Elephantwoman
1. 驾驶负荷 驾驶负荷即由于认知资源有限,大量信息涌入给驾驶员造成的负担。随着自动驾驶级别的提升,汽车数字化仪表盘从简单的车辆行车信息显示器变成承载车辆信息、车辆与其他信息交互的复杂环境体系。驾驶员在这样复杂的信息体系中除了需要获取与驾驶相关的路况、车况信息外还需要及时在各个状态信息之间进行切换。 2. 情境安全意识 自动化程度越来越高,让驾驶员有足够的安全感,但是在某种程度上会使得驾驶员缺乏情境安全意识。现有技术下,已量产发布的自动驾驶仅能达到L3级甚至更低,这意味着某些复杂情境下需要用户接管车辆的控制权。如今交通瞬息万变,用户几乎需要时时刻刻保持谨惕,随时做好“接锅”的准备。坦福大学研究显示,在3级自动驾驶模式下,用户所承受的精神压力负荷反高于普通驾驶,意味着用户更容易出现疲劳 ,造成安全隐患。 https://v.qq.com/x/page/w1331mtn4l9.html AUDI A8 L3自动驾驶场景 3. 驾驶员情绪 驾驶员情绪状态是汽车驾驶的一个重要因素。情绪控制人们的行动,“路怒症”即来源于此。一些驾驶行为如果受到情绪的负面影响,会极大地造成安全隐患。车辆数字化仪表盘与传统移动数字界面不同的是,人们使用这些设备时会盯着屏幕直至完成任务,但在数字化仪表盘使用上,大多数使用情景却只是在驾驶过程中的匆匆一瞥。如果由于车内界面的可用性差,可能对驾驶员情绪带来影响。 用户体验专家Manfred Tscheligi 对车辆用户体验设计因素各个维度的解析图,包括社会、环境、心理、用户、系统以及各个元素的相关因子。本文从Manfred Tscheligi 的车辆用户体验设计因素中抽离出与仪表盘交互体验设计相关的关键因素,结合前一部分描述的关于影响仪表盘的设计挑战,在仪表交互体验设计可视安全性基础上,MOMOUX总结出以下仪表盘设计六要素: 【1 可视安全性 】 数字化仪表盘作为整个驾驶系统的大脑。在智能操作系统的环境下,保证数字化仪表盘能在使用期间作为驾驶辅助最大化保障驾驶员安全,在设计的任何一个环节需要将可视化安全性作为首要条件。 颜色 1 ) 颜色使用规范性:在颜色显示上,每个像素点的颜色传达都必须有严格的目的性以及规范性。ISO国际规范(详情参见:《车操纵件、指示器及信号装置的标志》)上有着车辆信息显示使用色。颜色的规范统一性有助于驾驶员在潜意识里对信息作分类。 绿色: 安全的、正常的操作方式或工作状态; 黄色或琥珀色: 需要引起注意的,非正常的操作限制、汽车系统故障,可能导致汽车损害 或其他将来可能导致危险的情况; 红色: 危及人身安全的或易对设备、系统造成严重损害的,具有紧急性。 2) 根据场景颜色及时反馈:可根据场景前后的关联性,将颜色作为信息精准传达的一要素。如在速度过高的场景下加入警示颜色,能快速将“需要减速”的信息传达给驾驶员。 ▲ BMW 8 series速度警示场景视频 图标 1) 图标规范性:与颜色规范性类似,需要使用通用标志,且图标颜色需要严格按照规范。(详情参见:《车操纵件、指示器及信号装置的标志》) 2) 图标外轮廓与快速识别的关系:图标外轮廓的加入可以使得驾驶员在原本熟悉的系列图标的基础上,更加快速区分哪些图标需要快速忽略哪些图标可暂时忽略。德裔美国心理学家沃尔夫冈·科勒使用Bouba&kiki 效应,如下图所示:文本 1) 文本信息尽量简洁、易读,保证信息传达清晰。长篇大论或文字信息表达不清晰容易造成驾驶分心,在信息消化上花费太久时间造成危险。 2) 字体大小适中,在整体上考虑车内驾驶员的视角和字体大小的关系。 3) 选择清晰、更容易阅读的字体。 麻省理工学院AgeLab和新英格兰大学运输中心以及Monotype研究发现英文字体——Frutiger(humanist)在车机交互中更容易阅读。 