• 回答数

    3

  • 浏览数

    194

夏天的风kiki
首页 > 学术期刊 > al基合金研究论文

3个回答 默认排序
  • 默认排序
  • 按时间排序

e元素789

已采纳

摘 要:电阻点焊的组织决定焊接接头熔核的性能,熔核的性能决定焊接的质量。通过模拟 点焊接头的组织,可预测在不同点焊参数下接头的组织形态和力学性能等,从而实现通过寻 求最佳焊接工艺来改善焊件性能的目的。研究铝合金点焊相变组织的分布规律,对优化点焊 设计和工艺参数有重要的指导作用,本文通过应用有限元模拟软件进行数值模拟,对6082 铝合金电阻点焊过程中的组织转变进行模拟与研究,并通过实验进行验证,从而得出电阻点 焊对6082铝合金的组织转变的影响。试验验证表明,数值模拟与试验结果吻合良好,为铝合 金点焊基础理论研究提供了一种有效的分析手段。 关键词:数值模拟;金相组织 ;铝合金;电阻点焊 Abstract Te microstructure of resistance spot welding decide performance of nuclear fusion in welded joint, the performance of nuclear fusion decide welding quality. By simulation, we can predict microstructure and mechanical properties of spot welding in different parameters, so as to achieve the best welding performance by seeking to improve the welding processes. Research on the distribution of microstructure in aluminum spot welding, have an important role in on the design and optimization of process parameters of spot welding. The paper through the application of finite element simulation software to simulate and research the resistance spot welding of aluminum alloy of 6082, and verify it through experiments, so as to know affection resistance spot welding to aluminum alloy of 6082. Experiments show that numerical simulation and experimental results are consistent, providing an effective analysis for spot welding on aluminum alloy. Key words: Numerical simulation; Microstructure; Aluminum alloy; Resistance spot welding 1、铝合金在航空航天、船舶制造、机车和汽车制造业等领域获得了广泛的应用。轿车采用 铝合金制造车身较采用钢板制造车身可减轻车体重量6O%左右,能显著降低燃料消耗和减少 环境污染。但是,铝合金点焊所存在的问题限制了点焊在铝合金汽车生产中的应用,铝合金 点焊的熔核形状不规则,尺寸大小不一,熔核在凝固时极易形成缩孔、缩松和气孔,由于冷 却速度较快,熔核的结晶组织主要是从熔合线向内生长的柱状晶。在这方面,吉林工业大学 的赵熹华等人通过采用熔核的孕育处理技术做了详细的研究,将柱状晶组织变为等轴晶组 织,取得了良好的效果[1]。但是,该技术如何工程化的问题还正在研究之中。如果能对点焊 的相变组织进行有限元模拟计算,得到铝合金点焊过程温度场和相变组织的分布规律,从微 观上改变焊接质量,对提高和稳定点焊质量具有重要意义。 铝合金点焊是一个高度非线性的力、热、电相耦合的复杂过程,随着焊接研究的深入, 温度,相变和热应力之间的耦合效应越来越受到人们的重视。 等人曾提出温度,相 变,热应力之间的耦合关系式, 等人利用该耦合模型对焊接接头进行了有限元计算。 