋白质必须经过肠胃道消化,分解成氨基酸才能被人体吸收利用,人体对蛋白质的需要实际就是对氨基酸的需要。吸收后的氨基酸只有在数量和种类上都能满足人体需要身体才能利用它们合成自身的蛋白质。营养学上将氨基酸分为必需氨基酸和非必需氨基酸两类。必需氨基酸指的是人体自身不能合成或合成速度不能满足人体需要,必须从食物中摄取的氨基酸。对成人来说,这类氨基酸有8种,包括赖氨酸、蛋氨酸、亮氨酸、异亮氨酸、苏氨酸、缬氨酸、色氨酸、苯丙氨酸。对婴儿来说,组氨酸和精氨酸也是必需氨基酸。非必需氨基酸并不是说人体不需要这些氨基酸,而是说人体可以自身合成或由其它氨基酸转化而得到,不一定非从食物直接摄取不可。这类氨基酸包括谷氨酸、丙氨酸、甘氨酸、天门冬氨酸、胱氨酸、脯氨酸、丝氨酸和酪氨酸等。有些非必需氨基酸如胱氨酸和酪氨酸如果供给充裕还可以节省必需氨基酸中蛋氨酸和苯丙氨酸的需要量。

158 评论

角落里的镜子

生态 的蛋白质我肯定好的

237 评论

CATLION123

【关键词】 蛋白质组 【关键词】 线粒体;蛋白质组 0引言 线粒体拥有自己的DNA(mtDNA),可以进行转录、翻译和蛋白质合成. 根据人类的基因图谱,估计大约有1000~2000种线粒体蛋白,大约有600多种已经被鉴定出来. 线粒体蛋白质只有2%是线粒体自己合成的,98%的线粒体蛋白质是由细胞核编码、细胞质核糖体合成后运往线粒体的,线粒体是真核细胞非常重要的细胞器,在细胞的整个生命活动中起着非常关键的作用. 线粒体的蛋白质参与机体许多生理、病理过程,如ATP的合成、脂肪酸代谢、三羧酸循环、电子传递和氧化磷酸化过程. 线粒体蛋白质结构与功能的改变与人类许多疾病相关,如退行性疾病、心脏病、衰老和癌症. 尤其是在神经退行性疾病方面,线粒体蛋白质的研究日益受到关注. 蛋白质组研究技术的产生与发展为线粒体蛋白质组的研究提供了有力的支持,使得从整体上研究线粒体蛋白质组在生理、病理过程中的变化成为可能. 1线粒体的结构、功能与人类疾病 线粒体一般呈粒状或杆状,也可呈环形、哑铃形或其他形状,其主要化学成分是蛋白质和脂类. 线粒体由内外两层膜封闭,包括外膜、内膜、膜间隙和基质四个部分. 线粒体在细胞内的分布一般是不均匀的,根据细胞代谢的需要,线粒体可在细胞质中运动、变形和分裂增殖. 线粒体是细胞进行呼吸的主要场所,在细胞代谢旺盛的需能部位比较集中,其主要功能是进行氧化磷酸化,合成ATP,为细胞生命活动提供直接能量. 催化三羧酸循环、氨基酸代谢、脂肪酸分解、电子传递、能量转换、DNA复制和RNA合成等过程所需要的一百多种酶和辅酶都分布在线粒体中. 这些酶和辅酶的主要功能是参加三羧酸循环中的氧化反应、电子传递和能量转换. 线粒体具有独立的遗传体系,能够进行DNA复制、转录和蛋白质翻译. 线粒体不仅为细胞提供能量,而且还与细胞中氧自由基的生成、细胞凋亡、细胞的信号转导、细胞内离子的跨膜转运及电解质稳态平衡的调控等有关. 许多实验证实,线粒体功能改变与细胞凋亡〔1〕、衰老〔2〕、肿瘤〔3,4〕的发生密切相关;另外,有许多人类疾病的发生与线粒体功能缺陷相关,如线粒体肌病和脑肌病、线粒体眼病,老年性痴呆、帕金森病、2型糖尿病、心肌病及衰老等,有人统称为线粒体疾病〔5〕. 2线粒体蛋白质组学研究现状 线粒体蛋白质组的蛋白质鉴定Rabilloud等〔6〕在1998年,以健康人的胎盘作为组织来源,分离提取线粒体进行蛋白质组研究,试图建立线粒体蛋白质组的数据库,为研究遗传性或获得性线粒体功能障碍时线粒体蛋白质的变化提供依据. 他们使用IPG(pH )双相电泳技术, 共获得1500个蛋白点. 通过MALDITOFMS和PMF等技术鉴定其中的一些蛋白点,鉴于当时基因组信息的局限性,只有46种蛋白被鉴定出来. 随着人类基因组图谱的完成,应该有更多的蛋白点被鉴定出来. Fountoulakis等〔7〕从大鼠的肝脏中分离线粒体,并分别利用宽范围和窄范围pH梯度IPG对线粒体蛋白质进行双相电泳,通过MALDIMS鉴定出192个基因产物,大约70%的基因产物是具有广谱催化能力的酶,其中8个基因产物首次被检测到并且由一个点构成,而大多数蛋白质都是由多个点构成,平均10~15个点对应于一个基因产物. Mootha等〔8〕从小鼠大脑、心脏、肾脏、肝脏中分离提取线粒体蛋白质,进行线粒体蛋白质组研究,他们参照已有的基因信息共鉴定出591个线粒体蛋白质,其中新发现了163个蛋白质与线粒体有关. 这些蛋白质的表达与RNA丰度的检测在很大程度上是一致的. 不同组织的RNA表达图谱揭示出线粒体基因在功能、调节机制方面形成的网络. 对这些蛋白与基因的整合分析使人们对哺乳动物生物起源的认识更加深入,对理解人类疾病也具有参考价值. 线粒体亚组分的研究线粒体对维持细胞的体内平衡起着关键作用,因此加速了人们对线粒体亚组分的研究. 线粒体内膜不仅包含有呼吸链复合物,它还包含多种离子通道和转运蛋白. 对线粒体发挥正常的功能起着重要作用. Cruz等〔9〕专注于线粒体内膜蛋白质的研究,他们通过二维液相色谱串联质谱技术鉴定出182个蛋白质,pI(),MW(Mr 6000~527 000),这些蛋白与许多生化过程相关,比如电子传递、蛋白质运输、蛋白质合成、脂类代谢和离子运输. 线粒体蛋白质复合物的研究线粒体内膜上嵌有很多蛋白质复合物,对于线粒体的功能具有重要作用,应用常规的双相电泳很难将这些蛋白质复合物完整地分离出来. Devreese等〔10〕采用Bluenative polyacrylamide gel electrophoresis(BNPAGE)分离线粒体内膜上的五个氧化磷酸化复合物,结合肽质量指纹图谱,成功地鉴定出氧化磷酸化复合物中60%的已知蛋白质. BNPAGE在分离蛋白质复合物时可以保持它们的完整性,因此这项技术可以用于研究在不同的生理病理状态下蛋白质复合物的变化及临床诊断等. 