快乐的陆小晶
威廉·康拉德·伦琴,1901年,首届诺贝尔物理学奖授予德国物理学家伦琴(Willhelm Konrad Ro tgen, 1845---1923),以表彰他在1895年发现的X射线。
威廉·康拉德·伦琴,德国实验物理学家,1845年3月27日生于莱因兰州的伦内普镇。3岁时全家迁居荷兰并入荷兰籍。
1865年进入苏黎世联邦工业大学机械工程系,1868年毕业。1869年获苏黎世大学博士学位,并担任了声学家A.孔脱()的助手。
伦琴一生在物理学许多领域中进行过实验研究工作,如对电介质在充电的电容器中运动时的磁效应、气体的比热容、晶体的导热性、热电和压电现象、光的偏振面在气体中的旋转、光与电的关系、物质的弹性、毛细现象等。
大懒虫杰
他是个木讷的老人,拒绝回答与学术无关的提问,拒绝追星族送上的鲜花,甚至不会在演讲开始的时候说上几句客套的话。作为这届诺贝尔北京论坛里最不像明星的经济学家,他却享受到了众星捧月般的待遇。他就是1994年诺贝尔经济学奖获得者、奥斯卡获奖影片《美丽心灵》的原型、著名的“纳什均衡”提出者、博弈论大师约翰·纳什。5月31日上午9点30分,当年逾古稀的纳什走进北京工商大学的礼堂时,全场近千名师生爆发出了热烈的掌声,几名学生甚至激动得热泪盈眶。但是纳什似乎对眼前的场面无动于衷,他看起来总是在沉思,沉浸在自己的世界中不能自拔。这个身材清癯、头发花白的老人看起来十分平凡,然而他一生的经历却比电影中的情节还要跌宕起伏。孤独的天才纳什1928年出生在美国西弗吉尼亚州工业城布鲁菲尔德的一个富裕家庭。他的父亲是受过良好教育的电子工程师,母亲则是拉丁语教师。纳什从小就很孤僻,他宁愿钻在书堆里,也不愿出去和同龄的孩子玩耍。但是那个时候,纳什的数学成绩并不好,小学老师常常向他的家长抱怨纳什的数学有问题,因为他常常使用一些奇特的解题方法。而到了中学,这种情况就更加频繁了,老师在黑板上演算了整个黑板的习题,纳什只用简单的几步就能解出答案。中学毕业后,纳什进入了匹兹堡的卡耐基技术学院化学工程系。1948年,大学三年级的纳什同时被哈佛、普林斯顿、芝加哥和密执安大学录取,而普林斯顿大学则表现得更加热情,当普林斯顿大学的数学系主任莱夫谢茨感到纳什的犹豫时,就立即写信敦促他选择普林斯顿,这促使纳什接受了一份1150美元的奖学金。当时的普林斯顿已经成了全世界的数学中心,爱因斯坦等世界级大师均云集于此。在普林斯顿自由的学术空气里,纳什如鱼得水,他21岁博士毕业,不到30岁已经闻名遐迩。1958年,纳什因其在数学领域的优异工作被美国《财富》杂志评为新一代天才数学家中最杰出的人物。纳什最重要的理论就是现在广泛出现在经济学教科书上的“纳什均衡”。而“纳什均衡”最著名的一个例子就是“囚徒困境”,大意是:一个案子的两个嫌疑犯被分开审讯,警官分别告诉两个囚犯,如果两人均不招供,将各被判刑一年;如果你招供,而对方不招供,则你将被判刑三个月,而对方将被判刑十年;如果两人均招供,将均被判刑五年。于是,两人同时陷入招供还是不招供的两难处境。两个囚犯符合自己利益的选择是坦白招供,原本对双方都有利的策略不招供从而均被判刑1年就不会出现。这样两人都选择坦白的策略以及因此被判5年的结局被称为“纳什均衡”,也叫非合作均衡。“纳什均衡”是他21岁博士毕业的论文,也奠定了数十年后他获得诺贝尔经济学奖的基础。那时的纳什“就像天神一样英俊”,米的个子,体重接近77公斤,手指修长、优雅,双手柔软、漂亮,还有一张英国贵族的容貌。他的才华和个人魅力吸引了一个漂亮的女生——艾里西亚,她是当时麻省理工学院物理系仅有的两名女生之一。1957年,他们结婚了。之后漫长的岁月证明,这也许正是纳什一生中比获得诺贝尔奖更重要的事。就在事业爱情双双得意的时候,纳什也因为喜欢独来独往,喜欢解决折磨人的数学问题而被人们称为“孤独的天才”。他不是一个善于为人处世并受大多数人欢迎的人,他有着天才们常有的骄傲、自我中心的毛病。他的同辈人基本认为他不可理喻,他们说他“孤僻,傲慢,无情,幽灵一般,古怪,沉醉于自己的隐秘世界,根本不能理解别人操心的世俗事务。”普林斯顿的幽灵1958年的秋天,正当艾里西亚半惊半喜地发现自己怀孕时,纳什却为自己的未来满怀心事,越来越不安。系主任马丁已答应在那年冬天给他永久教职,但是纳什却出现了各种稀奇古怪的行为:他担心被征兵入伍而毁了自己的数学创造力,他梦想成立一个世界政府,他认为《纽约时报》上每一个字母都隐含着神秘的意义,而只有他才能读懂其中的寓意。他认为世界上的一切都可以用一个数学公式表达。他给联合国写信,跑到华盛顿给每个国家的大使馆投递信件,要求各国使馆支持他成立世界政府的想法。他迷上了法语,甚至要用法语写数学论文,他认为语言与数学有神秘的关联……终于,在孩子出生以前,纳什被送进了精神病医院。几年后,因为艾里西亚无法忍受在纳什的阴影下生活,他们离婚了,但是她并没有放弃纳什。离婚以后,艾里西亚再也没有结婚,她依靠自己作为电脑程序员的微薄收入和亲友的接济,继续照料前夫和他们惟一的儿子。她坚持纳什应该留在普林斯顿,因为如果一个人行为古怪,在别的地方会被当作疯子,而在普林斯顿这个广纳天才的地方,人们会充满爱心地想,他可能是一个天才。于是,在上世纪70和80年代,普林斯顿大学的学生和学者们总能在校园里看见一个非常奇特、消瘦而沉默的男人在徘徊,他穿着紫色的拖鞋,偶尔在黑板上写下数字命理学的论题。他们称他为“幽灵”,他们知道这个“幽灵”是一个数学天才,只是突然发疯了。