Ronda 等[2]用统一的方法推导了相变规律和相变塑性,建立了相容的 TMM 模型,并形成了系 统理论。Yang 等[3]在热冶金耦合方面也作了深入的研究。他们在模拟温度场、速度场、热循 环以及熔池形状时,采用瞬时、3 维、湍流条件下的热传输和流体流动模型。 本文基于有限元专业焊接模拟软件动态模拟焊接的全过程,进行数值模拟时,考虑了材 料热物理性能与温度的非线性关系,以及相变潜热对温度场的影响,实现温度场和应力应变 场的耦合计算,揭示了铝合金点焊过程温度场和相变组织的分布规律,其结果有助于更好地 了解焊接过程中熔体的运动状态、凝固组织细化和产生缺陷的原因,为正确选择点焊工艺参 数等提供理论指导。 2 点焊相变原理熔核、塑性环及其周围母材金属的一部分构成了点焊接头。在良好的点焊焊接循环条件 下,接头的形成过程是预压、通电加热和冷却结晶三个连续阶段所组成。 (1)预压阶段:在电极压力的作用下清除一部分接触表面的不平和氧化膜,形成物理触点,为焊接电 流的顺利通过及表面原子的键合作准备。(2)通电加热阶段:在热与机械力作用下形成塑性环、熔核,并 随着通电加热的进行而长大,直到获得需要的熔核尺寸。通电刚开始,由于边缘效应,使焊件接触面边缘 处温度首先升高,接着由于金属加热膨胀,接触面和电流场均扩展并伴有绕流现象,而靠近电极的焊接区 金属散热较有利,从而在焊接区内形成了回转双曲面的加热区,其周围产生了较大的塑性变形。随着通电 加热的持续,电极与工件接触表面增加,表面金属的冷却增强,而焊接区中心部位由于散热困难温度继续 升高,形成被塑性环包围的回转四方形液态熔核。继续延长通电时间,塑性环和熔核不断长大。当焊接温 度场进入准稳态时,最终获得椭圆形液态熔核,周围是将熔核紧紧包围的塑性环。(3)冷却结晶阶段:使 液态熔核在压力作用下冷却结晶。由于材质和焊接规范特征不同,熔核的凝固组织可有三种:柱状组织、 等轴组织、“柱状+等轴”组织。 由于点焊加热集中、温度分布陡、加热与冷却速度极快,若焊接参数选用不当,在结晶过程中会出现 裂纹、胡须、缩孔、结合线伸入等缺陷,可通过减慢冷却速度和段压力等措施来防止缺陷产生。 3 点焊熔核有限元仿真点焊是一个多因素及多重非线性的复杂问题。在进行数值模拟时,考虑其可作为轴对称问题,对等厚 板的焊接取l/4平面进行分析。为简化计算,本文假定电极压力恒定。 本文采用简化的轴对称2D模型建立6082铝板点焊的简化模型。出于简化模型的目的,假设上下两块铝 板在与电极端面直径对应的中心部分以及电极端面是粘连的,假设电极-工件间及工件间的接触行为属于无 滑动接触。焊接电流为恒流,材料的热物理性能随温度变化,忽略电流的趋表效应、接触面的热电效应和 接触热阻[4,5]。模型的网格采取自由划分,共含1996个固体单元,2120个节点。被连接材料为6082铝合金, 板厚 mm,采用Cu~Cr合金电极,端部直径6 mm,端部曲面半径40 mm。 材料属性 材料的热物理性能参数是温度的函数,在模拟中,材料的热物理性能除了密度和潜热外,其他如比热、 导热系数、电阻率等均随温度变化。材料在相变和熔化时存在潜热,模拟中将潜热在相变温度区间均匀折 算为比热容,以模拟其产热效果。 6082铝合金是Al-Mg-Si系铝合金,该合金的组织比较简单,主要合金元素为Mg、Si ,另外还有少量的Fe 、Zn 、Cu 、Mn,主要组织组成物为Mg2Si,Mg/Si比为,大部分合金不是含过量镁就是含过量的硅。当镁过量时,合金的抗蚀性好,但强度与成形性能低;当硅过量时,合金的强度高,但成形性能及焊 接性能较低,抗晶间腐蚀倾向稍好。 工艺参数 采用直流焊接电源,焊接电流为14 KA,电极压力为 KN,焊接时间为15个周波(相应频率50 Hz)。 具体方案见表1: 焊接温度场的模拟 焊接温度场的准确计算是焊接冶金分析、残余应力与变形计算以及焊接质量控制的前提,焊件在快速 加热和冷却过程中温度场的正确描述是进行组织转变和焊后接头力学性能分析的前提条件。焊接温度场的 准确计算必须建立起准确的热传递数学模型和符合焊接生产实际的物理模型,并应用有限元 软件的校正工 具,根据具体的焊接工艺和条件对热源进行校正;考虑了材料热物理性能参数与温度的非线性关系,建立 了焊接过程的数学模型和物理模型[6,7]。 在焊接过程中,由热源传给焊件的热量,主要是以辐射和对流为主,而母材和焊接材料获得热能后, 热的传播则是以热传导为主。焊接传热过程中所研究的内容主要是焊件上的温度分布及其随时间的温度变 化问题[8]。因此研究焊接温度场,是以热传导为主,适当地考虑辐射和对流作用。 