线粒体蛋白质组数据库目前人们查询最多的线粒体蛋白质组数据库有MITOP, MitoP2和SWISSPROT三种. MITOP〔11〕是有关线粒体、核编码的基因和相应的线粒体蛋白质的综合性数据库,收录了1150种线粒体相关的基因和对应的蛋白质,人们可依据基因、蛋白质、同源性、通道与代谢、人类疾病分类查询相关的信息.MitoP2〔12〕数据库中主要为核编码的线粒体蛋白质组的数据,MitoP2数据库将不同来源的线粒体蛋白质的信息整合在一起,人们可以根据不同的参数进行查询. MitoP2数据库既包括最新的数据也包括最初的MITOP〔11〕数据库中的数据. 目前数据库中主要为酵母和人的线粒体蛋白质组的数据,以后还将收录小鼠、线虫等的数据. 数据库旨在为人们提供线粒体蛋白质的综合性数据. SWISSPROT数据库包含269种人类线粒体蛋白质,其中与人类疾病相关的蛋白质有225种. 数据库中有相当一部分蛋白质没有明确的定位和功能信息的描述. 随着线粒体研究热潮到来和蛋白质组学技术的发展,将有更多的数据被填充到数据库中. 3线粒体蛋白质组研究中存在的问题 线粒体碱性蛋白质与低分子量蛋白质线粒体蛋白质中,具有碱性等电点的蛋白质占有很大比例,在等电聚焦时难以溶解,一些碱性程度很大的蛋白质如细胞色素C(pH )在pH 3~10的IPG胶上不能被分离出. 线粒体蛋白质中相当一部分蛋白是低分子量蛋白,因此在SDSPAGE电泳时要分别应用高浓度和低浓度分离胶,以更好地分离低分子量蛋白质和高分子量蛋白质. 线粒体膜蛋白质线粒体是一个具有双层膜结构的细胞器,内膜和外膜上整和有很多膜蛋白质,这些膜蛋白质对于线粒体功能的发挥具有重要作用,但是膜蛋白质具有很强的疏水性,在等电聚焦时,用常规的水化液难以溶解,因此用常规的IPG胶检测不出来. 换用不同的裂解液对膜蛋白的溶解具有帮助. 有研究人员在等电聚焦缓冲液中加入SB310以增加膜蛋白的溶解性. 在等电聚焦前对样品进行有机酸处理也可以增加膜蛋白的溶解性. 在研究中人们发现,不同的样品应该选用不同的裂解液,没有一种裂解液能够适合于所有的膜蛋白质.百事通针对膜蛋白质的难溶和等电聚焦时的沉淀,一些研究人员另辟径,避开双相电泳而进行一维SDSPAGE电泳,如Taylor等〔13〕先通过蔗糖梯度离心将线粒体蛋白质分成不同的组分,而后将每一个组分进行一维电泳,一维电泳中SDS可以很好地溶解疏水性蛋白质和膜整合蛋白质,他们鉴定出600多种线粒体蛋白质,其中有很多蛋白质以前应用双相电泳没有被鉴定出来. 他们鉴定的蛋白质中有很多具有跨膜结构域,如adenine nucleotide translocator(ANT1)和VDACs蛋白质,这些蛋白质对于调节线粒体的功能具有关键作用而且应用常规双相电泳很难被鉴定出来. 提高质谱鉴定的灵敏性对于一维SDSPAGE电泳后蛋白质分析鉴定具有很大的帮助,Pflieger等〔14〕应用液相色谱串联质谱(LCMS/MS)成功地鉴定出179种线粒体蛋白质,其中43%是膜蛋白质而且23%具有跨膜结构域. 液相色谱串联质谱(LCMS/MS)检测灵敏度较高,SDS可以很好地溶解膜蛋白,因此这种方法比传统的双相电泳具有更高的灵敏性而且不受蛋白质等电点、分子量、疏水性的限制. 线粒体样品的纯度线粒体样品的纯度对于蛋白质组分析非常重要,在样品制备的过程中,具有与线粒体相同沉降系数的成分会同线粒体一起沉降下来,如内质网、微粒体、胞浆蛋白的一些成分. 这些蛋白斑点出现在双相电泳胶上,会影响整体蛋白质组分析的结果. 因此提高样品的纯度至关重要. Scheffler等〔15〕采用多步percoll/metrizamide密度梯度离心纯化线粒体样品,双相电泳后鉴定出61个蛋白质,几乎全部是线粒体蛋白质. 4未来展望 随着人类基因组工作草图的完成,生命科学的研究进入后基因组时代,蛋白质组学的研究遂成为重点. 蛋白质组学旨在采用全方位、高通量的技术路线,确认生物体全部蛋白质的表达和功能模式,从一个机体、一个器官组织或一个细胞的蛋白质整体活动来揭示生命规律,并研究疾病的发生机制、建立疾病的早期诊断和防治方法. 抗体技术在线粒体蛋白质组学领域中具有重要的应用价值. 单克隆抗体还具有高度的特异性,应用于亲和层析技术中不仅可以去除组织细胞样品中高表达的蛋白质成分,同样也可以富集表达量极低的组分. 结合蛋白免疫转印、流式细胞术和免疫组织细胞化学,实现对相应蛋白质的定性、定量和细胞(内)定位分析. 与微阵列技术(芯片)结合,可以研制出含有成百上千种抗体的蛋白(抗体)芯片,这种新技术使得研究人员可以在一次实验中比较生物样品中成百上千的蛋白质的相对丰度,能够检测到样品中浓度很低的抗原,以实现蛋白质组学对复杂组分高通量、高效率的检测. 某些抗体可以特异性识别蛋白质翻译后修饰的糖基化或磷酸化位点、降解产物、功能状态和构象变化,成为基因芯片检测不可替代的补充. 抗体捕获组分的分析有助于蛋白质复合物及其相互作用的研究,也在新的蛋白质发现和确认方面提供重要信息和证据. 随着抗体技术的不断提高,抗体数目的不断增多,蛋白质组学的研究也将更加深入. 线粒体不仅参与细胞重要的生命活动,而且对于生物进化的研究也有重要意义. 随着线粒体研究热潮的到来,将有更多的蛋白质被发现,对于蛋白质功能的研究也将更加深入,相信线粒体蛋白质组的研究对于人类疾病的发病机制和早期诊断将做出重要贡献. 【参考文献】 〔1〕 Jiang X, Wang X. Cytochrome Cmediated apoptosis 〔J〕. Annu Rev Biochem, 2004,73: 87-106. 