数据 1) 直观易懂,将数据转化为驾驶员想要的数据直接表达出来。通过显示档次行程的预计里程、以及预计最大、最小里程,降低用户里程焦虑,在视觉信息传达上为用户提高试用体验。 2) 可比较性,将不同时间段的驾驶数据进行对比,可以帮助用户在驾驶任务上进行全局考量、分析。例如:此次驾驶刹车5次,比上次平均耗油量多大约0.2ml(虚拟数据,以实际项目为准)。在这样的数据参照下,还可以驱使驾驶员逐渐纠正驾驶行为。 【2 品牌感知 】 品牌逐渐从狭义上的LOGO概念逐渐扩大上升到整体感知、使用体验、反馈等方面,在设计上建立属于自己的品牌DNA来让用户感知,并与其他车型产生差异化。 差异化 在设计之初找到识别车型仪表盘的差异化关键点,如特色模块功能、视觉风格、动画效果等,并在设计中将关键点应用在:有助于提升产品差异化竞争力的功能、产品核心功能模式化的设计语言等。这些能够体现品牌特色的核心要素,本身要具有很强的响应性,它们会被用户不断的看到、用到。 自定义、个性化 根据自身品牌特性为用户创造个性化服务体验,或为驾驶员提供可配置的功能。在仪表盘功能上可根据自己喜好自定义界面,让功能更容易找到和使用。例如:根据品牌属性建立几种不同的风格,让用户高度自定义选择;或为用户创建ID帮用户“记住”驾驶喜好和自定义设置,确保在另一辆车上无缝驾驶体验。 【 3 信息场景化 】 前面提到的情境安全意识,在某种程度上来源于驾驶员情境意识不足带来安全隐患。所以,为用户进行信息层级梳理,并在适当的场景下为用户提供最佳信息层级关系,显得格外重要。 回顾前一部分Audi A8 仪表盘在信息层级优化上的例子:正常情况下档位和车速作为一级信息左右对称分布;在导航模式下档位和车速的信息层级降低,将导航信息作为主要信息展示。在A8上仪表盘导航驾驶情境下,即在正常驾驶和导航模式的X轴和Y轴切换(如图所示)。(X、Y、Z轴,信息层级几个维度的概念来自于USTWO公司对仪表设计的研究案例)X Y 轴用于对信息进行分类和排列优先级,有动态和适应性关系。一般基本信息包含:车速、转速、水温、油量(电动车是剩余电量信息)、时间、指示灯、档位、里程数等信息。其中类似速度显示的位置和大小(信息层级),取决于该信息对此时的驾驶场景是否重要。 Z 轴显示的该层级下信息深度上被隐藏的信息,在特殊状态下显示,如在遇到紧急情况时。 在厘清三个维度后,在进行场景化时信息更容易结构化、更易于梳理。需要注意的是,同一类型Z轴信息出现方式需要以相同或者类似方式出现,这样的统一性有助于增加用户记忆负担。 1) 将仪表盘根据用户使用场景进行梳理、尽量将其流程化。 2) 将一定场景下功能进行分类、确定信息优先级避免重复与遗漏。 3) 对该场景下进行详细分析,考虑其限制条件与特殊性。 【4 及时性 】 警告和提示 在车辆监控或者行车活动有特殊情况或安全隐患的情况时,及时预知驾驶员。在驾驶途中,如果提示和警告不够及时,会带来严重的安全事故。但是对于警告和提示的策略需要注意: 1) 不要过量 :驾驶员在仪表盘上的注意力极为有限,每一次的提示对于驾驶员来说都是一次打扰,注意提示和警告的频次和重要程度。 2) 考虑整体性: 在多屏幕协作的HMI状态下,注意提示和警告的连续和无缝性。在一个系统上面已处理过的通知,最好不需要发送在另一个屏上,可以给予信息上的补充。 反馈 在驾驶员进行车辆任务或对仪表盘进行操作时,需要给予驾驶员及时性的反馈。特别是在驾驶舱内,及时性反馈可以减少驾驶员分心。例如:驾驶员如果可以及时听到命令确认,使得视线无需离开前方路面。 【5 一致性 】 按照尼尔森对一致性的说法:一致性能通过提高产出和减少错误,改善用户学习界面的能力和提高生产效率。保持一致性,从某种程度上还能加强驾驶员对品牌元素的认知。