焊件上某点瞬时的温度分布称为温度场,可以表示为: T  T ( X , Y , Z , t ) 式中 T 为焊件上某点的瞬时温度,(x , y , z)是某点的坐标,t是时间。 因此非线性瞬态热传导问题的控制方程可以表示为: 式中 c、ρ为材料的比热容、密度,T为温度场的分布函数,t为时间,kx , ky , kz分别为x , y , z方向 上的导热系数; Q是内热源。 温度场计算时, 将模型的对称面定义为绝热边 界条件, 即 其他周围表面定义为换热边界条件, 即 式中  是材料的热导率,n是边界表面外法线方向,α是表面换热系数,Ta是周围介质温度,Ts是物体表面 温度。 点焊相变组织的模拟 相变潜热 焊接过程中伴随着相的转变,在有限元计算中其产生的相变潜热以焓的形式表示[9],即 式中  (T )c(T ) 分别为材料的密度和比热,均为温度的函数。 在某一温度增量区间,所产生的总的相变潜热表示为各相值的叠加,即 式中:Aj为第j 相的相变潜热,V j 为第j 相的转变体积比,且 å V j = 1 ;n是材料中相的个数。相的转变体积比,且 ;n是材料中相的个数。 相变模拟原理 对于铝合金的相变模拟,主要通过铝合金的回复与再结晶原理,如图1。如果材料有经过温度循环,当 最高温度高于重结晶温度时,重结晶开始发生并产生影响。材料重结晶的比例不仅取决于最高温度,也取 决于热循环过程。可以用如下公式来计算: 等温反应动力学: 非等温反应动力学附加规律: 模拟计算结果 温度场的模拟结果 如图 2 为焊接时间 250ms 时 l/4 平面所成的温度分布,再通过 sysweld 有限元软件,分别在熔核区 中心,熔合线,热影响区,母材组织上取四个固体单元,形成如图 3 所示的温度曲线。由图 2,3 可以看出 在焊接过程中,熔核中心的最高温度可达 720℃,且长时间温度维持在 700℃左右;熔合线附近可达 600℃, 也长时间维持在这个温度;热影响区最高温度可达 500℃左右;而母材最高温度只达到 300℃左右。 相变组织的模拟结果 通过有限元模拟可得到如图4所示结果,6082铝合金点焊结果会出现明显不同的三相分布分别为:母 材、热影响区和熔核区组织。 4 结果分析和讨论由模拟分析结果可以看出, 6082 铝合金点焊会出现比较明显的三种组织的分布,再根据模拟所用的 焊接参数进行试验验证,然后进行金相组织观察(试样用凯勒试剂浸蚀)。可以得到图 5-图 9 的微观组织 图。 由图 5 可见,6082 铝合金点焊组织有着明显的三个组织相分布,中间的小圆为熔核部分,外圆为热影 响区,外边即为母材,与模拟的相变结果(图 4 所示)完全相同。 铝合金的主要热处理方式是固溶处理和时效处理,通过第二相的沉淀硬化来提高强度、硬度等性能。 6082 铝合金为 T4 状态(固溶处理+自然时效)是经固溶、时效后的合金,其主要强化相是 Mg2Si。在焊 接热循环的影响下,铝合金基体中的这些沉淀相粒子将发生再次固溶、析出和长大过程,对焊接前的基体 产生或多或少的破坏。它们的熔点为 595℃,焊接加热温度超过这一熔点时,部分强化相就会熔解[10]。 图 6 为母材组织,其铝合金基体上分布着粗大且呈长条形的析出相;图 7 为熔核中心组织,其内组织 主要为细小的等轴晶粒;图 8 为处于塑性环熔合线周围的组织,靠近熔合线的熔核区主要是柱状晶粒和部 分等轴晶粒,靠近熔合线的热影响区为粗大的晶粒;图 9 为热影响区中心组织,其铝合金基体上的析出相 细小且呈圆粒状。 从图 4 可以得知,在塑性环内的熔核区中心最高温度远远高于 595℃,可达 720℃左右,且比较长时间 的维持在 700℃,这个温度使熔核区中心的晶粒完全的熔化,在铝合金基体上的第二相重新熔化和固溶, 化合物因固溶而进一步减少。在铝合金基体上分布着弥散的,细小的第二相对晶界移动起着重要的阻碍作 用,第二相质点越细小,数量越多,则阻碍晶粒长大的能力越强,所形成的晶粒也就越细小,且在熔核区 内合金元素溶入的比较多,在很大程度上阻碍了晶界的移动,焊接为快速加热,金属内存在的晶格畸变现 象来不及回复,自扩散系数增加,使合金再结晶晶核增多,造成晶粒细小,所以在熔核中心冷却后形成的 组织为细小的等轴晶粒;由于点焊冷却速度较快,靠近熔合线的熔核区的结晶组织主要是从熔合线向内生 长的柱状晶。运用图 1 描述的铝合金重结晶现象可以发现,靠近塑性环的热影响区的晶粒处于长大阶段, 晶粒生长方向与热流方向一致,有着明显的粗大晶粒且在晶界上分布一些析出相,应为晶粒长大区;6082 合金母材组织为板材组织,其析出相方向与板材成形方向一致,也有少量析出相呈三角形,在晶界上析出, 由于其含有 Cu,Mg,Al,Si,Mn 等合金元素,析出相比较复杂,主要为 Mg2Si。