• 回答数

    3

  • 浏览数

    279

童鞋哈哈
首页 > 学术期刊 > 光刻胶论文开题报告

3个回答 默认排序
  • 默认排序
  • 按时间排序

一心不二

已采纳

论文开题报告基本要素

各部分撰写内容

论文标题应该简洁,且能让读者对论文所研究的主题一目了然。

摘要是对论文提纲的总结,通常不超过1或2页,摘要包含以下内容:

目录应该列出所有带有页码的标题和副标题, 副标题应缩进。

这部分应该从宏观的角度来解释研究背景,缩小研究问题的范围,适当列出相关的参考文献。

这一部分不只是你已经阅读过的相关文献的总结摘要,而是必须对其进行批判性评论,并能够将这些文献与你提出的研究联系起来。

这部分应该告诉读者你想在研究中发现什么。在这部分明确地陈述你的研究问题和假设。在大多数情况下,主要研究问题应该足够广泛,而次要研究问题和假设则更具体,每个问题都应该侧重于研究的某个方面。

333 评论

我是梅干啊

材料专业毕业论文开题报告

开题报告是指开题者对科研课题的一种文字说明材料。这是一种新的应用写作文体,这种文字体裁是随着现代科学研究活动计划性的增强和科研选题程序化管理的需要而产生的。下面是我为大家收集的关于材料专业毕业论文开题报告,欢迎大家阅读!

论文题目: 高聚物对水泥抗蚀性能的影响

1、国内外研究现状、水平及存在的问题:

随着建筑科技的进步与发展,一种新型化学建材正悄悄的却又以飞快的速度在中国建筑界得到应用和发展,这就是聚合物水泥基复合材料。聚合物水泥基复合材料通常按其化学构成大致分为两类,一类是以聚合物为基、水泥作为填充料组合成的,最常见的如目前大量应用于工程防水的“聚合物水泥防水涂料”;另一类是以水泥为基,以聚合物单体或数种聚合物对水泥进行改性而组合成的材料,如各种聚合物水泥混凝土及各种聚合物水泥砂浆等[1]。原则上讲,聚合物水泥是聚合物改性水泥,它保持了水泥水化物的一系列优点,并用聚合物的优点弥补了水泥制品的不足。因此,聚合物水泥显示出了较大的抗压、抗冲击、抗穿刺能力及耐磨性,优良的抗渗性、抗腐蚀性及抗老化性,适当的弹性模量,而不需要刻意追求高的断裂延伸率[2]。

1923 年克莱森(Cresson)首次申请了有关聚合物硬化水泥体系的专利。他把天然橡胶乳液作为填料加入道路路面建筑材料中。1924年,Lefebure申请了用天然橡胶乳液使水泥砂浆及水泥混凝土改性的专利,第一次提出了用聚合物对水泥砂浆及混凝土进行改性的概念。从此,拉开了混凝土中添加聚合物的历史性序幕。1932年,Band第一个提出了利用人造橡胶改性水泥砂浆及水泥混凝土,也获得了专利。20世纪40 年代,人们先后尝试了用合成聚合物乳胶改性,以及把聚乙烯乙酸酯也用于改性的方法。50年代,这一领域的研究与尝试开始受到各国材料界专家学者的重视,并获得了很多项研究成果,许多成果在工程上也都得到了广泛的应用。60-70年代, 人们开始研究用液态和固态的聚合物,诸如聚合物单体、树脂、聚合物乳胶粉等对水泥砂浆及水泥混凝土进行改性。80年代,各国都投入了大量的人力、物力、财力,对混凝土改性进行了研究,随着科研成果的不断出现,这一领域也得到了极大的推动,研究水平得到了极大的提升。美国是世界上聚合物水泥基复合材料研究开发的先行国家,最早于50年代就开始了对其进行实际应用的尝试。

