路小佳路过
(一)教材地位:本小节属于《全日制义务教育数学课程标准实验稿》中“数与代数”领域,是我们在学习了平面直角坐标系和一次函数的基础上,再一次进入函数领域,通过本小节的学习,让学生感受到函数是反映现实生活的一种有效模型,同时,本小节的学习内容,直接关系到后续内容的学习,也可以说是后续内容的基础。(二)教学重点:1、了解并掌握反比例函数的概念;2、能根据问题中的已知条件确定反比例函数解析式;3、能判断一个函数是否为反比例函数及比例系数;4、培养学生的观察、比较、概括能力。(三)教学重学:1、了解并掌握反比例函数的概念2、能根据已知条件确定反比例函数解析式(四)教学难点:1、解并掌握反比例函数的概念2、能根据已知条件确定反比例函数解析式分式目录 第一节 分式的基本概念 第二节 分式的基本性质和变形应用 第三节 分式的四则运算 第四节 分式方程 第一节 分式的基本概念I.定义:整式A除以整式B,可以表示成A/B的形式。如果除式B中含有字母,那么称为分式(fraction)。注:A÷B=A×1/BII.组成:在分式 中A称为分式的分子,B称为分式的分母。III.意义:对于任意一个分式,分母都不能为0,否则分式无意义。IV.分式值为0的条件:在分母不等于0的前提下,分子等于0,则分数值为0。注:分式的概念包括3个方面:①分式是两个整式相除的商式,其中分子为被除式,分母为除式,分数线起除号的作用;②分式的分母中必须含有字母,而分子中可以含有字母,也可以不含字母,这是区别整式的重要依据;③在任何情况下,分式的分母的值都不可以为0,否则分式无意义。这里,分母是指除式而言。而不是只就分母中某一个字母来说的。也就是说,分式的分母不为零是隐含在此分式中而无须注明的条件。第二节 分式的基本性质和变形应用V.分式的基本性质:分式的分子和分母同时乘以或除以同一个不为0的整式,分式的值不变。VI.约分:把一个分式的分子和分母的公因式约去,这种变形称为分式的约分.VII.分式的约分步骤:(1)如果分式的分子和分母都是单项式或者是几个因式乘积的形式,将它们的公因式约去.(2)分式的分子和分母都是多项式,将分子和分母分别分解因式,再将公因式约去.注:公因式的提取方法:系数取分子和分母系数的最大公约数,字母取分子和分母共有的字母,指数取公共字母的最小指数,即为它们的公因式.VIII.最简分式:一个分式的分子和分母没有公因式时,这个分式称为最简分式.约分时,一般将一个分式化为最简分式.IX.通分:把几个异分母分式分别化为与原分式值相等的同分母分式,叫做分式的通分.X.分式的通分步骤:先求出所有分式分母的最简公分母,再将所有分式的分母变为最简公分母.同时各分式按照分母所扩大的倍数,相应扩大各自的分子.注:最简公分母的确定方法:系数取各因式系数的最小公倍数,相同字母的最高次幂及单独字母的幂的乘积.注:(1)约分和通分的依据都是分式的基本性质.(2)分式的约分和通分都是互逆运算过程.第三节 分式的四则运算XI.同分母分式加减法则:分母不变,将分子相加减.XII.异分母分式加减法则:通分后,再按照同分母分式的加减法法则计算.XIII.分式的乘法法则:用分子的积作分子,分母的积作分母.XIV.分式的除法法则:把除式变为其倒数再与被除式相乘.第四节 分式方程XVI.分式方程的意义:分母中含有未知数的方程叫做分式方程.XVII.分式方程的解法:①去分母(方程两边同时乘以最简公分母,将分式方程化为整式方程);②按解整式方程的步骤求出未知数的值;③验根(求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根). 二、分析教法与学法:(一)教法:由于学生已学过正比例关系,一次函数,正比例函数等概念,由于打算采用新旧知识相联系的方法,让学生通过比较发现从而掌握新知识(二)学法:通过观察、比较、发现、概括的方法来学习新知识。三、分析教学过程(一)创设情境: 1、由于学生所学过的反比例关系,一次函数等概念时间已较长,所以在创设情境时对这些知识加以复习,以换取学生以以有知识的记忆。 2、在情境中,列举大量实例,让学生装根据已知条件,列出一次函数、正比例函数、反比例函数为学生的探险索创造条件。(二)探索过程 1、学生的探索能力不是很强,因此在列出的大量函数中,教师发挥主导作用,启发学生思考。 2、通过一系列的探索,让学生概括出反比例函数的共同特征,从而给出概念。3、在学生得出反比例函数后,再进行深化,给出比例系数为负数或分的情境,巩固反比例函数的概念。(三)小结和作业:在学生的自我小结中教师加以完善,对反比例函数有一定程度上的掌握。