图 6 中的母材组织为退 火组织,所以其部分析出相变的相对细小和一定的圆形状。对于热影响区,其析出相明显比母材组织细小, 且没有方向性,但已经开始出现圆粒状,分布也比母材组织均匀,但还是有一部分为粗大的析出相,且呈 长条形,没有完成再结晶,由图 1 铝合金重结晶原理可知其组织应为回复区和回复再结晶区,晶界基5 结 论1、本文采用数值仿真手段预测熔核的组织,运用sysweld的相变模拟原理,完成对6082铝合金点焊组织的 模拟和预测。 2、采用本文提出的有限元点焊模型,运用相变模拟软件,可以模拟出与实际焊接结果十分吻台的结果,因 此可作为选择和优化点焊参数的一个有效工具。 3、6082铝合金熔核区晶粒细小,组织分布均匀而且弥散,热影响区有着比较明显的回复区,回复与再结晶 区和晶粒长大区,母材组织为板材组织,晶粒方向为轧制方向,且铝基体上分布大量粗大的第二相质点。 4、点焊接头相变组织的模拟是一项新技术,它尚处于起步阶段,在理论上还存在着尚未澄清问题,另外在 计算方法上也有改进余地,其应用更接近空白,因此,有必要从理论和计算方法上进行系统而有深入的 探索,以使新兴方法尽快用于工程实践。 参考文献:赵熹华,姜以宏,薄件点焊熔核凝固组织分析,焊接学报,1994(2):89~93. Ronda J,O liver G J. Consistent Thermo-Mechano-Metallurgical Model of Welded Steel with Unified Approach to Derivation of Phase Evolution Laws and Transformation - Induced Plasticity. Computer Methods in Applied Mechanics and Engineering。2000, 189 (2) : 361~ 417. Yang Z, Elmer J W , Wong J. Evolution of Titanium Arc Weldment Macro and Microstructures- Modeling and Real Time Mapping of Phases。 Welding Journal, 1997, 76 (4) : 172~ 181. Matteo Palmonella, Michael I, Friswell, et al. Finite element models of spot welds in structural dynamics: review and updating[J]. Computers & Structures. 2005,3 (83): 648-661 . Deng X, Chen W, Shi G, et al. Three-dimensional finite element analysis of the mechanical behavior of spot welds[J]. Finite Elements in Analysis and Design. 2007,185( 1): p 160-165. Feulvarch E, Bergheau , Robin V, et al. Resistance spot welding simulation: a general finite element formulation of electrothermal contact conditions Source[J]. The VLSI Journal. 2004, 38(1): 436-441. 唐新新,单平,罗震等.点焊熔核尺寸及焊接电流逆过程设计[J].焊接学报,2007,11:45~48. 潘韧坚等. 基于 ANSYS 的有限元方法在焊接热效应分析中的应用[J]. 焊接技术,2004(1):6~8 刘哲,李午申,陈翠欣等,.热-冶金相互作用下焊接温度场的三维动态有限元模拟 [J ] .机械科学与技术, 2005,12 : 1396 -1399 邹永恒,陶虹,徐国明,等. 6082 铝合金热处理工艺参数的研究[J ]. 金属热处理,2007, 32(10) : 71 - 76. Simulation and Research for the Microstructure of Aluminum Spot给你部分参考