如果有人敢抱怨纳什在附近徘徊使人不自在的话,他会立即受到警告:“你这辈子都不可能成为像他那样杰出的数学家!”正当纳什本人处于梦境一般的精神状态时,他的名字开始出现在70年代和80年代的经济学课本、进化生物学论文、政治学专著和数学期刊的各领域中。他的名字已经成为经济学或数学的一个名词,如“纳什均衡”、“纳什谈判解”、“纳什程序”、“德乔治-纳什结果”、“纳什嵌入”和“纳什破裂”等。纳什的博弈理论越来越有影响力,但他本人却默默无闻。大部分曾经运用过他的理论的年轻数学家和经济学家都根据他的论文发表日期,想当然地以为他已经去世。即使一些人知道纳什还活着,但由于他特殊的病症和状态,他们也把纳什当成了一个行将就木的废人。传奇仍在继续有人说,站在金字塔尖上的科学家都有一个异常孤独的大脑,纳什发疯是因为他太孤独了。但是,纳什在发疯之后却并不孤独,他的妻子、朋友和同事们没有抛弃他,而是不遗余力地帮助他,挽救他,试图把他拉出疾病的深渊。尽管纳什决心辞去麻省理工学院教授的职位,但他的同事和上司们还是设法为他保全了保险。他的同事听说他被关进了精神病医院后,给当时美国著名的精神病学专家打电话说:“为了国家利益,必须竭尽所能将纳什教授复原为那个富有创造精神的人。”越来越多的人聚集到纳什的身边,他们设立了一个资助纳什治疗的基金,并在美国数学会发起一个募捐活动。基金的设立人写到:“如果在帮助纳什返回数学领域方面有什么事情可以做,哪怕是在一个很小的范围,不仅对他,而且对数学都很有好处。”对于普林斯顿大学为他做的一切,纳什在清醒后表示,“我在这里得到庇护,因此没有变得无家可归。”守得云开见月明,妻子和朋友的关爱终于得到了回报。80年代末的一个清晨,当普里斯顿高等研究院的戴森教授像平常一样向纳什道早安时,纳什回答说:“我看见你的女儿今天又上了电视。”从来没有听到过纳什说话的戴森仍然记得当时的震惊之情,他说:“我觉得最奇妙的还是这个缓慢的苏醒,渐渐地他就越来越清醒,还没有任何人曾经像他这样清醒过来。”纳什渐渐康复,从疯癫中苏醒,而他的苏醒似乎是为了迎接他生命中的一件大事:荣获诺贝尔经济学奖。当1994年瑞典国王宣布年度诺贝尔经济学奖的获得者是约翰·纳什时,数学圈里的许多人惊叹的是:原来纳什还活着。纳什没有因为获得了诺贝尔奖就放弃他的研究,在诺贝尔奖得主自传中,他写道:从统计学看来,没有任何一个已经66岁的数学家或科学家能通过持续的研究工作,在他或她以前的成就基础上更进一步。但是,我仍然继续努力尝试。由于出现了长达25年部分不真实的思维,相当于提供了某种假期,我的情况可能并不符合常规。因此,我希望通过目前的研究成果或以后出现的任何新鲜想法,取得一些有价值的成果。”而在2001年,经过几十年风风雨雨的艾里西亚与约翰纳什复婚了。事实上,在漫长的岁月里,艾里西亚在心灵上从来没有离开过纳什。这个伟大的女性用一生与命运进行博弈,她终于取得了胜利。而纳什,也在得与失的博弈中取得了均衡。2005年6月1日晚,诺贝尔北京论坛在故宫东侧菖蒲河公园内的东苑戏楼闭幕。热闹的晚宴结束后,纳什没有搭乘主办方安排的专车,而是一个人夹着文件夹走出了东苑戏楼。他像一个普通老人一样步行穿过菖蒲河公园,然后绕到南河沿大街路西的人行横道上等待红绿灯。绿灯亮起,老人隅隅独行的背影在暮色中渐行渐远,终于消失不见。美到极致是疯狂?蓝极假设你是一个处于古战场前线的士兵,当面对敌方的阵线时你采取何种策略最佳?如果己方获胜,你的贡献不太可能是决定性的,你倒是冒着有可能受伤或者牺牲的风险;如果敌方取胜,你伤亡的可能性就更大了。于是唯一合理的结论是:逃跑。如果每个士兵都如此推理的话,恐怕战争就不存在了。当然,战争仍然在历史的背景舞台上轰隆作响,是因为还有比上面简单推理更多的东西。至少对逃跑士兵的处决,就使得逃跑的代价比起与战友同生共死来得严重。或者如当年西班牙征服者Cortez率领很少的人在墨西哥登陆后所做的那样,Cortez通过烧毁抵达的船只来断绝后退的生路,以面对人数众多的墨西哥中部的Aztec人。同时,Cortez故意将毁船的行为让Aztec人看见,让他们揣摩他必胜的信心。喜欢追本溯源的人说博弈论——也有人将game theory 翻译成对策论或游戏理论——开始于犹太法典(Talmud)中一个男人如何将死后的财产发给三个妻子的难题。Plato在Republic中,Socrates就曾为上面战争前线的士兵困境问题而困扰。在Shakespeare的Henry V中,Henry V在占领法国北部的村庄Agincourt后屠杀法国战俘的时候也采用类似Cortez的策略。Thomas Hobbes (1588-1679)用类似战场上逃跑行为的逻辑在其著作Leviathan中得出结论说,人与人的合作是不可能的,于是政府只能在无政府状态与强制之间取其轻:选择施予暴政,惩治任何不履行诺言的人,如同对逃兵的惩罚。如果这些有点抽象的话,云儿曾经在“互识.共识.华容道 ”一文中所引的《三国演义》中“诸葛亮智算华容”的例子,也很能说明行动的僵局。尽管最后曹操在与诸葛亮的心理战中跌入陷阱,但如果两人都能真正揣摩对方的心态,那么曹操将象Buridan的驴一样处于无法行动的地步,而不是他实际采纳的华容道。这样繁杂的文字叙述,非半天功夫也不容易让人明白。几大段文字下来,不但别扭,还远不如一个矩阵框图让人一目了然,就像经济学中的“边际效应”与心理或生理学中的desensitization的概念,远不如用一个函数关系的导数那样直截了当。