由于我国在聚合物水泥基复合材料方面的研究起步比较晚,所以,至今还没有出台相关方面的行业标准与测试方法。多数学者认为聚合物水泥基材料的增强机理主要是由于剔除了粗骨料,降低了细集料的粒径,从而提高匀质性,使集料所得集配曲线为非连续性的;另外聚合物在水泥浆内部聚结成网络结构,起到了很好的阻裂增韧作用。近年来,人们逐渐开始从微观结构方面对聚合物改性水泥基材料进行研究,认为聚合物颗粒的分散和聚合物薄膜的形成是聚合物水泥改性的主要原因。研究认为聚合物从两方面影响了改性水泥浆的结构: (1)混合后一部分聚合物粒子吸附在水泥颗粒表面,形成薄膜;(2)另一部分聚合物分散在孔中的液相中,当自由水完全被水化和蒸发消耗掉后,聚合物在孔中形成薄膜[3]。此外,关于聚合物在改性水泥砂浆中的分布,目前还存在一些异议。 按照著名的Ohama[4] 模型,聚合物均匀分散在水相中,随着水泥水化,水分减少,聚合物逐渐凝聚成膜,因而聚合物主要存在于改性砂浆的孔隙中。 Su[5] 等对新拌改性水泥浆水相成分的分析表明,在拌合开始就有相当多的聚合物被吸附在水泥颗粒表面,他们还发现,拌合初期被吸附在水泥颗粒表面的聚合物的量与聚合物乳液种类和乳液掺量有关。 通过含氯聚合物改性砂浆的EDAX 分析表明,在聚合物改性砂浆中,水泥浆体与骨料之间的界面上聚合物的含量较高。 Ollit rault-Fichet 等的研究也说明,聚合物颗粒最初会被水泥颗粒吸附,并最终被包埋在水化水泥的颗粒之中[6]。

在实际工程中,硅酸盐水泥易在酸和酸盐溶液中遭受侵蚀是因为:(1)硅酸盐水泥中含有大量的氢氧化钙及高碱性的水化C-S-H 凝胶、水化铝酸钙等水化产物,酸溶液中的H+与Ca(OH)2发生中和反应,使水泥石碱度急剧降低,进而造成高碱性水化硅酸钙和水化硫铝酸钙等水化产物分解,转变成低碱性水化产物,最后变成无胶结能力的SiO2·nH2O 及Al(OH)3等;(2)硫酸盐溶液中的硫酸根能和水泥石中的Ca(OH)2及水化铝酸钙等[7]发生化学反应,生成有膨胀性的石膏和钙矾石晶体,当这些结晶体在水泥石毛细孔隙中逐渐积累和长大,产生孔内应力,当应力大于临界破坏应力时,造成水泥试样破坏。由于水泥石本身也不密实,有很多毛细孔通道,使砂浆产生渗透性,使得水泥的使用性能下降。同时,侵蚀性介质容易进入其内部,以致由其配制的砂浆易受到腐蚀,导致水泥材料的耐久性下降。普通水泥砂浆不饱满、不密实,不能有效地形成具有防水抗渗作用的整体不透水层。它也存在抗压强度低、耐腐蚀能力不高等缺陷,其使用范围也受到了很大的局限。

而聚合物改性水泥由于聚合物及活性成分的掺入,改善了聚合物水泥砂浆的物理、力学及耐久性能,扩大了其应用范围。对水泥性能的改善主要体现在如下几个方面:

(1) 活性作用 聚合物乳液中有表面活性剂,能够起减水作用。同时对水泥颗粒有分散作用,改善砂浆和易性,降低用水量,从而减少了水泥的毛细孔等有害孔,提高砂浆的密实度和抗渗透能力。

(2) 桥键作用 聚合物分子中的活性基因与水泥水化中游离的Ca2+、Al3 + 、Fe2 + 等离子进行交换, 形成特殊的桥键,在水泥颗粒周围发生物理、化学吸附,成连续相,具有高度均一性,降低了整体的弹性模量,改善了水泥浆物理的组织结构及内部应力状态,使得承受变形能力增加,产生微隙的可能性大大减少。即使产生微裂隙,由于聚合物的桥键作用,也可限制裂缝的发展。

(3) 充填作用 聚合物乳液迅速凝结,形成坚韧、致密的薄膜,填充于水泥颗粒之间,与水泥水化产物形成连续相填充了孔隙,隔断了与外界联系的通道[8]。从而阻止了腐蚀性介质进入水泥石内部,提高了抗腐蚀和抗渗能力。

孙炎[9]曾研究冷混合沥青混凝土,用于道路工程;聚合物改性砂浆用于钢筋混凝土结构的永久模板,结果证明它们都可以更好地防止氯离子渗透和更好地抗碳化作用,从而提高钢筋混凝土结构的耐久性,掺加有硬沥青的钢桥面也具有更高的抗腐蚀性能[10]。鉴于此我们可以通过在水泥中掺杂沥青和石腊,来改善水泥的内部结构并填充其内部孔隙,从而提高水泥的抗蚀性,解决水泥抗蚀性较差的问题。