219 评论

EatDrinkWorld

铝合金:一。用途铝合金是纯铝加入一些合金元素制成的,如铝—锰合金、铝—铜合金、铝—铜—镁系硬铝合金、铝—锌—镁—铜系超硬铝合金。铝合金比纯铝具有更好的物理力学性能:易加工、耐久性高、适用范围广、装饰效果好、花色丰富。铝合金分为防锈铝、硬铝、超硬铝等种类,各种类均有各自的使用范围,并有各自的代号,以供使用者选用。 铝合金仍然保持了质轻的特点,但机械性能明显提高。铝合金材料的应用有以下三个方面:一是作为受力构件;二是作为门、窗、管、盖、壳等材料;三是作为装饰和绝热材料。利用铝合金阳极氧化处理后可以进行着色的特点,制成各种装饰品。铝合金板材、型材表面可以进行防腐、轧花、涂装、印刷等二次加工,制成各种装饰板材、型材,作为装饰材料。 铝合金是应用最广的一种防锈铝,它的强度不高,不能热处理强化,在退火状态下有高的塑性,而蚀性好,焊接性好,切削加工性不良。用於制造要求高可塑性和良好焊接性、在液体或气体介质中工作的低载荷零件如油箱、油管、液体容器等;线材可制作铆钉。 二。铝合金概述(资料)以铝为基的合金总称。主要合金元素有铜、硅、镁、锌、锰,次要合金元素有镍、铁、钛、铬、锂等。 铝合金密度低,但强度比较高,接近或超过优质钢,塑性好,可加工成各种型材,具有优良的导电性、导热性和抗蚀性,工业上广泛使用,使用量仅次于钢。 铝合金分两大类:铸造铝合金,在铸态下使用;变形铝合金,能承受压力加工,力学性能高于铸态。可加工成各种形态、规格的铝合金材。主要用于制造航空器材、日常生活用品、建筑用门窗等。 铝合金按加工方法可以分为变形铝合金和铸造铝合金。变形铝合金又分为不可热处理强化型铝合金和可热处理强化型铝合金。不可热处理强化型不能通过热处理来提高机械性能,只能通过冷加工变形来实现强化,它主要包括高纯铝、工业高纯铝、工业纯铝以及防锈铝等。可热处理强化型铝合金可以通过淬火和时效等热处理手段来提高机械性能,它可分为硬铝、锻铝、超硬铝和特殊铝合金等。 铝合金可以采用热处理获得良好的机械性能,物理性能和抗腐蚀性能。 铸造铝合金按化学成分可分为铝硅合金,铝铜合金,铝镁合金和铝锌合金。[编辑本段]【纯铝产品】 纯铝分冶炼品和压力加工品两类,前者以化学成份Al表示,后者用汉语拼音LG(铝、工业用的)表示。[编辑本段]【压力加工铝合金】 铝合金压力加工产品分为防锈(LF)、硬质(LY)、锻造(LD)、超硬(LC)、包覆(LB)、特殊(LT)及钎焊(LQ)等七类。常用铝合金材料的状态为退火(M焖火)、硬化(Y)、热轧(R)等三种。[编辑本段]【铝材】 铝和铝合金经加工成一定形状的材料统称铝材,包括板材、带材、箔材、管材、棒材、线材、型材等。[编辑本段]【铸造铝合金】 铸造铝合金(ZL)按成分中铝以外的主要元素硅、铜、镁、锌分为四类,代号编码分别为100、200、300、400。[编辑本段]【高强度铝合金】 高强度铝合金指其抗拉强度大于480兆帕的铝合金,主要是压力加工铝合金中硬铝合金类、超硬铝合金类和铸造合金类。[编辑本段]【铝合金缺陷修复】 铝合金在生产过程中,容易出现缩孔、砂眼、气孔和夹渣等铸造缺陷。如何修复铝合金铸件气孔等缺陷呢?如果用电焊、氩焊等设备来修补,由于放热量大,容易产生热变形等副作用,无法满足补焊要求。 冷焊修复机是利用高频电火花瞬间放电、无热堆焊原理来修复铸件缺陷。由于冷焊热影响区域小,不会造成基材退火变形,不产生裂纹、没有硬点、硬化现象。而且熔接强度高,补材与基体同时熔化后的再凝固,结合牢固,可进行磨、铣、锉等加工,致密不脱落。冷焊修复机是修补铝合金气孔、砂眼等细小缺陷的理想方法。[编辑本段]【不同牌号铝合金的典型用途】 合 金 典 型 用 途 1050 食品、化学和酿造工业用挤压盘管,各种软管,烟花粉 1060 要求抗蚀性与成形性均高的场合,但对强度要求不高,化工设备是其典型用途 1100 用于加工需要有良好的成形性和高的抗蚀性但不要求有高强度的零件部件,例如化工产品、食品工业装置与贮存容器、薄板加工件、深拉或旋压凹形器皿、焊接零部件、热交换器、印刷板、铭牌、反光器具 1145 包装及绝热铝箔,热交换器 1199 电解电容器箔,光学反光沉积膜 1350 电线、导电绞线、汇流排、变压器带材 2011 螺钉及要求有良好切削性能的机械加工产品 2014 应用于要求高强度与硬度(包括高温)的场合。