博弈论是处理一个参与者——可以是一只狗或狼,一条甲壳虫,或者一个人或组织等——在追求最大效用(utility)的驱使下的理性行为。从20世纪70年代末期,学者们逐渐形成一个共识,当一个人或群体与他或他们的博弈论对手都能以理性的方式做出决策行为的时候,那就是博弈论大显身手的场合。有人将博弈论比作Mendel的遗传理论和Darwin的自然选择对生物学的影响,或者Newton的天体力学对物理学的奠基作用。然而,真正的社会并不严格是博弈论的理想对象,无论是股票市场上的投机现象,还是受制于传统文化的惯性影响下的体制选择。现在的普遍看法是,如同混沌动力系统理论带给人们的初始兴奋之后,博弈论并不具有历史上像物理学中理论的预测能力。尽管如此,这里让我们来看一个曾经在博弈论领域做出过巨大贡献的人用生命来博弈的故事,他就是被几何学家Mikhail Gromov称为20世纪下半叶“最杰出的数学家”——John Forbes Nash Jr.。Nash于1928年6月13日出生于West Virginia的Bluefield,从小就被描述为一个孤僻、内向、离群独处和缺乏社交技巧的男孩。在中小学他没有显示出多少不同寻常的才华,后来因为获得George Westinghouse Competition的奖学金在1945年6月进入Carnegie-Mellon University,开始以化学工程为专业,后来才逐渐展示出数学才能。两次参加William Lowell Putnam数学竞赛,却没有进入前五名,这让他产生了些许挫折感。1948年他20岁时以BA和MA的数学学位毕业,同时被Harvard, Princeton, Chicago和Michigan录取为数学研究生。由于一笔优厚的奖学金,Nash选择了Princeton,来到Albert Einstein当时生活的地方,并曾经与他有过接触。他显露出对拓扑、代数几何、博弈论和逻辑学的兴趣。John von Neumann在1944年与Princeton 经济学家Oskar Morgenstern的著述《博弈论和经济行为》,通过阐释二人零和博弈论,正式奠定了现代博弈论的基础。1950年,22岁的Nash以Non-cooperative Games为题的27页博士论文毕业。同年,Melvin Dresher和Merrill Flood在Rand Corporation在一项试验中正式引出了归功于A. W. Tucker的囚犯困境(Prisoner's Dilemma)。而Nash的论文提出多人非合作博弈和后来称为Nash平衡的概念,为非合作博弈(non-cooperative game theory)和交易理论(bargaining theory)作了奠定性的贡献。非合作博弈处理的是多人参与游戏——而不是像囚犯困境中的仅仅两人——时每个游戏者的最佳策略。Nash平衡是指博弈中这样的局面,对于每个参与者来说,只要其他人不改变策略,他就无法改善自己的状况。Nash在证明了在每个参与者都只有有限种策略选择、并允许混合策略的前提下,Nash平衡一定存在。以两家公司的价格大战为例,Nash平衡意味着两败俱伤的可能:在对方不改变价格的条件下,既不能提价,否则会进一步丧失市场;也不能降价,因为会出现赔本甩卖。于是两家公司可以改变原先的利益格局,通过谈判寻求新的利益评估分摊方案,也就是Nash平衡。类似的推理当然也可以用到选举,群体之间的利益冲突,潜在战争爆发前的僵局,议会中的法案争执等。1950年夏天他为Rand公司工作。那时Rand公司正在试图将博弈论用于冷战时期的军事和外交策略。秋天回到Princeton后,他并没有继续在博弈论方面的研究,而是开始在纯数学里的拓扑流形(manifolds)和代数簇(algebraic varieties)上做他原先在攻读博士期间曾经感兴趣的工作,同时教些本科生的课程。但是Princeton数学系没有给他教职,不是基于他的学术水平,而是因为他的性格因素。1952年他24岁,开始在MIT教书。他的教学和考试方法有悖于传统。如果说一般人心目中的数学家们是一些以古怪偏执傲慢为自豪资本的典型Nutty Professors的话,那么你可以想像Nash只能是有过之而无不及。奇怪——或许并不奇怪——的是,数学系占据的大楼往往在一些校园里虽然狭小,但却是最高的,仿佛要加深人们对象牙塔的印象。在研究领域里,Nash在代数簇理论,Riemannian几何,抛物和椭圆型方程上取得了一些突破。1958年他几乎因为在抛物和椭圆型方程里的工作获得Fields奖,但由于他的一些结果没有来得及发表而未能如愿。在MIT的日子里,他在一家医院做一个腿上小手术时遇到了Eleanor Stier,并在1953年他25岁时与她有了一个私生子John David Stier。1954年夏天在Rand公司工作期间,在男厕所里因为有伤风化的过分暴露而被警察设下的搜寻同性恋圈套中被捕,那时的同性恋当然是不为社会所容的异端行为。当即他被Rand公司开除。1955年,他与一个他自己的漂亮学生,来自南美在MIT的物理系读书的Alicia Larde约会。Alicia很崇拜他,经过一番心计,她终于赢得了他的倾心。1956年的一个晚上,Eleanor来看Nash,发现了Alicia。Eleanor很是恼火,将结果告诉了Nash的父亲。他父亲鉴于那个私生子的考虑,督促Nash与Eleanor结婚。但他的朋友们大都极力反对,说Eleanor与他悬殊太大。他父亲很快就去世了,这很大程度上可能有这个丑闻有关,至少Nash是这样认为。