2、选题的目的、意义:

在我国,尤其是西部地区的盐碱地、盐湖区以及地下水中普遍存在着硫酸盐对水泥混凝土的侵蚀。在某些特种工业设施中,还存在有硫酸和硫酸盐的混合腐蚀以及H2S、CO2腐蚀等。从一些实例中我们可以看出,破坏水泥混凝土的主要原因一般都不是机械应力, 而是多种腐蚀或者是自身内部发生化学反应。这就引起了人们对水泥混凝土的耐久性能的讨论。因此,研究水泥的抗腐蚀性能不仅对建筑材料具有至关重要的作用,而且会对提高各种工程建筑的耐久性能有重大的经济价值和使用价值。关于聚合物对水泥砂浆改性的主要途径是在其中加入能起到改性作用的聚合物。从前人的研究中可看到,聚合物水泥基复合材料都显著高于普通混凝土的`力学性能,比如抗折强度、抗压强度、粘结强度等都得到了极大的提高。与普通硅酸盐材料相比,聚合物水泥基复合材料有着自身的优势见表1。

表1 聚合物水泥基复合材料与普通混凝土的比较 性能

材料 普通混凝土 PCC

W/C 0.4~0.6 0.1~0.16

断裂 1 50~60

冲击 5 80

密度 3.1~3.2 2.5

抗拉强度 0.2~0.4 2~3

抗折强度 5~7 150~200

抗压强度 40~50 200~300

此外,聚合物水泥基复合材料还具有良好的耐化学腐蚀、抗渗性、低温下的抗裂性等。这就使得聚合物改性水泥基复合材料在一定范围内部分取代了钢铁、高分子材料(像MDF 水泥基复合材料制作的唱片、轮胎都是具体的实例)[11]。它能提高水泥石的抗腐蚀能力主要是因为聚合物的添加提高了提高水泥石的密实度。混凝土结构正常情况下可以存在至少30年,但如果存在源于生物的硫酸腐蚀不过短短几年就会被破坏掉[12]。修复或完全取代这种腐蚀结构越来越有必要,但这种修复代价昂贵一直不能满足社会。然而通过沥青或石蜡对水泥进行改性,可大大提高水泥的抗蚀性,这无疑会节约了资源,减少了不必要的浪费,为社会积累更多的财富。

3、实施方案及主要研究手段:

3.1、实验方案

3.1.1、原材料的准备;

(1) 沥青粉的研制

制得分别过200目和300目筛的沥青粉,并适量添加矿物掺合料来减小沥青粉的粒度。

(2) 石蜡粉的研制

通过在石蜡中添加矿物掺合料来粉磨石蜡,并制得掺有石蜡的粉末。

3.1.2、正交实验

(1) 因素水平表

因素水平用量(V%) 粒度(目) 温度(℃)

1 2(0.2) 100 100

2 4(0.4) 200 120

3 6(0.6) 300 150

(2) 根据正交表L9(34)列出以下几组实验:

序号用量(V%)粒度(目) 温度(℃)

指标

腐蚀前 抗压强度

(MPa) 抗Na2SO4腐蚀强度 (MPa) 抗Na2CO3腐蚀强度(MPa)

1 2(0.2) 100 100 2

2(0.2)

200

120

6

3 2(0.2) 300 150 4 4(0.4) 100 120 5 4(0.4) 200 150 6 4(0.4) 300 100 7 6(0.6) 100 150 8 6(0.6) 200 100 9

6(0.6)

300

120

注:括号内为石蜡的用量

3.1.3、以硅酸盐水泥为基体,按以上正交方案分别掺加沥青、石蜡成型,每种高聚物与水泥的复合分别作空白样,3天强度测试样,腐蚀样。分别测定抗压强度,抗硫酸盐及碳酸盐侵蚀的能力。

3.1.4、在把水泥块放入腐蚀液中前和从腐蚀液中取出,分别称取其质量,查看其质量损失。

3.1.5、每一个过程留样分别作物相分析和微观分析,进行腐蚀机理分析。

3.1.6、通过各组实验试样的对比,确定聚合物在水泥中的最优抗蚀配比。

3.2、研究手段

(1)用扫描电镜观察沥青、石蜡改性水泥的微观形貌,以及硫酸盐、碳酸盐腐蚀后的微观形貌。

(2)用X射线衍射仪分析沥青、石蜡改性水泥的物相组成。

(3)用压汞仪测试水泥试样的孔结构;