小统哥9888
拓展课 论文——有关生活中的函数一、问题的提出在现实生活中,人们的生活越来越趋向于经济化,合理化.但怎样才能达到这样的目的呢?一天,我就遇到了这样一道实际生活中的问题:某报纸上报道了两则广告,甲商厦实行买东西满50元付5元即有抽奖机会,抽奖奖金如下:特等奖10000元1名一等奖1000元2名二等奖100元10名三等奖5元200名而乙商厦则实行九五折优惠销售。请你想一想;哪一种销售方式更吸引人?哪一家商厦提供给销费者的实惠大?二、问题的分析面对问题我们并不能一目了然。我做了一个假设,假如有16人,其中8人愿意去甲家,6人喜欢去乙家,还有两人则认为去两家都可以。调查结果表明:甲商厦的销售方式更吸引人,但事实是否如此呢?在实际问题中,甲商厦每组设奖销售的营业额和参加抽奖的人数都没有限制。所以我们认为问题应该有几种答案。三、问题的解决1、苦甲商厦确定每组设奖,当参加人数较少时,少于213(1十2+10+200=213人)人,人们会认为获奖机率较大,则甲商厦的销售方式更吸引顾客。2、若甲商厦的每组营业额较多时,它给顾客的优惠幅度就相应的小。因为甲商厦提供的优惠金额是固定的,4415元(10000+2000+1000+1000-50*213+5*213=4415)。假设两商厦提供的优惠都是4415元,则可求乙商厦的营业额为88300元(4415÷5%=88300)。甲的优惠=奖金总数-人数*抽奖需付的5元乙的优惠=顾客买东西所花的总额*5%所以由此可得:(l)当顾客为213人时,即两商厦的营业额都为88300元时,两家商厦所提供的优惠同样多.(2)当顾客小于213人时,即甲商厦的营业额不足88300元时,乙商厦的优惠则小于4415元,所以这时甲商厦提供的优惠仍是4415元,优惠较大。(3)当顾客大于213人时,即两家的营业额都超过88300元时,乙商厦的优惠则大于4415元,而甲商厦的优惠仍保持4415元时,乙商厦所提供的实惠大。四、由问题而想到的像这样的问题,我们在日常生活中随处可见。例如。有两家液化气站,已知每瓶液化气的质和量相同,开始定的价也相同.为了争取更多的用户,两站分别推出优惠政策.甲站的办法是实行七五折错售,乙站的办法是对客户自第二次换气以后以7折销售。两站的优惠期限都是一年.你作为用户,应该选哪家好?这个问题与前面的问题有很大相同之处。只要通过你所需要的罐数来分析讨论,这样,问题便可迎刃而解了。随着市场经济的逐步完善,人们日常生活中的经济活动越来越丰富多彩.买与卖,存款与保险,股票与债券,……都已进入我们的生活.同时与这一系列经济活动相关的数学,利比和比例,利息与利率,统计与概率。运筹与优化,以及系统分析和决策,都将成为数学课程中的“座上客”。五、后记作为跨世纪的中学生,我们不仅要学会数学知识,而且要会应用数学知识去分析、解决生活中遇到的问题。这样才能更好地适应社会的发展和需要。
小嘟嘟呀呀
例析一次函数的常见问题一次函数是初中数学的重要内容之一,在历年的中考中,不仅一些基础题出现,而且一些联系实际的应用题也频频“亮相”。因此,现就有关一次函数的一些常见问题举例分析如下:一、有关字母的取值(取值范围)例1已知y=(k2-1)x2+(k+1)x+k是一次函数,求k的值。简析掌握一次函数的定义“形如y=kx+b(k、b为常数k≠0)的函数,叫做一次函数”是解决这类问题的关键,一定不要忽视了k≠0的隐含条件,否则就会出错。解由题意,得k2-1=0,k+1≠0。∴k=1。二、确定一次函数的表达式例2已知一次函数的图象经过点(3,0)和点(2,5),求这个一次函数的表达式。简析这是一道最常见最基础的确定一次函数关系式的问题,在一次函数y=kx+b(k、b为常数k≠0)中有两个待定系数k和b,需要两个独立的条件,常见的求函数关系式的题型主要有利用定义求表达式,利用一次函数的性质求表达式等。