在汽车仪表盘交互体验设计的一致性需要从以下方面解析: 界面与流程 界面: 整个界面布局需要保证完整有效一致性,驾驶员在不同的情境下才能有一致的方向感和关系。视觉设计的风格设定、视觉效果、品牌传达是否一致;动效设计的一举一动、意义表达是否一致。 流程: 在驾驶员操作仪表盘界面时需要有一致的流程体验,整个操作过程需要让用户感觉自然、容易理解、复用经验效率高等感受,而不是效率低,操作相同却产生与心理预期不一样的效果。 基本设计元素 以品牌为基础建立具有一致性的设计元素,例如:一个基本的交互控件需要贯穿整个仪表盘界面。不仅如此,基本元素例如图标、形状、颜色、版式以及整个元素之间的结合方式,都需要具有一定的一致性。 用词方式: “确认”还是“确定”,“您”还是“尊敬的用户”在整个产品上都需要统一。 基本动效 :转场动画、下拉动效的一致性。 ▲ BMW 8 series 运动风和经典模式切换动画 【6 交互自然化 】 汽车仪表盘的控制方式,通常在方向盘上。而物理按键在交互设计中往往采取一对一的映射,因此随着功能的增加必然会增加驾驶室中物理按键操作复杂程度。所以,除了考虑方向盘的物理按键触控的简单性以外,还需要注意以几点。 语音控制 1) 按照驾驶员的心理模型来组织和命名功能,语音界面需要经过完整的情境来实际验证,把最常用的功能放在前面供驾驶员选择。 2) 明示当前可选的功能,用户选择操作后,需要提示下一步可以进行的功能,以及如何调用这些功能。 3) 给驾驶员适当的时间来考虑下一步操作。 4) 每一步语音操作具有容错性,能够让驾驶员返回。 手势操作 1) 手势操作的加入必须理解人的自然运动,而不是强迫驾驶员在局限的时间内适应和学习手势操作技术。 2) 通过人机工程学理论来设计针对手势操作的最佳导航。例如:Omek Interactive公司根据人手肘运动的最佳轨迹设计弧形菜单。 随着车辆数字化不断的深入发展,使得用户沉浸在数字化中,他们的需求不断得增长,需要设计师在用户体验领域不断革新,希望在数字化仪表盘设计过程中围绕这些关键要素展开,提升驾驶者的操作体验,减少驾驶的认知负荷。 参考资料 1《设计未来—基于物联网、机器人与基因技术的UX》 2《多设备体验设计—物联网时代产品开发模式》 3 4 Teaser for Omek's Grasp close-range gesture recognition software 5 USTWO REIMAGINES THE IN-CAR CLUSTER 6 Dashboard User Interface Design. 7 In-car typeface – something you don’t notice 8 User Experience Design for Vehicles 9 Digtel trends CES 2018
朝夕忆可否
关于汽车故障诊断技术的发展与应用现状研究的论文
所谓的汽车故障诊断技术,主要就是利用汽车以及内燃机的相关理论,并且结合汽车故障的诊断学作为理论上的指导,通过汽车以及内燃机在结构原理、计算机控制技术等方面的分析把握来实现工作效率的不断提高。汽车诊断的智能化为汽车故障诊断技术的发展具有十分重要的作用,这就需要借助计算机技术、传感技术等多种高科技技术,注重资料以及数据的精确分析,为技术发展提供保障。
1 汽车故障的基本诊断技术
1.1 人工检测的诊断技术