〔2〕 Chen XJ, Wang X, Kaufman BA, et al. Aconitase couples metabolic regulation to mitochondrial DNA maintenance 〔J〕. Science, 2005,307(5710): 714-717. 〔3〕 Petros JA, Baumann AK, RuizPesini E, et al. mtDNA mutations increase tumorigenicity in prostate cancer 〔J〕. PNAS, 2005,102(3):719-724. 〔4〕 Wonsey DR, Zeller KI, Dang CV. The cMyc target gene PRDX3 is required for mitochondrial homeostasis and neoplastic transformation 〔J〕. PNAS, 2002, 99(10): 6649-6654. 〔5〕 Taylor RW, Turnbull DM. Mitochondrial DNA mutations in human disease〔J〕. Nat Rev Genet, 2005,6:389-402. 〔6〕 Rabilloud T, Kieffer S, Procaccio V, et al. Twodimensional electrophoresis of human placental mitochondria and protein identification by mass spectrometry: toward a human mitochondrial proteome 〔J〕. Electrophoresis, 1998,19:1006-1014. 〔7〕 Fountoulakis M, Berndt P, Langen H, et al. The rat liver mitochondrial proteins〔J〕. Electrophoresis, 2002,23:311-328. 〔8〕 Mootha VK, Bunkenborg J, Olsen JV, et al. Integrated analysis of protein composition, tissue diversity, and gene regulation in mouse mitochondria 〔J〕. Cell, 2003,115(5): 629-640. 〔9〕 Cruz SD, Xenarios I, Langridge J, et al. Proteomic analysis of the mouse liver mitochondrial inner membrane 〔J〕. J Biol Chem, 2003, 278(42): 41566-41571. 〔10〕 Devreese B, Vanrobaeys F, Smet J, et al. Mass spectrometric identification of mitochondrial oxidative phosphorylation subunits separated by twodimensional bluenative polyacrylamide gel electrophoresis 〔J〕. Electrophoresis, 2002,23: 2525-2533. 〔11〕 Scharfe C, Zaccaria P, Hoertnagel K, et al. MITOP, the mitochondrial proteome database: 2000 update 〔J〕. Nuc Acid Res, 2000,28(1):155-158. 〔12〕 Andreoli C, Prokisch H, Hortnagel K, et al. MitoP2, an integrated database on mitochondrial proteins in yeast and man 〔J〕. Nuc Acid Res, 2004,32(90001):459-462. 〔13〕 Taylor SW, Warnock DE, Glenn GM, et al. An alternative strategy to determine the mitochondrial proteome using sucrose gradient fractionation and 1D PAGE on highly purified human heart mitochondria 〔J〕. J Proteome Res, 2002,1(5):451-458. 〔14〕 Pflieger D, Le Caer JP, Lemaire C, et al. Systematic identi?cation of mitochondrial proteins by LCMS/MS 〔J〕. Anal Chem, 2002,74:2400-2406. 〔15〕 Scheffler NK, Miller SW, Carroll AK, et al. Twodimensional electrophoresis and mass spectrometric identification of mitochondrial proteins from an SHSY5Y neuroblastoma cell line〔J〕. Mitochondrion, 2001,1(2):161-179.