(4)利用粒度分析仪测试各添加物的粒径。

4、选题的创新之处:

目前已有许多聚合物乳液(如苯丙乳液、纯丙乳液、乙丙乳液等) 用于水泥砂浆的改性,而采用沥青和石腊这两种聚合物对水泥砂浆进行改性的研究却相对较少。实验利用沥青和石腊高分子的熔胀性,在水泥水化过程中,沥青和石腊受外界刺激产生一定的熔胀从而填充水泥石的内部孔隙,提高水泥的密实度,达到提高水泥抗蚀性的目的。

5、预期研究成果:

沥青、石蜡与水泥混合成型后,一部分沥青、石蜡颗粒填充在水泥孔隙里,另一部分沥青、石蜡颗粒在一定外界条件影响下分散在孔中的液相中,当自由水完全被水化和蒸发消耗掉后形成膜。这两方面共同作用大大提高了水泥的密实度并阻止了腐蚀液与水泥浆体的接触,从而使水泥的抗蚀性能得到改善。

参考文献:

[1] 陈建辉, 黄金莲. 小议聚合物基水泥基复合材料[J]. 建筑技术开发, 2004, 31(10):115-116.

[2] 袁大伟. 聚合物水泥若干问题探讨[J]. 中国建筑防水, 2001,(4): 22-24

[3] 王茹, 王培铭. 聚合物改性水泥及材料性能和机理研究进展[J]. 材料导报, 2007, 21(1): 93-96.

[4] Ohama Y. Polymer2based admixtures[J ]. Cement and Concrete Composites ,1998 ,20 (3):189-212.

[5] Su Z , Sujata K, Bijen J M J M , et al. The evolution of the microstructure in styrene acrylate polymer modified cement pastes at the early stage of cement hydration[J]. Advn Cem Bas Mat ,1996 , (3): 87-93.

[6] 钟世云, 王培铭. 聚合物改性砂浆和混凝土的微观形貌[J]. 建筑材料学报, 2004, 7(2): 168-173.

[7] 吴国林, 文梓芸, 殷素红. 土壤聚合物耐酸性能的研究[J]. 新型建筑材料, 2006, 2: 5-7.

[8] 张文渊. TK聚合物砂浆在混凝土表面修补加固中的应用[J]. 腐蚀与防护, 2003, 24(7):300-302.

[9] 孙炎, 徐晓蕾, 钱玉林. 我国混凝土聚合物复合材料的研究现状及发展[J]. 建筑技术,2007, 38(1): 12-14.

[10] Yang Jun. Study on low temperature performance ofGus sa sphalt on steel decks with hard bitumen[J]. Journal of Southeast University (English Edition), 2003, 19(2): 160-164.

[11] 李民强. 聚合物水泥基复合材料研究及进展[J]. 广东建材, 2007 , 7 : 10-12.

[12] J. Monteny, N De Belie, E Vinck.,W Verstraete, et al. Chemical and microbiological tests to simulate sulfuric acid corrosion of polymer- modified concrete[J]. Cement and Concrete Research, 2001,31: 1359-1365.