飞机重型、锻件、厚板和挤压材料,车轮与结构元件,多级火箭第一级燃料槽与航天器零件,卡车构架与悬挂系统零件 2017 是第一个获得工业应用的2XXX系合金,目前的应用范围较窄,主要为铆钉、通用机械零件、结构与运输工具结构件,螺旋桨与配件 2024 飞机结构、铆钉、导弹构件、卡车轮毂、螺旋桨元件及其他种种结构件 2036 汽车车身钣金件 2048 航空航天器结构件与兵器结构零件 2124 航空航天器结构件 2218 飞机发动机和柴油发动机活塞,飞机发动机汽缸头,喷气发动机叶轮和压缩机环 2219 航天火箭焊接氧化剂槽,超音速飞机蒙皮与结构零件,工作温度为-270~300摄氏度。焊接性好,断裂韧性高,T8状态有很高的抗应力腐蚀开裂能力 2319 焊拉2219合金的焊条和填充焊料 2618 模锻件与自由锻件。活塞和航空发动机零件 2A01 工作温度小于等于100摄氏度的结构铆钉 2A02 工作温度200~300摄氏度的涡轮喷气发动机的轴向压气机叶片 2A06 工作温度150~250摄氏度的飞机结构及工作温度125~250摄氏度的航空器结构铆钉 2A10 强度比2A01合金的高,用于制造工作温度小于等于100摄氏度的航空器结构铆钉 2A11 飞机的中等强度的结构件、螺旋桨叶片、交通运输工具与建筑结构件。航空器的中等强度的螺栓与铆钉 2A12 航空器蒙皮、隔框、翼肋、翼梁、铆钉等,建筑与交通运输工具结构件 2A14 形状复杂的自由锻件与模锻件 2A16 工作温度250~300摄氏度的航天航空器零件,在室温及高温下工作的焊接容器与气密座舱 2A17 工作温度225~250摄氏底的航空器零件 2A50 形状复杂的中等强度零件 2A60 航空器发动机压气机轮、导风轮、风扇、叶轮等 2A70 飞机蒙皮,航空器发动机活塞、导风轮、轮盘等 2A80 航空发动机压气机叶片、叶轮、活塞、涨圈及其他工作温度高的零件 2A90 航空发动机活塞 3003 用于加工需要有良好的成形性能、高的抗蚀性可焊性好的零件部件,或既要求有这些性能又需要有比1XXX系合金强度高的工作,如厨具、食物和化工产品处理与贮存装置,运输液体产品的槽、罐,以薄板加工的各种压力容器与管道 3004 全铝易拉罐罐身,要求有比3003合金更高强度的零部件,化工产品生产与贮存装置,薄板加工件,建筑加工件,建筑工具,各种灯具零部件 3105 房间隔断、档板、活动房板、檐槽和落水管,薄板成形加工件,瓶盖、瓶塞等 3A21 飞机油箱、油路导管、铆钉线材等;建筑材料与食品等工业装备等 5005 与3003合金相似,具有中等强度与良好的抗蚀性。用作导体、炊具、仪表板、壳与建筑装饰件。阳极氧化膜比3003合金上的氧化膜更加明亮,并与6063合金的色调协调一致 5050 薄板可作为致冷机与冰箱的内衬板,汽车气管、油管与农业灌溉管;也可加工厚板、管材、棒材、异形材和线材等 5052 此合金有良好的成形加工性能、抗蚀性、可烛性、疲劳强度与中等的静态强度,用于制造飞机油箱、油管,以及交通车辆、船舶的钣金件,仪表、街灯支架与铆钉、五金制品等 5056 镁合金与电缆护套铆钉、拉链、钉子等;包铝的线材广泛用于加工农业捕虫器罩,以及需要有高抗蚀性的其他场合 5083 用于需要有高的抗蚀性、良好的可焊性和中等强度的场合,诸如舰艇、汽车和飞机板焊接件;需严格防火的压力容器、致冷装置、电视塔、钻探设备、交通运输设备、导弹元件、装甲等 5086 用于需要有高的抗蚀性、良好的可焊性和中等强度的场合,例如舰艇、汽车、飞机、低温设备、电视塔、钻井装置、运输设备、导弹零部件与甲板等 5154 焊接结构、贮槽、压力容器、船舶结构与海上设施、运输槽罐 5182 薄板用于加工易拉罐盖,汽车车身板、操纵盘、加强件、托架等零部件 5252 用于制造有较高强度的装饰件,如汽车等的装饰性零部件。