354 评论

相关问答

  • 生物化学论文范文有关蛋白质

    一、摘要二、现代生物技术与健康1、现代生物技术中蛋白质与健康2、现代生物技术中糖类与健康3、现代生物技术中与健康4、现代生物技术中与健康三、总结四、后序五、鸣谢

    普陀小吃货 2人参与回答 2023-12-06
  • 有关蛋白质论文的题目

    你的论文准备往什么方向写,选题老师审核通过了没,有没有列个大纲让老师看一下写作方向? 老师有没有和你说论文往哪个方向写比较好?写论文之前,一定要写个大纲,这样

    拎拎同学 4人参与回答 2023-12-12
  • 有关乳白蛋白成分研究论文

    蛋白质(protein)是生命的物质基础,没有蛋白质就没有生命。因此,它是与生命及与各种形式的生命活动紧密联系在一起的物质。机体中的每一个细胞和所有重要组成部分

    梧桐春雨 3人参与回答 2023-12-11
  • 胶原蛋白论文题目

    目录一、摘要二、现代生物技术与健康1、现代生物技术中蛋白质与健康2、现代生物技术中糖类与健康3、现代生物技术中与健康4、现代生物技术中与健康三、总结四、后序五、

    人在驴途 8人参与回答 2023-12-10
  • 蛋白质合成的研究论文

    蛋白质(protein)是生命的物质基础,没有蛋白质就没有生命。因此,它是与生命及与各种形式的生命活动紧密联系在一起的物质。机体中的每一个细胞和所有重要组成部分

    张大羊羊 2人参与回答 2023-12-10