278 评论

我就是小J

药学毕业论文开题报告篇3 题 目 名 称: 番泻叶对小鼠尿量的影响 研究现状: 一、普鲁兰酶 普鲁兰酶(Pullulanase,EC.3. 2. 1. 41)是一种能够专一性切开支链淀粉分支点中的α-1.6糖苷键,从而剪下整个侧枝,形成直链淀粉的脱支酶。普鲁兰酶还可以分解普鲁兰多糖,普鲁兰酶来源于微生物,R-酶则来源于植物。普鲁兰酶最初是由Bender和Wallenfels于1961年通过产气气杆菌Aerobacter. aerogenes}(典型菌为肺炎克雷伯氏杆Klebsiella.pneumoniae)发酵获得,他们报道了该酶良好的酶学性能。之后,各国的科研人员经过广泛深入研究,从不同的地区、微生物中获得该酶,掀起了开发普鲁兰酶的高潮。 在淀粉加工工业中,α淀粉酶最为常用,它的功能是水解淀粉的α-1,4糖苷键,单独用它时,产物中含有大量分支结构的糊精,其中就含有大量的α-1,6糖苷键。假如不把淀粉的α-1,6糖苷键彻底分解的话,势必会造成很大的浪费。自然界中,存在有能分解淀粉的α-1,6糖苷键的酶,通称为解支酶。如寡α-1,6葡萄糖苷酶( E.C3.2.1.68, Oligo-l,6-glucosidase ),普鲁兰酶(E.C3.2.1.41Pullulanase ),异淀粉酶( E.C3.2.1.68, Isoamylose ),支链淀粉一6-葡聚糖酶( E.C3.2.1.69,Amylopectin-6-gluanohydrase ),其中普鲁兰酶要求的底物分子结构最小,故而可以将最小单位的支链分解,导致可以最大限度的利用淀粉,所以在淀粉加工工业中有着重要的用途和良好的市场前景。故而许多国家都争相开发,但是到现在为止,只有丹麦的NOVO公司具有普鲁兰酶的生产能力。我国只有向其进口,但是其价格昂贵,限制了普鲁兰酶在我国的应用。其实,我国早在七十年代就开发普鲁兰酶的产生菌,但是该菌的酶学性质不适合生产,至今我国在普鲁兰酶的国产化方面还没有报道。 在淀粉的加工行业上,对普鲁兰酶的酶学性质的要求是耐酸耐热,其原因是因为通常使用外加酶化法,由于所用酶类的限制,普鲁兰酶的添加可以在两步反应的任何一步,但必须满足上述的反应的条件。因此所开发的普鲁兰酶的酶学性质必须满足现有的酶法水解制糖的条件,也就是耐酸耐热。 二、普鲁兰酶的研究现状 1.产普鲁兰酶的微生物 普鲁兰酶最初是由Bender和Wallenfels于1961年通过产气杆菌(Aerobacter aerogenes)发酵获得。他们报道了该酶的良好性能之后,各国的科研人员经过广泛深入的研究,从不同的地区的微生物中获得该酶,掀起了开发普鲁兰酶的高潮。但是迄今为止,尽管发现许多微生物能够产普鲁兰酶,但是由于当今工业生产条件(酸性,温度),大多数微生物所产的普鲁兰酶并无商业价值。以下便介绍一下普鲁兰酶的生产菌种。 1.1蜡状芽抱杆菌覃状变种(Bacillus cereus Var.mycodes) 由日本的ToshiyukiTakasaki于1975年发现。该菌同时产生两种淀粉酶:β-淀粉酶和普鲁兰酶。最佳作用条件为pH6~6.5,温度50℃,最大转化率(淀粉水解产生麦芽糖)大约为95%.酶学研究中发现,此酶在pH5,温度60℃依然保持大部分活性,该菌的营养细胞呈棒杆状,聚集成长短不等紊乱链状,无运动性,格兰氏阳性,产芽抱时细胞无明显膨胀。该菌最适生长温度30℃~37℃ ,最高生长温度在41℃~45℃,可以利用葡萄糖,甘露糖,麦芽糖,海藻糖,淀粉和糖原。 1.2嗜酸性分解普鲁兰多糖芽抱杆菌(BaciIluS.Acidopullulyticus) 上世纪八十年代初,丹麦Novo公司获得此菌,此菌所生产的普鲁兰酶耐热 (60℃),耐酸(pH4.5)。该公司经过投入巨资开发研究,1983年Nov。公司在日本和欧洲市场同时商业化销售,商品名Prornozyme。如今,它是应用最广,产量最大的普鲁兰酶。