在阳极氧化后具有光亮透明的氧化膜 5254 过氧化氢及其他化工产品容器 5356 焊接镁含量大于3%的铝-镁合金焊条及焊丝 5454 焊接结构,压力容器,海洋设施管道 5456 装甲板、高强度焊接结构、贮槽、压力容器、船舶材料 5457 经抛光与阳极氧化处理的汽车及其他装备的装饰件 5652 过氧化氢及其他化工产品贮存容器 5657 经抛光与阳极氧化处理的汽车及其他装备的装饰件,但在任何情况下必须确保材料具有细的晶粒组织 5A02 飞机油箱与导管,焊丝,铆钉,船舶结构件 5A03 中等强度焊接结构,冷冲压零件,焊接容器,焊丝,可用来代替5A02合金 5A05 焊接结构件,飞机蒙皮骨架 5A06 焊接结构,冷模锻零件,焊拉容器受力零件,飞机蒙皮骨部件 5A12 焊接结构件,防弹甲板 6005 挤压型材与管材,用于要求强高大于6063合金的结构件,如梯子、电视天线等 6009 汽车车身板 6010 薄板:汽车车身 6061 要求有一定强度、可焊性与抗蚀性高的各种工业结构性,如制造卡车、塔式建筑、船舶、电车、家具、机械零件、精密加工等用的管、棒、形材、板材 6063 建筑型材,灌溉管材以及供车辆、台架、家具、栏栅等用的挤压材料 6066 锻件及焊接结构挤压材料 6070 重载焊接结构与汽车工业用的挤压材料与管材 6101 公共汽车用高强度棒材、电导体与散热器材等 6151 用于模锻曲轴零件、机器零件与生产轧制环,供既要求有良好的可锻性能、高的强度,又要有良好抗蚀性之用 6201 高强度导电棒材与线材 6205 厚板、踏板与耐高冲击的挤压件 6262 要求抗蚀性优于2011和2017合金的有螺纹的高应力零件 6351 车辆的挤压结构件,水、石油等的输送管道 6463 建筑与各种器具型材,以及经阳极氧化处理后有明亮表面的汽车装饰件 6A02 飞机发动机零件,形状复杂的锻件与模锻件 7005 挤压材料,用于制造既要有高的强度又要有高的断裂韧性的焊接结构,如交通运输车辆的桁架、杆件、容器;大型热交换器,以及焊接后不能进行固熔处理的部件;还可用于制造体育器材如网球拍与垒球棒 7039 冷冻容器、低温器械与贮存箱,消防压力器材,军用器材、装甲板、导弹装置 7049 用于锻造静态强度与7079-T6合金的相同而又要求有高的抗应力腐蚀开裂勇力的零件,如飞机与导弹零件——起落架液压缸和挤压件。零件的疲劳性能大致与7075-T6合金的相等,而韧性稍高 7050 飞机结构件用中厚板、挤压件、自由锻件与模锻件。制造这类零件对合金的要求是:抗剥落腐蚀、应力腐蚀开裂能力、断裂韧性与抗疲劳性能都高 7072 空调器铝箔与特薄带材;2219、3003、3004、5050、5052、5154、6061、7075、7475、7178合金板材与管材的包覆层 7075 用于制造飞机结构及期货 他要求强度高、抗腐蚀性能强的高应力结构件、模具制造 7175 用于锻造航空器用的高强度结构性。T736材料有良好的综合性能,即强度、抗剥落腐蚀与抗应力腐蚀开裂性能、断裂韧性、疲劳强度都高 7178 供制造航空航天器的要求抗压屈服强度高的零部件 7475 机身用的包铝的与未包铝的板材,机翼骨架、桁条等。其他既要有高的强度又要有高的断裂韧性的零部件 7A04 飞机蒙皮、螺钉、以及受力构件如大梁桁条、隔框、翼肋、起落架等[编辑本段]【变形铝及铝合金状态、代号】 1.范围 本标准规定了变形铝合金的状态代号。 本标准适用于铝及铝加工产品。 2.基本原则 基础状态代号用一个英文大写字母表示。 细分状态代号采用基础状态代号后跟一位或多位阿拉伯数字表示。 基本状态代号 基本状态分为5种 代号 名称 说明与应用 F 自由加工状态 适用于在成型过程中,对于加工硬化和热处理条件特殊要求的产品,该状态产品的力学性能不作规定。 O 退火状态 适用于经完全退火获得最低强度的加工产品。 H 加工硬化状态 适用于通过加工硬化提高强度的产品,产品在加工硬化后可经过(也可不经过)使强度有所降低的附加热处理。 W 固熔热处理状态 处理状态 一种不稳定状态,仅适用于经固溶热处理后,室温下自然时效的合金,该状态代号仅表示产品处于自然时效阶段。 T 热处理状态(不同于F、O、H状态) 适用于热处理后,经过(或不经过)加工硬化达到稳定的产品。T代号后面必须跟有一位或多位阿拉伯数字