1957年2月,Nash与Alicia结婚。1958年新年的时候,Nash好像是脱胎换骨,精神失常的症状显露出来了。他一身婴儿打扮,出现在新年晚会上。两周之后他拿着一份纽约时报,垂头丧气地走进MIT的一间坐满教授的办公室里,对人们宣称,他正通过手里的报纸收到一些信息,要么来自宇宙里来的神秘力量,要么来自某些外国政府,而只有他能够解读外星人的密码。当一个TA问他为何那么肯定是来自外星人的信息,他说,有关超自然体的感悟就如同数学中的灵思,是没有理由和先兆的。秋天,Nash30岁,刚取得MIT的tenure,Alicia怀孕。后来他们的儿子John Charles Martin Nash出生,他因为幻听幻觉被确诊为严重的精神分裂症,然后是接二连三的诊治,短暂的恢复,和新的复发。Alicia非常担心他会自杀。她决定带他到欧洲度假,企盼新的环境会让他忘记过去并开始新的生活。但他认定他必须离开美国,并在东德、法国和瑞士试图寻求政治避难。美国国务院采取了各种措施,以Alicia的名义使得他的避难没有成功,最终他只得回到美国。1960年夏天,他目光呆滞,蓬头垢面,长发披肩,胡子犹如丛生的杂草,在Princeton的街头上光着脚丫子晃晃悠悠,人们见了他都尽量躲着他。1962年时当他被认为是理所当然的Fields奖——数学领域里的Nobel奖——获得者时,他的精神状况又使他失之交臂。尽管几年后Alicia跟他离婚,但还是跟他住在一起,在他生病期间精心照料他30年。到1970年的时候,他已经辗转了几家精神病医院,病情逐渐稳定下来。重新回到Princeton之后,在Alicia和几个数学家朋友的关照下,他幽闲地过着平稳的日子,时不时跑到Princeton校园里的象牙塔,数学系13层高的Fine Hall楼里,在教室和过道黑板上涂抹一下乱七八糟的符号与方程。他会突然闯入正在上课的教室,用口哨哼着Bach的Little Fugue,嘴里咀嚼着咖啡纸袋子,于是被称为Phantom of Fine Hall。对外星人的幻觉毁灭了他的生活,也因此催生了他强烈地要为联合国的世界和平理念而奋斗,并为之困扰,不断地给政府官员和联合国写信。自然地,有关世界和平的想法来自他对博弈论应用于世界格局的理解。就这样,他几乎被学术界遗忘了。到80年代,有几项荣誉性奖都几乎要授予给他,最终都因为他的病状而放弃。80年代末期,Nobel委员会开始考虑给予博弈论领域一次机会,而Nash就名列候选人名单的前茅,最后因为对博弈论的怀疑和对Nash的健康担忧而没有实现。但是,Nash居然从那场梦中醒了过来,渐渐地恢复了。对于精神病尚没有真正理解的今天,这算是神奇的事情。自那以后,Nash花大量时间照理他的儿子,因为他的儿子很可能因为遗传的原因而患有精神分裂症。即使在1994年Nobel奖委员会已经做出授予Nash的决定之后,尘埃仍然没有落定。在每一Nobel奖项宣布的当天,Royal Swedish Academy of Sciences也要投票批准该奖项,但一般都是按照惯例走一下形式。但面对1994年的经济学奖,Nash和另外两个候选人John C. Harsanyi和Reinhard Selten的工作却被指责为无足轻重与过于狭隘和过多的技术细节,最后仅以历史上唯一的微弱多数局面通过。这样的局面使得1995年2月Royal Swedish Academy of Sciences秘密地重新定义经济学奖项,让其用于在政治科学、心理学和社会学领域有重大贡献的社会科学。在Nobel奖的授奖仪式上那些庄重的鸡尾酒晚宴和舞会上,人们都极其提心吊胆,屏住呼吸,不知道他会怎么表现。后来他的实际表现还算不错。1996年他在第10界World Congress of Psychiatry上报告了他自己的经历。1958年他30岁时被认为是“世界上最有前途的年轻数学家”,但紧接着他的整个世界都坍塌了:“我在MIT的教职员工,还有Boston都变得陌生起来……我到处看到匿藏着的共产党员……我开始认为自己是宗教圣人,并总是听到从那些反对我想法的人那里传来的像电话上的声音……这种恍惚的状态就像一场永远没有醒来的梦。”1999年美国数学协会授予他Leroy P Steele Prize。纵观Nash的一生,即使是面对天才,人们也由得感叹.然而比起Evariste Galois(1811-1831),那个20岁就在激动的情绪下与政敌决斗而死的数学天才, Nash算是幸运多了。而Galois留下的60页论文稿纸,是直到40年甚至20世纪才发出耀眼的光辉。同样,那个写下诸如“面朝大海,春暖花开”和“日记”那样美丽诗篇并充满浪漫气息的海子,你能够想象他自杀前先是从西藏之行中修炼了密宗和其它气功,然后开始出现严重幻听,并臆想是他的一两个朋友用特异功能让他昏迷,留下数封遗书,将自己的精神分裂并走上自杀的路栽赃于那一两个朋友?或许在平常人眼中的疯狂,于天才看来却是正常的行为,也是生命中博弈的一种方式。而平常人的正常,倒有可能被天才认为是疯狂之举。Sylvia Nasar写下的有关Nash的传记A Beautiful Mind就记述了Nash从事业的顶峰滑向神经失常的低谷,再神奇般逐渐恢复的生平。一个电影摄制组在今年的Oscar颁奖仪式之后在3月底就开始在Princeton大学的校园里搭凑40年代末期的景致。电影由Ron Howard导演,在Gladiator里的Russel Crowe扮演Nash。电影今天开始在美国的一些地方放映。尽管不是严格的传记电影,还是可以从中窥视Nash的一些有意思的故事。现在73岁的他在接受采访的时候说,电影并不完全是实际中他的历程,所以他能够有置身其外的姿态观看有关自己的故事。如今他几乎每天都到他在Fine Fall里九层上的办公室里来,也定期作一些有关博弈论的讲座,并从NSF得到一笔研究经费,继续他在博士论文中没有完成的工作。It takes a strong mind to survive on this planet