确定一次函数表达式的一般步骤:(1)设出含有待定系数的一次函数关系式;(2)把已知条件(自变量与函数的对应值)代入关系式,得到关于待定系数的方程(方程组);(3)解方程(方程组),求出待定系数;(4)把求出的待定系数的值代入所设的关系式。解设一次函数的表达式为y=kx+b(k≠0)由题意,得3k+b=0,2k+b=5,解之得k=-5,b=15。∴这个一次函数的表达式为y=-5x+15。三、一次函数的图象所在象限例3一次函数在同一坐标系下的图象是图1中的()。简析一次函数y=kx+b(k≠0)的图象是一条直线,它所经过的象限是由k、b的符号决定的,理解掌握它们的关系,才可以轻松熟练的解答此类问题。解选(A)。四、有关一次函数图象的交点(一)与坐标轴的交点问题。(略)。(二)两个一次函数的图象交点问题。例4已知两条直线y=2x-3和y=6-x。①求它们的交点坐标;②利用函数图象解不等式:2x-3>6-x;③求这两条直线与轴围成的三角形的面积。简析①二元一次方程组都对应两个一次函数,于是也对应两条直线。从“数”的角度看,解方程组相当于求自变量的取值,使两个函数的值相等;从“形”的角度看,解方程组相当于确定两条直线的交点坐标。②一次函数与二元一次方程组之间的关系是解决一次函数与一元一次不等式的基础,正确理解交点坐标与自变量、函数值之间的关系,是解决这类问题的关键。③直线与坐标轴围成的三角形的面积是常见的一次函数综合性较强的题目,它涉及了许多关于坐标、函数的基础内容。这里,正确求出两条直线的交点坐标,是解决直线与坐标轴围成三角形的面积的前提。解①解方程组y=2x-3,y=6-x得x=3,y=3。∴直线y=2x-3和y=6-x的交点为(3,3)。②在同一平面直角坐标系中分别画出直线y=2x-3和y=6-x,(如图2),可以看出,两直线的交点为(3,3)。又由图所示,当x>3时,对于同一个x,直线y=2x-3上的点在直线y=6-x上相应点的上方,这时,2x-3>6-x,所以不等式的解集为x>3。③设直线y=2x-3与x轴的交点为A点,直线y=6-x与x轴的交点为B点。令y=0,分别代入两直线表达式得A(3/2,0)、B(6,0),∴AB=6-3/2=9/2,又由①知两直线的交点为(3,3)∴这两条直线与轴围成的三角形的面积为:S=12×92×3=274。五由函数图象提供信息的问题例5《邹城日报》2007年9月12日报道了“养老保险执行新标准”的消息。尚河中学课外活动小组根据消息中提供的数据,绘制出邹城企业职工养老保险个人月缴费y(元)随个人月工资x(元)变化的图象,如图3,请你根据图象提供的信息解答下面的问题:(1)赵工程师5月份的工资是3500元,这月他个人应缴养老保险元;(2)小王5月份的工资是550元,这月他个人应缴养老保险元;(3)李师傅5月份个人养老保险56元,求他5月份的工资是多少。简析这是以图象提供信息为特征,考查一次函数的综合应用题。解决这类问题首先应具备阅读图象的能力,然后要有分类的数学思想,要注意“分段”地观察图象,即自变量分成若干“段”,观察各“段”中图象的变化情况,逐一加以分析。解从图象易得(1)填元;(2)填元;(3)设中间线段所在直线的解析式为y=kx+b(k≠0),由图象,知该直线过点(557,)和(2786,)∴2786k+b=。解之得k=7/100,b=0∴y=7x/100。∴当y=56时,x=800,即李师傅5月份的工资为800元。(A)(B)(C)(D)y=2x-3y=6-x118
数学作业还这么变态啊
可以给你提供几个要点参考:三者的联系最明显的就是根的判别式,即“△”。二次函数中的“△”可以和二次项系数“a”一起判断图像与X轴的交点个数;在一元二次方程中用于
看完图片你就会知道捷径的!
数学作为一门工具性的学科,是高中数学最基础的课程。相应的,数学课程的教学也是教育界一直在关注的重点内容。下文是我为大家搜集整理的关于数学毕业论文参考范文下载的内
可以给你提供几个要点参考:三者的联系最明显的就是根的判别式,即“△”。二次函数中的“△”可以和二次项系数“a”一起判断图像与X轴的交点个数;在一元二次方程中用于