247 评论

343004227qq

汽车工业中的能源材料 高强度铝合金 通过节能降低环境污染具有重要意义。在汽车材料领域,除了依靠零件薄壁化、中空化及小型化等方法节能外,主要的方法是材料的轻量化,所以轻量化材料的研究是目前国际上汽车材料领域最活跃的研究方向之一。 目前轻量化材料主要采用各种高强度钢,能够降低汽车重量15%-20%。九十年代以来国外广泛采用高比强度Al合金、Mg合金和塑料,其中最重要的轻量化材料是铝合金,它具有塑性好、比强度高、耐腐蚀性好、韧性好、加工成本低和可延长使用寿命等优点,每使用1Kg的Al,可降低汽车重量2.25Kg。 美国每台车的Al合金重量已经从70年代的30Kg增至90年代的90Kg。1996年Audi公司生产的全铝A8轿车,采用Al合金挤压车架,重量降低了35%,抗扭刚度增加了50%;1997年又生产了全Al车身的双座敞篷汽车和双座轿车。BMW公司1996年生产的5系列全铝轿车,其车身、车架、桥壳、齿轮箱箱体和双联前轴都是由Al合金制造,整体刚度增加80%,据德国铝业人士估计,仅使用Al车身,一年就可节约运行费用2.5万马克。 另外,Honda、Nissan、Chrysler、BMW和Audi等公司都生产了全铝发动机,它采用具有低热膨胀系数、良好的高温机械性能和耐磨性的过共晶铝硅合金活塞;缸体、连杆和曲轴采用压力铸造纤维增强和颗粒增强铝合金复合材料;车身采用Al-1%Si-0.5%Mg合金。这种合金在深冲成型时呈固溶态,塑性好;时效后,通过析出Mg2Si而增加强度。此外,采用管状铝材构成“空间立体构架”,其重量比钢车身降低40%,成本只增加20%,汽车总重量和燃料费都降低10%以上。 通过改变合金组织提高铝合金的强度,能够降低铝合金成本,使其得到更广泛的应用。由于我国以生产低中档轿车为主,所以这一点对我国的汽车工业具有特殊的意义。 此类合金的重要特征是强度高、耐腐蚀和韧性好。非晶和纳米晶高强度铝合金通常采用粉末冶金方法制造(冷速为40K/s),采用真空或氢气保护,在过冷液态温度下压制成型,制成的样品密度接近100%。例如Al94V4Fe2合金,其基体中含有高密度晶界和过饱和Fe和V。由于Fe阻碍晶粒长大,其组织为纳米晶+非晶。 在成型过程中,合金表面的氧化铝膜被挤碎,在合金中呈弥散分布,因此该合金同时具有缺陷强化、固溶强化和弥散强化几个方面的强化机制,而组织中的非晶则有力的改善了合金的韧性,该合金最高强度达到1390MPa,其它合金也存在类似的性能。这些合金的铝含量在85%-94%之间,铝含量越低,合金韧性越好,成本越高。由于上述合金需要在压力下成型,所以用这些合金制造的零件应具有较简单的形状。 现在汽车发动机连杆使用的材料主要是中碳碳素钢和合金钢,其强度在600-1000MPa之间。如果高强度铝合金的强度达到700-900MPa,则铝合金的比强度是中碳钢的3倍,而其重量只有原有重量的1/3,这不但能够提高发动机的工作效率和节约能源,而且由于连杆重量的减轻可降低发动机工作时的振动,从而提高发动机的使用寿命和可靠性。 2、储氢合金 估计到2020年石油作为能源的比例将由目前的40%降至20%,所以需要研究替代能源。汽车未来能源除采用天然气和液化气以及各种双燃料外,可采用太阳能、电能和氢能。 太阳能电池从材料角度出发,要解决非晶硅的低成本制造(本世纪末只能达到1w/0.2$)和光电转换率低的问题(24%);电池储能需要解决高效电池(低成本、储电的高比能量和比功率及高储电次数)的问题;而氢能则需要解决低成本分解水和氢气储存问题。 对于氢气储存问题通常采用储氢合金解决,目前主要是镧系(LaNi5),钛系(TiFe和TiFeV)和镁系(Mg2Ni)金属间化合物,一般能够储存比本身体积大1000倍以上的氢量。 这些合金的缺点是储氢次数低(储氢和放氢使其体积反复膨胀和收缩,导致合金粉化)、容易中毒和储氢密度低。如果采用锆镍和铜钛非晶合金储氢,则由于它的非晶结构,不容易发生晶界开裂,从而避免形成粉末。但是一般非晶合金在制造过程中需要急冷,因此很难制成大块样品,需要研制出具有高非晶形成能力的合金。 我们根据80年代末国外的文献报道,研究了在镧系、锆系和镁系非晶合金中加入其它组元(Al、Y和Co等)后的非晶形成能力。虽然不能达到文献报道的通过压力铸造制成直径10mm左右的铸件的水平,但铸造出了直径大于5mm的非晶合金。以这些合金为基础,有可能研究出长寿命的储氢非晶合金,其性能指标预期可达到: a.储氢能力达到200mm3/g; b.放电量50W/Kg; c.充放电次数大于500次; d.在100-150℃氢的蒸气压大于5MPa; e.压力平台温度范围在20-30℃之间。 通过解决水的低成本分解(目前也可通过电厂电力输出低谷时富余的电力电解水)或由于汽油的价格的上涨(石油短缺),都可以导致氢燃料汽车的应用。因为氢燃烧后生成无害的水,所以该研究对于环境保护有着重要意义。 以上是一片参考文献,仅供参考

107 评论

相关问答

  • ma956合金的制备研究论文

    Incoloy MA956 化学成分: 碳 C: ≤0.05 硅 Si: — 锰 Mn: — 铬 Cr: 18.5~21.5 镍 Ni: — 钼 Mo: — 钴

    桃紅梨白 8人参与回答 2023-12-08
  • 基金营销方法研究论文

    一、销售准备任何环境下, 一个满身充满能量朝气蓬勃的人可以给见到你的每一个人留下好的印象。所以职场中的你在仪容仪表方面的细节问题不可忽视,工作穿职业装是最起码的

    雪蓝的枫叶 3人参与回答 2023-12-12
  • 研究量化基金的论文

    优点:有助于避免盲点,控制风险缺点:应变能力不强,无法实现短期收益量化基金量化基金就是在大量历史数据的分析基础上,综合考虑到各种各样的投资方法,再借助于计算机和

    大V呀大V 3人参与回答 2023-12-09
  • 金属基复合材料论文3000字

    金属元素或以金属元素为主构成的具有金属特性的材料的统称。包括纯金属、合金、金属间化合物和特种金属材料等。 意义:人类文明的发展和社会的进步同金属材料关系十分密切

    实言舌实言兑 5人参与回答 2023-12-09
  • 金属基复合材料制备论文

    国外金属功能材料的现状和展望.pdf金属基复合材料的发展现状及展望.pdf国外金属功能材料的现状和展望.pdf金属基复合材料的现状和展望_国家材料咨询局金属基复

    失踪的第九个梦 3人参与回答 2023-12-12