Bacillus.Acidopullrrlyticus呈棒状,深层发酵几小时后,可观察到类原生质体的膨胀细胞,较稳定,饱子呈圆柱体或椭圆体。格兰氏反应阳性,37℃生长良好,45℃以上和pI-1高于6.5以上不长,在以普鲁兰糖为碳源的培养基((pH4.8 ~5.2)上生长良好。 1.3枯草芽饱杆菌(Bacillus subtilis) 1986年,日本的Yushiyuki Takasaki报道了一株能产生耐热耐酸普鲁兰酶的菌种,被命名为Bacillus subtilis TU。此菌种所产生的酶为普鲁兰酶和淀粉酶的混合物,可水解淀粉为麦芽三糖和麦芽搪.水解普鲁兰糖为麦芽三糖,其中普鲁兰酶最佳作用pH为7.0~7.5,但在pH5.0时亦有约50%的酶活,此普鲁兰酶最佳作用温度60℃。 1.4耐热产硫梭菌(Clostridum Themosulfurogenes) 1987年.德国的E.madi等报道了一株能同时产a淀粉酶、普鲁兰酶和葡萄糖淀粉酶的菌种:耐热产硫梭菌。该菌种所产普鲁兰酶有较广的温度适应范围(40℃~85℃),在pH4.5~6.0有较高的活性,在如此广的范围内都有较强活力无疑将扩大该普鲁兰酶的应用领域. 1.5 Bacillusnaganoensis,Bacillus deramificans,Bacillus.Acidopullulyticus 上世纪九十年代,Deweer发现了普鲁兰酶产生菌Bacillus naganoensis;Tomimura筛选出Bacillus deramifrcans。这两株菌所产的普鲁兰酶的酶学性质与Bacillus. Acidopullulyticus的酶学性质相似。这两株菌都是中度嗜酸菌,在pH6.5以上就不生长,温度超过45℃以上同样也不生长。这两株普鲁兰酶产生菌的发现,进一步拓宽了普鲁兰酶的应用。 1.6产普鲁兰酶的高温菌菌种 自上世纪八十年代以来,人们逐渐意识到在通常的自然条件下,很难筛选得到极端耐热的普鲁兰酶生产菌种,于是各国的科学家便把目光转移到温泉嗜高温细菌的筛选,而且现在已经取得较多的成果。Bacillus如vorcaldarius所产普鲁兰酶的最适温度和pH分别是75~85℃, pH6.3, Thermotoga maritime的最适温度和pH分别是90℃, pH6.0, Thermurs caldopHilus的最适温度和pH分别是75℃,pH5.5, Fenidobacterion pernnavoran最适温度和pH分别是80~85℃, pH6.0o 2.普鲁兰酶的分子结构 至今为止,许多普鲁兰酶的基因己经被克隆,但是还没有见到任何有关普鲁兰酶结构的报道,但是在根据序列相似性对糖普键水解酶的分类,普鲁兰酶属于第13家族,α淀粉酶家族,这个家族中包含了30多种酶,可以分为水解酶,转移酶。异构酶三大类。这些酶能够水解和合成α~1.4,α~1.6,α~1.2,α~1.3,α~1.5,α~1.1糖苷键。其中很多酶的结构已经被报道,它们都采取了(β/α)8的结构,通过生物信息学的研究,这个家族的蛋白都有一个共同的结构,酶的活性中心都是(β/α)8折叠筒的结构,命名为结构域A。第13家族的大多数酶还具有结构域B,它是位于(β/α)8折叠筒中,第三个β片层与第三个α螺旋之间的一段序列,其特点是结构和长度差异较大,推测其功能是与底物的结合有关。在紧接着(β/α)8折叠筒后,还有C结构域,紧接C结构域,部分家族成员还有结构域D。 3.普鲁兰酶的应用 普鲁兰酶,在食品工业中是一种用途广泛的酶制剂和加工助剂。它能专一性分解淀粉中的支链淀粉和糖原分子及其衍生的低聚糖分支中的α~l, 6糖苷键,使分支结构断裂,形成长短不一的直链淀粉。因此,将该酶与 其它 淀粉酶配合使用时,可使淀粉糖化完全。近年来,普鲁兰酶己作为淀粉酶类中的一个新酶种,应用于淀粉为原料的食品等工业部门,在食品工业中有如下几方面的作用: 3.1单独使用普鲁兰酶,使支链淀粉变为直链淀粉 直链淀粉具有凝结成块,易形成结构稳定的凝胶的特性,因此,可作为强韧的食品包装薄膜。