从目前的发展来看,中小城市的汽车故障方面的监测与维修主要是工人凭借其工作经验而进行的直观性诊断。但是其工作的前提是技术工人具有足够丰富的知识来实现进行汽车构造以及汽车运行的原理把握,通过故障的诊断技能和汽车故障的维修技能提高来实现其诊断经验的不断积累。根据目前的相关调查来看,目前差不多每一个汽车的维修公司都会配备经验丰富的故障检测的相关维修人员。凭借着人工经验而进行的汽车故障检测实际上是属于一种相对原始性的技能,进而正在面临着被现代化的高科技检测技术替代的危险。利用人工故障诊断的技术在进行汽车的诊断过程中,经验丰富的专业人员通过车主的反馈以及对于汽车故障的监测就能够实现故障部位的定位。其中人工故障监测的方式主要有:通过道路试驾而进行的`检测方式、借助听力、嗅觉和触感进行监测的感官检测法、对于故障进行直接观察的检测方法、通过模拟性的实验进行的检测法、通过分段排查的检查方式等等,由于该种检测方式具有非常强的灵活性,因此适用范围非常的广泛。然而,人工的故障检测方法也存在着一定的局限性,其检测的精确度直接与相关维修人员的实际工作经验和工作能力挂钩,但是目前却出现了高级维修人员数量有限的问题。
1.2 电脑故障诊断技术
所谓的电脑故障诊断技术主要是通过解码仪来支持工作的,解码仪实际上就相当于是一个微型的电脑,其具有人工诊断检测中无法实现的功能,通过将EC U 中的相关存储信息的提取来实现信息的整理,之后便可以借助专门的软件来进行信息的处理,最终通过文字或者折线图等方式传达的信息,工作人员就可以根据屏幕上的信息汇总来实现故障部分的定位。如果解码仪中并没有真正的显示其故障码,或者是技术人员根据所显示的数据却无法检测出其故障,这就需要技术人员根据车主反映的实际情况来进行范围的划定,之后对其中的元件性能进行排查,最终借助排除法的方式来确定故障发生的实际部位。此外,解码仪可以利用汽车电脑发声的质量来对故障进行动静态的监测和诊断。从目前的发展状况来看,在我国的一线和二线的城市之中,电脑故障诊断技术已经得到了广泛的利用,并且在一定的程度上得到了专业的认可,其具有非常广泛的发展空间。
1.3 仪器故障诊断技术
随着近些年的发展来看,人们生活水平的不断提高以及出行质量在要求上的不断提高,中国的汽车产业经历了巨大的变化。随着信息以及相关电子空间技术的不断成熟,电子控制单元作为现代汽车构建的重要组成部分,需要其内部构造的掌握来实现汽车故障在诊断难度上的把握。为了能够实现检测技术要求的提高,相关技术人员需要采用科学的仪器故障的诊断技术来进行参数值的监测,通过故障部位的判断来对其进行维护和处理。技术维修人员可以通过使用,诸如,万用表以及电流探针等故障诊断仪器来进行数据流的获取,相关的技术人员则需要根据所获得的数值与标准的数值进行对比,实现故障诊断部位的把握。作为常用仪器的重要一种,示波器与万用表的功能相似,通过电压在值数上的测量、在电阻值数上的测量以及信号脉宽等方式的测量来实现故障的排查。而电流探针则只是对交流和直流的电流进行信号值的监测,但是这些故障的检测仪器却都不能够在其进行现有工作状况上来进行,由于其具有非常强的局限性,这就使得故障判断的准确率受到了非常大的影响,同时在定位上也容易出现偏差等等,这也是现今阻碍仪器故障诊断技术的一个重大问题。
2 现代汽车故障诊断的应用技术
2.1 OBDII 系统
所谓的O B D II系统是现今较为先进的汽车故障的自动检测系统。通过O B D II故障检测系统的装载使得其数据网络通讯在电控系统的基础之上建立起来。所谓的B 类数据网络结构主要是通过应用层、物理层以及数据链路层三个部分的结合来实现信息的传递,最终实现O B D II系统能够与车下的相关检测设备之间实现有效的通讯,通过相关约定的遵循来保证通讯过程的通畅性。
2.2 车载自诊技术
在现代的汽车故障诊断中,其十分重要的部分就是车载的自诊技术,也是现今存在的主流性的故障诊断技术。但是其在发展的过程中存在一定的局限性,诸如,自身技术设备没有办法准确的检测到车辆在气体排放上的数值,其只能够起到监督的作用;再加上自诊技术的数值的实际真实度上出现了存疑,其监测的成果受到了外界客观环境上的影响。总而言之,车载自诊技术只能够帮助监测处汽车的故障部分,但是对于其维修的方法和步骤却没有任何的作用,这就需要不断的完善相关的诊断技术,通过诊断方法的不断完善来为其故障的部位提供最为准确的信息。