shangna52088
约翰·纳什(JohnF Nash),生于1928年6月13日。任普林斯顿大学数学系教授。1950,约翰·纳什获得美国普林斯顿高等研究院的博士学位,他那篇仅仅27页的博士论文中有一个重要发现,这就是后来被称为“纳什均衡”的博弈理论. 基本简介 约翰·福布斯·纳什(John Forbes Nash Jr.) 约翰·纳什生于1928年6月13日。父亲是电子工程师与教师,第一次世界大战的老兵。纳什小时孤独内向,虽然父母对他照顾有加,但老师认为他不合群不善社交。 从事博弈论研究 纳什在上大学时就开始从事纯数学的博弈论研究,1948年进入普林斯顿大学后更是如鱼得水。他在普林斯顿大学读博士时刚刚二十出头,但他的一篇关于非合作博弈的博士论文和其他相关文章,确立了他博弈论大师的地位。在20世纪50年代末,他已是闻名世界的科学家了。特别是在经济博弈论领域,他做出了划时代的贡献,是继冯·诺依曼之后最伟大的博弈论大师之一。他提出的著名的纳什均衡的概念在非合作博弈理论中起着核心的作用。后续的研究者对博弈论的贡献,都是建立在这一概念之上的。由于纳什均衡的提出和不断完善为博弈论广泛应用于经济学、管理学、社会学、政治学、军事科学等领域奠定了坚实的理论基础。 他妻子的付出 然而,正当他的事业如日中天的时候,30岁的纳什得了严重的精神分裂症。他的妻子艾利西亚———麻省理工学院物理系毕业生,表现出钢铁一般的意志:她挺过了丈夫被禁闭治疗、孤立无援的日子,走过了唯一儿子同样罹患精神分裂症的震惊与哀伤……漫长的半个世纪之后,她的耐心和毅力终于创下了了不起的奇迹:和她的儿子一样,纳什教授渐渐康复,并在1994年获得诺贝尔奖经济学奖。 如今,纳什已经基本恢复正常,并重新开始科学研究。他现在是普林斯顿大学数学教授,但已经不再任教。学校经济学系经常会举办有关博弈论的论坛,纳什有时候会参加,但是他几乎从不发言,每次都是静静地来,静静地走。 小约翰-纳什是所有诺贝尔经济学奖得主中最不幸的,又是不幸中最万幸的人。 纳什不是一个完人,他举止古怪,离经叛道。曾经想放弃美国国籍,几乎遗弃了同居女友和亲生儿子,与深爱他的贤妻艾莉西亚离婚…… 学术成就 两篇关于非合作博弈论的重要论文 1950年和1951年纳什的两篇关于非合作博弈论的重要论文,彻底改变了人们对竞争和市场的看法。他证明了非合作博弈及其均衡解,并证明了均衡解的存在性,即著名的纳什均衡。从而揭示了博弈均衡与经济均衡的内在联系。纳什的研究奠定了现代非合作博弈论的基石,后来的博弈论研究基本上都沿着这条主线展开的。然而,纳什天才的发现却遭到冯·诺依曼的断然否定,在此之前他还受到爱因斯坦的冷遇。但是骨子里挑战权威、藐视权威的本性,使纳什坚持了自己的观点,终成一代大师。要不是30多年的严重精神病折磨,恐怕他早已站在诺贝尔奖的领奖台上了,而且也绝不会与其他人分享这一殊荣。 被誉为天才的数学家 纳什是一个非常天才的数学家,他的主要贡献是1950至1951年在普林斯顿读博士学位时做出的。然而,他的天才发现———非合作博弈的均衡,即“纳什均衡”并不是一帆风顺的。 1948年纳什到普林斯顿大学读数学系的博士。那一年他还不到20岁。当时普林斯顿可谓人杰地灵,大师如云。爱因斯坦、冯·诺依曼、列夫谢茨(数学系主任)、阿尔伯特·塔克、阿伦佐·切奇、哈罗德·库恩、诺尔曼·斯蒂恩罗德、埃尔夫·福克斯……等全都在这里。博弈论主要是由冯·诺依曼(1903—1957)所创立的。他是一位出生于匈牙利的天才的数学家。他不仅创立了经济博弈论,而且发明了计算机。早在20世纪初,塞梅鲁(Zermelo)、鲍罗(Borel)和冯·诺伊曼已经开始研究博弈的准确的数学表达,直到1939年,冯·诺依曼遇到经济学家奥斯卡·摩根斯特恩(Oskar Morgenstern),并与其合作才使博弈论进入经济学的广阔领域。 《博弈论与经济行为》出版 1944年约翰·冯·诺依曼与奥斯卡·摩根斯特恩合著的巨作《博弈论与经济行为》出版,标志着现代系统博弈理论的的初步形成。尽管对具有博弈性质的问题的研究可以追溯到19世纪甚至更早。例如,1838年古诺(Cournot)简单双寡头垄断博弈;1883年伯特兰和1925年艾奇沃奇思研究了两个寡头的产量与价格垄断;2000多年前中国著名军事家孙武的后代孙膑利用博弈论方法帮助田忌赛马取胜等等都属于早期博弈论的萌芽,其特点是零星的,片断的研究,带有很大的偶然性,很不系统。冯·诺依曼和摩根斯特恩的《博弈论与经济行为》一书中提出的标准型、扩展型和合作型博弈模型解的概念和分析方法,奠定了这门学科的理论基础。合作型博弈在20世纪50年代达到了巅峰期。然而,诺依曼的博弈论的局限性也日益暴露出来,由于它过于抽象,使应用范围受到很大限制,在很长时间里,人们对博弈论的研究知之甚少,只是少数数学家的专利,所以,影响力很有限。正是在这个时候,非合作博弈———“纳什均衡”应运而生了,它标志着博弈论的新时代的开始!