这种薄膜对氧和油脂有良好的隔绝性,又因涂布开展性好,故适合于作为食品的保护层。它还适合于淀粉软糖制造,也可用作果酱增稠剂,用于装油脂含量高的食品,以防止油的渗出以及肉食品加工。近年来在食品工业中提倡使用可被生物降解的薄膜,直链淀粉在这些方面具有较大的发展前途。豆类直链淀粉含量较高,因此绿豆淀粉制成的粉丝韧性比其它淀粉好,如果用普鲁兰酶处理谷物淀粉,再制成直链淀粉后,可以制成高质量的粉丝。一般谷物淀粉中,直链淀粉含量仅占20%,支链淀粉含量约为80%。工业上每生产1吨直链淀粉就有4吨副产品的支链淀粉。美国虽然通过遗传育种的方法.得到含直链淀粉60%玉米新品种,但不大适于大量生产。国外已采用普鲁兰酶改变淀粉结构,可使支链淀粉变为直链淀粉。据报道,采用此法收率可达100%.制造直链淀粉的方法为,先采用普鲁兰酶分解经液化的分支部分,使其转变为直链淀粉,并以丁醇或缓慢冷却法沉淀淀粉。再回收含少量水分的晶型沉淀物,最后通过低温喷雾干燥法制成粉状的直链淀粉。 3.2普鲁兰酶与β~淀粉酶配合使用生产麦芽搪 饴糖是我国传统的淀粉糖产品,其中所含部分麦芽糖,广泛用于糖果、糕点等食品工业。目前生产方法是以α~淀粉酶进行液化,再用β~淀粉酶水解支链淀粉,这样只能水解侧链部分。接近交叉地位的α~1.6糖苷键时,水解反应停止。但如果使用普鲁兰酶共同水解,便能使分支断裂,提高淀粉酶水解程度,降低了β极限糊精的含量,大大提高了麦芽糖的产率,有利于生产麦芽搪浆。目前对加普鲁兰酶进行糖化己作了较大规模的试验。 试验条件为。每批投料量约为900公斤碎米,粉浆浓度为15~16Be°数皮用量1.5%(对碎米计),β~淀粉酶活性2,000单位/克以上,pH5.8;普鲁兰酶活性45,000~55,0 00单位/克,系由产气气杆菌生产,每批用量为1公斤。试验结果表明,加入普鲁兰酶糖化的试验糖与对照糖品相比,还原糖平均增加14.8,麦芽糖含量平均增加了45.6,糊精含量平均减少了26.7高浓度麦芽糖浆较之高浓度葡萄搪浆,具有不易结晶,吸湿性小的特点,所以高浓度麦芽糖浆在食品工业中有着广泛的用途。采用普鲁兰酶与p一淀粉酶配合使用,成本低廉,麦芽糖收率达到70%左右,其至更高。 3.3用于啤酒外加酶法糖化 啤酒生产中麦芽,既是酿造啤酒的主要原料,也为酿造过程提供了丰富的酶源。在啤酒酿造的糖化过程中,麦芽中分解淀粉的主要酶是α~淀粉酶、β~淀粉酶和分解淀粉α~1. 6糖瞥键的R一酶(植物普鲁兰酶或植物茁霉多糖酶)。β~淀粉酶与另两种淀粉酶协同作用,可使淀粉分解成麦芽糖(也包括少量的麦芽三糖和极少量的葡萄糖)和低分子糊精。使麦芽汁有比较理想的糖类组成。在工业生产中为了节约麦芽用量,采用所谓外加酶法糖化,即在减少麦芽用量的前提下,增加淀粉质辅助原料的比率,并加入适当种类的酶制剂进行搪化。要使大麦及其它辅助原料糖化完全,需要外加a一淀粉酶和分解α~1.6糖苷键的普鲁兰酶制剂等。单独使用a一淀粉酶时产生麦芽糖和麦芽三搪是很不完全的。假如分解淀粉α~1.6糖苷键的酶活性不足,淀粉分解就不完全,其结果是可发酵性糖含量低,制成的啤酒发酵度达不到要求。若采用能分解α~1.4和α~1.6糖苷键的糖化型淀粉酶,则其反应产物为葡萄糖,容易使酒味淡薄。采用普鲁兰酶与α~淀粉酶协同,效果良好,其分解产物主要是麦芽糖和少量的麦芽多糖。采用外加酶法糖化时,加入酶制剂的用量为:淀粉酶6~7单位/克大麦及大米:蛋白酶,60-80单位/克,并配合以菠萝蛋白酶10ppm,普鲁兰酶50单位/克大麦。以上三种酶制剂均添加于糖化或酒化开始。 总之,普鲁兰酶无论作为酶制剂和食品工业的加工助剂均有广阔的发展前途。 研究目的和意义: 酶制剂工业是上世纪七十年代就己经形成的一个重要的产业,目前世界酶制剂总产值达100亿美元,我国的产值约为100亿人民币,并且随着其应用领域的不断扩大以及新酶种的开发,这一市场正在迅猛发展。