3 结语
随着诊断设备的不断发展,中国的汽车故障诊断技术得到了飞速的发展。与国外的发展相比,我国的汽车诊断技术仍然存在非常大的差距。高新技术行业的不断发展以及国民经济的不断进步使得我国在故障检测诊断技术发展得到了飞速的发展。这就需要把握汽车故障的诊断技术发展,通过研发人员与维修人员的配合来实现优秀的诊断思想的树立,进而形成科学高效实用性强的诊断设备,最终提高我国的汽车故障诊断技术。
lostangelus
国内外对巡线小车的研究现状:随着汽车电子技术的发展,汽车的车身控制和动力控制纷纷应用了各类的传感器。其中光电传感器进入汽车领域的时间虽然比较晚,但也被广泛应用的在汽车控制方面的各个领域。其中光敏电阻经常用于温度控制,红外对射式传感器经常用于车内烟雾检测,光电码盘经常用于测试车速和方位,激光测试技术可以对诸如燃油喷雾的特性、汽缸速度场、湿度场分布等作精确测量[1]。65339本课题所研究的基于单片机的光电自动寻迹小车也属于智能机器人的种类之一,自动寻迹小车的寻迹方式的大致可以分为3类[2]。第一类为CCD寻迹,这种类型的小车是通过在小车上架起一个两方向云台,可以实现左右转动的CCD摄像机,应用图像识别系统对跑道加以识别和检测,从而为小车提供运动依据。第二类为红外传感器寻迹,这种类型的小车是通过红外传感器进行寻迹定位。第三类为红外传感器与CCD混合寻迹,这种类型的小车通过红外传感器对小车寻迹定位,同时通过不带云台的CCD摄像机,对跑道进行预判断。我们所要研究的课题是通过近距离红外线光电传感器完成对智能车的寻迹定位。论文网智能车辆是智能交通系统的关键技术[3],是许多高新技术综合集成的载体。智能车辆驾驶[4]是一种通用性术语,指全部或部分完成一项或多项驾驶任务的综合车辆技术。智能车辆的一个基本特征是在一定道路条件下实现全部或者部分的自动驾驶功能,下面我们简单介绍一下国内外智能小车的开发研究的情况。国外智能车辆的研究历史较长,始于上世纪50年代。它的发展历程大体可以分成三个阶段:第一阶段 20世纪50年代是智能车辆研究的初始阶段。1954年美国Barrett Electronics 公司研究开发了世界上第一台自主引导车系统AGVS(Automated Guided Vehicle System)。该系统只是一个运行在固定线路上的拖车式运货平台,但它却具有了智能车辆最基本得特征即无人驾驶。早期研制AGVS的目的是为了提高仓库运输的自动化水平,应用领域仅局限于仓库内的物品运输。随着计算机的应用和传感技术 的发展,智能车辆的研究不断得到新的发展。
1. 驾驶负荷 驾驶负荷即由于认知资源有限,大量信息涌入给驾驶员造成的负担。随着自动驾驶级别的提升,汽车数字化仪表盘从简单的车辆行车信息显示器变成承载车辆
汽车空调是整车系统的最大耗能附件,其能耗约占发动机输出功率的10%~30%(随车速、发动机负荷和环境因素变化)。以往研究和法规的重点主要集中在空调系统的制冷、制
公开资料显示,目前国内有证无车的人群高达2.5亿人次,且每年新增拿证人数平均3000万人,相比于美国80%的人车保有量,中国市场甚至还不足20%。2017年,交
论文答辩演讲稿(一): 尊敬的各位教师: 上午好! 我的论文题目是《我国汽车出口贸易现状及对策分析》, 毕业论文答辩自述稿范文 。这
国外空乘要求:纹身:1. 禁止任何穿着制服会暴露在外的纹身2. 对于女性乘务员,范围包括:膝盖以下小腿部位、脚部、脸部、脖子、手臂与双手等(EK制服有短袖衬衫、