纳什不是一个按部就班的学生,他经常旷课。据他的同学们回忆,他们根本想不起来曾经什么时候和纳什一起完完整整地上过一门必修课,但纳什争辩说,至少上过斯蒂恩罗德的代数拓扑学。斯蒂恩罗德恰恰是这门学科的创立者,可是,没上几次课,纳什就认定这门课不符合他的口味。于是,又走人了。然而,纳什毕竟是一位英才天纵的非凡人物,他广泛涉猎数学王国的每一个分支,如拓扑学、代数几何学、逻辑学、博弈论等等,深深地为之着迷。纳什经常显示出他与众不同的自信和自负,充满咄咄逼人的学术野心。1950年整个夏天纳什都忙于应付紧张的考试,他的博弈论研究工作被迫中断,他感到这是莫大的浪费。殊不知这种暂时的“放弃”,使原来模糊、杂乱和无绪的若干念头,在潜意识的持续思考下,逐步形成一条清晰的脉络,突然来了灵感!这一年的10月,他骤感才思潮涌,梦笔生花。 “纳什均衡”博弈均衡概念产生 其中一个最耀眼的亮点就是日后被称之为“纳什均衡”的非合作博弈均衡的概念。纳什的主要学术贡献体现在1950年和1951年的两篇论文之中(包括一篇博士论文)。1950年他才把自己的研究成果写成题为“非合作博弈”的长篇博士论文,1950年11月刊登在美国全国科学院每月公报上,立即引起轰动。说起来这全靠师兄戴维·盖尔之功,就在遭到冯·诺依曼贬低几天之后,他遇到盖尔,告诉他自己已经将冯·诺依曼的“最小最大原理”(minimaxsolution)推到非合作博弈领域,找到了普遍化的方法和均衡点。盖尔听得 影视作品中的纳什 很认真,他终于意识到纳什的思路比冯·诺伊曼的合作博弈的理论更能反映现实的情况,而对其严密优美的数学证明极为赞叹。盖尔建议他马上整理出来发表,以免被别人捷足先登。纳什这个初出茅庐的小子,根本不知道竞争的险恶,从未想过要这么做。结果还是盖尔充当了他的“经纪人”,代为起草致科学院的短信,系主任列夫谢茨则亲自将文稿递交给科学院。纳什写的文章不多,就那么几篇,但已经足够了,因为都是精品中的精品。这一点也是值得我们深思的。国内提一个教授,要求在“核心的刊物”上发表多少篇文章。按照这个标准可能纳什还不一定够资格。 1996年诺贝尔经济学奖得主莫尔里斯当牛津大学艾奇沃思经济学讲座教授时也没有发表过什么文章,特殊的人才,必须有特殊的选拔办法。生平介绍 孤独的天才 纳什于1928年出生在美国西弗吉尼亚州工业城布鲁菲尔德的一个富裕家庭。他的父亲是受过良好教育的电子工程师,母亲则是拉丁语教师。纳什从小就很孤僻,他宁愿钻在书堆里,也不愿出去和同龄的孩子玩耍。但是那个时候,纳什的数学成绩并不好,小学老师常常向他的家长抱怨纳什的数学有问题,因为他常常使用一些奇特的解题方法。而到了中学,这种情况就更加频繁了,老师在黑板上演算了整个黑板的习题,纳什只用简单的几步就能解出答案。 中学毕业后,纳什进入了匹兹堡的卡耐基梅隆大学学习,之后又进入卡耐基技术学院化学工程系。1948年,大学三年级的纳什同时被哈佛、普林斯顿、芝加哥和密执安大学录取,而普林斯顿大学则表现得更加热情,当普林斯顿大学的数学系主任莱夫谢茨感到纳什的犹豫时,就立即写信敦促他选择普林斯顿,这促使纳什接受了一份1150美元的奖学金。 当时的普林斯顿已经成了全世界的数学中心,爱因斯坦等世界级大师均云集于此。在普林斯顿自由的学术空气里,纳什如鱼得水,他21岁博士毕业,不到30岁已经闻名遐迩。1958年,纳什因其在数学领域的优异工作被美国《财富》杂志评为新一代天才数学家中最杰出的人物。 纳什最重要的理论就是现在广泛出现在经济学教科书上的“纳什均衡”。而“纳什均衡”最著名的一个例子就是“囚徒困境”,大意是:一个案子的两个嫌疑犯被分开审讯,警官分别告诉两个囚犯,如果两人均不招供,将各被判刑一年;如果你招供,而对方不招供,则你将被判刑三个月,而对方将被判刑十年;如果两人均招供,将均被判刑五年。于是,两人同时陷入招供还是不招供的两难处境。两个囚犯符合自己利益的选择是坦白招供,原本对双方都有利的策略不招供从而均被判刑1年就不会出现。这样两人都选择坦白的策略以及因此被判5年的结局被称为“纳什均衡”,也叫非合作均衡。“纳什均衡”是他21岁博士毕业的论文,也奠定了数十年后他获得诺贝尔经济学奖的基础。 那时的纳什“就像天神一样英俊”,米的个子,体重接近77公斤,手指修长、优雅,双手柔软、漂亮,还有一张英国贵族的容貌。他的才华和个人魅力吸引了一个漂亮的女生——艾里西亚,她是当时麻省理工学院物理系仅有的两名女生之一。1957年,他们结婚了。之后漫长的岁月证明,这也许正是纳什一生中比获得诺贝尔奖更重要的事。 就在事业爱情双双得意的时候,纳什也因为喜欢独来独往,喜欢解决折磨人的数学问题而被人们称为“孤独的天才”。他不是一个善于为人处世并受大多数人欢迎的人,他有着天才们常有的骄傲、自我中心的毛病。他的同辈人基本认为他不可理喻,他们说他“孤僻,傲慢,无情,幽灵一般,古怪,沉醉于自己的隐秘世界,根本不能理解别人操心的世俗事务。” 普林斯顿的幽灵 1958年的秋天,正当艾里西亚半惊半喜地发现自己怀孕时,纳什却为自己的未来满怀心事,越来越不安。系主任马丁已答应在那年冬天给他永久教职,但是纳什却出现了各种稀奇古怪的行为:他担心被征兵入伍而毁了自己的数学创造力,他梦想成立一个世界政府,他认为《纽约时报》上每一个字母都隐含着神秘的意义,而只有他才能读懂其中的寓意。他认为世界上的一切都可以用一个数学公式表达。他给联合国写信,跑到华盛顿给每个国家的大使馆投递信件,要求各国使馆支持他成立世界政府的想法。他迷上了法语,甚至要用法语写数学论文,他认为语言与数学有神秘的关联…… 终于,在孩子出生以前,纳什被送进了精神病医院。 几年后,因为艾里西亚无法忍受在纳什的阴影下生活,他们离婚了,但是她并没有放弃纳什。离婚以后,艾里西亚再也没有结婚,她依靠自己作为电脑程序员的微薄收入和亲友的接济 ,继续照料前夫和他们唯一的儿子。她坚持纳什应该留在普林斯顿,因为如果一个人行为古怪,在别的地方会被当作疯子,而在普林斯顿这个广纳天才的地方,人们会充满爱心地想,他可能是一个天才。 于是,在上世纪70和80年代,普林斯顿大学的学生和学者们总能在校园里看见一个非常奇特、消瘦而沉默的男人在徘徊,他穿着紫色的拖鞋,偶尔在黑板上写下数字命理学的论题。他们称他为“幽灵”,他们知道这个“幽灵”是一个数学天才,只是突然发疯了。如果有人敢抱怨纳什在附近徘徊使人不自在的话,他会立即受到警告:“你这辈子都不可能成为像他那样杰出的数学家!” 正当纳什本人处于梦境一般的精神状态时,他的名字开始出现在70年代和80年代的经济学课本、进化生物学论文、政治学专著和数学期刊的各领域中。他的名字已经成为经济学或数学的一个名词,如“纳什均衡”、“纳什谈判解”、“纳什程序”、“德乔治-纳什结果”、“纳什嵌入”和“纳什破裂”等。 纳什的博弈理论越来越有影响力,但他本人却默默无闻。大部分曾经运用过他的理论的年轻数学家和经济学家都根据他的论文发表日期,想当然地以为他已经去世。即使一些人知道纳什还活着,但由于他特殊的病症和状态,他们也把纳什当成了一个行将就木的废人。 传奇仍在继续 有人说,站在金字塔尖上的科学家都有一个异常孤独的大脑,纳什发疯是因为他太孤独了。但是,纳什在发疯之后却并不孤独,他的妻子、朋友和同事们没有抛弃他,而是不遗余力地帮助他,挽救他,试图把他拉出疾病的深渊。 尽管纳什决心辞去麻省理工学院教授的职位,但他的同事和上司们还是设法为他保全了保险。他的同事听说他被关进了精神病医院后,给当时美国著名的精神病学专家打电话说:“为了国家利益,必须竭尽所能将纳什教授复原为那个富有创造精神的人。”越来越多的人聚集到纳什的身边,他们设立了一个资助纳什治疗的基金,并在美国数学会发起一个募捐活动。基金的设立人写到:“如果在帮助纳什返回数学领域方面有什么事情可以做,哪怕是在一个很小的范围,不仅对他,而且对数学都很有好处。”对于普林斯顿大学为他做的一切,纳什在清醒后表示,“我在这里得到庇护,因此没有变得无家可归。” 守得云开见月明,妻子和朋友的关爱终于得到了回报。80年代末的一个清晨,当普里斯顿高等研究院的戴森教授像平常一样向纳什道早安时,纳什回答说:“我看见你的女儿今天又上了电视。”从来没有听到过纳什说话的戴森仍然记得当时的震惊之情,他说:“我觉得最奇妙的还是这个缓慢的苏醒,渐渐地他就越来越清醒,还没有任何人曾经像他这样清醒过来。” 纳什渐渐康复,从疯癫中苏醒,而他的苏醒似乎是为了迎接他生命中的一件大事:荣获诺贝尔经济学奖。当1994年瑞典国王宣布年度诺贝尔经济学奖的获得者是约翰纳什时,数学圈里的许多人惊叹的是:原来纳什还活着。 纳什没有因为获得了诺贝尔奖就放弃他的研究,在诺贝尔奖得主自传中,他写道:从统计学看来,没有任何一个已经66岁的数学家或科学家能通过持续的研究工作,在他或她以前的成就基础上更进一步。但是,我仍然继续努力尝试。由于出现了长达25年部分不真实的思维,相当于提供了某种假期,我的情况可能并不符合常规。因此,我希望通过目前的研究成果或以后出现的任何新鲜想法,取得一些有价值的成果。” 而在2001年,经过几十年风风雨雨的艾里西亚与约翰纳什复婚了。事实上,在漫长的岁月里,艾里西亚在心灵上从来没有离开过纳什。这个伟大的女性用一生与命运进行博弈,她终于取得了胜利。而纳什,也在得与失的博弈中取得了均衡。 2005年6月1日晚,诺贝尔北京论坛在故宫东侧菖蒲河公园内的东苑戏楼闭幕。热闹的晚宴结束后,纳什没有搭乘主办方安排的专车,而是一个人夹着文件夹走出了东苑戏楼。他像一个普通老人一样步行穿过菖蒲河公园,然后绕到南河沿大街路西的人行横道上等待红绿灯。绿灯亮起,老人隅隅独行的背影在暮色中渐行渐远,终于消失不见。 内向的男孩 Nash于1928年6月13日出生于西弗吉尼亚州(WestVirginia)的布鲁斯菲尔德(Bluefield),从小就被描述为一个孤僻、内向、离群独处和缺乏社交技巧的男孩。在中小学他没有显示出多少不同寻常的才华,后来因为获得乔治西屋竞赛(George Westinghouse Competition)的奖学金在1945年6月进入卡内基工学院(Carnegie-MellonUniversity),开始以化学工程为专业,后来才逐渐展示出数学才能。两次参加帕特南(William LowellPutnam)数学竞赛,却没有进入前五名,这让他产生了些许挫折感。1948年他20岁时以BA和MA的数学学位毕业,同时被哈佛(Harvard),普林斯顿(Princeton),芝加哥( Chicago)和密歇根(Michigan)录取为数学研究生。 一笔优厚的奖学金 由于一笔优厚的奖学金,Nash选择了Princeton,来到阿尔伯特·爱因斯坦(Albert Einstein)当时生活的地方,并曾经与他有过接触。他显露出对拓扑、代数几何、博弈论和逻辑学的兴趣。约翰·冯诺依曼(John vonNeumann)在1944年与Princeton 经济学家奥斯卡·摩根士特恩(OskarMorgenstern)的著述《博弈论和经济行为》,通过阐释二人零和博弈论,正式奠定了现代博弈论的基础。1950年,22岁的Nash以非合作博弈(Non-cooperative Games)为题的27页博士论文毕业。 同年,Melvin Dresher和Merrill Flood在RandCorporation在一项试验中正式引出了归功于A. W. Tucker的囚犯困境(Prisoner'sDilemma)。而Nash的论文提出多人非合作博弈和后来称为Nash平衡的概念,为非合作博弈(non-cooperative gametheory)和交易理论(bargainingtheory)作了奠定性的贡献。非合作博弈处理的是多人参与游戏——而不是像囚犯困境中的仅仅两人——时每个游戏者的最佳策略。
欣欣向上,
杨振宁是有史以来排名前15的物理学家(《Quora》评),与费曼、朗道奠定20世纪物理学的白银时代,是继爱因斯坦和狄拉克之后,20世纪物理学最卓越的设计师(弗里曼·戴森语)。他是华人骄子中的骄子,他的伟大是历史级别的伟大。
一、获得诺贝尔奖的宇称不守恒定律,只是排到他学术成就的第三位
宇称不守恒说的是弱力中不对称的现象,早先科学界对于对称的信仰是不可动摇的,而诺特定律则从数学层面证明了这个对称犹如犹如能量守恒一样可靠,因此杨振宁和李政道在1956年发现弱力不守恒现象时,科学界普遍对这两位年轻人的研究持不信任的态度,一直到吴建雄以钴60原子核的衰变验证了宇称不守恒定律,这才在科学界炸开了锅。
从1956年杨李二人发现宇称不守恒到1957年十月获得诺贝尔奖,只有短短12个月,这在诺贝尔奖史上是绝无仅有的,这也从另一个侧面肯定了这个发现对于科学界的意义!在所有对称中,仅仅只有弱力的那么一点点不对称,造就了宇宙这万物世界,就像微波背景辐射中几乎就是均匀的,但就是这万分之一的不均匀性,成就恒星与星系的诞生,这个意义特别重大
二、杨-米尔斯方程和杨-巴克斯方程
最早杨振宁在导师泰勒门下攻读博士的毕业论文中就有规范场论的方向,他抛开了泰勒给他制定的论文方向,自行选择了四个目标:伊辛模型、Bethe假设、规范场、核反应中的角分布。
四个方向中三个都被卡死,杨振宁以最后一篇《核反应中角分布》在泰勒门下毕了业,虽然杨振宁毕业了,但毕业论文时定的那几个方向却并没完,杨振宁毕业后一年与李政道一起完成了将二维伊辛模型拓展为三维,继而引发了学术界的研究,最终功力最深的昂萨格以此获得了诺贝尔奖。
规范场就是杨米尔斯理论就是一种基于SU(N)群的规范场论。1954年杨振宁和罗伯特·米尔斯创立了杨米尔斯理论,将原本可交换群的规范理论拓展到不可交换群,以解释强相互作用,不过却受到的泡利的质疑,因为杨米尔斯理论中量子必须质量为零以维持规范不变性,而在当时,质量为零的粒子并没有发现。杨米尔斯理论无法解释为何b量子点质量问题,因此论文并未受到重视。
上世纪六十年代科学界开始用对称性破缺机制,杨米尔斯理论成为了从零质量粒子中获得质量的粒子解释的重要工具,而杨米尔斯理论的重要性才刚刚开始。
1967年温伯格和格拉肖在引入规范对称的自发破缺,将电弱统一理论建立在了杨-米尔斯场论,引入希格斯机制,提出了具有U(1)×SU(2)规范对称性的电弱理论。
1972年弗里兹希和盖尔曼提出了具有SU(3)规范对称性的杨-米尔斯理论,建立了量子色动力学。
至此粒子物理的标准模型两大支柱:电磁力和弱力的电弱理论和描述强力的量子色动力学建立,简单的说杨米尔斯理论是现代粒子物理标准模型的基础。
Bethe假设则是后来著名的杨-巴克斯方程,它起源于一个统计力学问题,要与是与一个四价顶角相联系的一个R矩阵与晶格的行与行转移矩阵对易,杨振宁在60年代用BetheAnsatz方法求解带有d函数相互作用的一维量子N体问题和各向异性海森堡自旋链,提出了杨-巴克斯特关系。
从杨米尔斯理论和杨巴克斯方程的研究中,先后有7个诺贝尔奖出自杨米尔斯理论的研究,还有6个研究杨米尔斯理论和杨巴克斯方程而获得菲尔兹奖(数学界的诺贝尔奖)。
1994年杨振宁被授予鲍尔奖时的颁奖词在现在看来仍然有些肉麻“这项工作已经排列在牛顿、麦克斯韦和爱因斯坦的工作之列,并必将对未来几代产生类似的影响”,不过这个评价并非言过其实,因为杨振宁和牛顿爱因斯坦一样,其影响将是巨大而又深远的。
杨振宁的主要经历
1942年毕业于国立西南联合大学;1944年获清华大学硕士学位;1945年获穆藕初奖学金,赴美留学;1948年获芝加哥大学哲学博士学位,后任芝加哥大学讲师、普林斯顿高等研究院研究员;1955年任普林斯顿高等研究院教授。
1966年任纽约州立大学石溪分校爱因斯坦讲座教授兼理论物理研究所所长;1986年任香港中文大学博文讲座教授;1993年任香港中文大学数学科学研究所所长;1998年任清华大学教授。
近20年来诺贝尔经济学奖获得者的主要贡献是: 1998年:印度人阿马蒂亚-森,表彰他对福利经济学几个重大问题做出了贡献,包括社会选择理论、对福利和贫穷标准的定义
1990年 科里(E.J.Corey) (1928-) 科里,美国化学学家,创建了独特的有机合成理论—逆合成分析理论,使有机合成方案系统化并符合逻辑。他
在百度中搜索一下啦
门捷列夫德米特里·伊万诺维奇·门捷列夫(俄语:Дмитрий Иванович Менделеев,1834年2月7日—1907年2月2日),俄罗斯科学家,发现
发表于Biochemistry、FEBS Lett和J Cell Comp Physiol (JCell Physiol的前身)上。