但是全球酶制剂产业几乎被几家外国公司所垄断,其中丹麦的NOVO公司几乎占全球总销售额的一半。本研究对普鲁兰酶的开发,对酶制剂产业的发展有重要的意义。 其次我国自从七十年代开始便对普鲁兰酶进行研究开发,但是所开发得到的普鲁兰酶,既不耐热也不耐酸,这就使其在工业化应用中受到了局限。为了改变我国对进口产品的依赖,填补我国这一领域的空白,寻找一条国产化的道路,本研究的目的是利用自然微生物资源,普鲁兰酶,提高我国淀粉原料的利用率,从而提高整个淀粉加工行业的生产率,这对我国淀粉加工产业的意义是不言而喻的。 研究内容(内容、结构框架以及重点、难点): 一.普鲁兰酶产生菌的筛选 (1)样品的采集; (2)菌种初筛; (3)菌种复筛; (4)菌种保藏方法; (5)酶活力测定方法的建立。 二.产普鲁兰酶菌株的产酶条件的研究 (1)碳源,氮源对发酵产酶的影响; (2)初始PH对发酵产酶的影响; (3)接种量对发酵产酶的影响; (4)发酵温度对产酶的影响; (5)金属离子对产酶的影响。 重点或关键技术: (1)纯菌株的分离; (2)菌株的鉴定方法的选择。 研究方法、手段: 一.普鲁兰酶产生菌的筛选 (1)样品的采集:选择适合产生的地点(面粉厂.菜地.果园等)采集土样 (2)菌种初筛:在采集的土样用无菌水稀释后,在含有淀粉类的培养基中做平板涂步, 37℃培养48h后,用碘液进行显色反应,将有淀粉酶产生的菌落接于斜面中保存。 (3)菌种复筛:将前期分离的能产生淀粉酶的菌株涂步于普鲁兰糖平板上,37℃培养48h后用95%乙醇进行透明圈实验。有透明圈产生说明菌株产生普鲁兰酶,将产生透明圈的菌落挑于斜面培养基培养。 (4)菌种保藏方法: 采用4℃低温保藏。 (5)酶活力测定方法的建立:采用发酵培养液经过离心后利用DNS显色法 520nm测定吸光值,测定标准葡萄糖标准曲线,利用标准曲线计算普鲁兰酶酶活大小。 二.产普鲁兰酶菌株的产酶条件的研究 (1)碳源,氮源对发酵产酶的影响:采用不同碳源,氮源培养基培养一段时间,测定酶活力。(其他条件相同:接种量,装瓶量,初始PH值,转速,培养时间。) (2)初始PH对发酵产酶的影响:采用相同发酵培养基,在不同初始PH下接种等量种子液。在相同条件下培养,测定发酵液的酶活。(其他条件相同:接种量,装瓶量,转速,最佳培养温度,最佳培养时间。) (3)接种量对发酵产酶的影响:在发酵培养基中分别接入2%,4%,6%,8%, 10%,14%,18%的种子培养液于最佳碳源,氮源,最佳初始PH的培养基中,在相同条件下培养,分别检测酶活。(采用以上确定的最佳碳源,氮源,最佳初始PH。) (4)发酵温度对产酶的影响:采用相同培养基,在不同温度下(25℃,30℃,35℃,40℃,45℃)培养一定时间,测定酶活力。 (5)金属离子对产酶的影响:在基础培养基中加入少量不同金属离子,发酵后测酶活。(金属离子有: 锰离子,钙离子,锌离子,镁离子,铁离子,铜离子。) 研究进度 :完成项目总体进度30%,样品土样的采集及前期的准备工作,菌株的初筛,包括(样品土样原液的涂步培养及摇床培养,产支链淀粉酶菌株的挑选及斜面培养)。 :完成项目总体进度50%,菌株的复筛,包括(产普鲁兰酶菌株的筛选及斜面培养),葡萄糖标准曲线的测定,酶活测定方法的建立,并以酶活大小对菌株进行再次筛选。 :完成项目总体进度80%,产酶条件的研究。包括:碳源,氮源,初始PH值,接种量,发酵温度,金属离子。并通过各中单因素试验确定发酵培养基的最佳碳源,氮源,初始PH值,接种量,发酵温度,金属离子。 2009、4—2009、5 :完成项目总体进度100%,课题总结,撰写论文。 文献综述(包括:国内外研究理论、研究方法、进展情况、存在问题、参考依据等) 自从1961年Bender H.等人在研究一株产气气杆菌Aerobacter aerogenes(典型菌为肺炎克雷伯氏杆菌Klebsiella.pneumoniae)时首次发现普鲁兰酶后,国际上对产生这种酶的微生物进行了广泛研究,发现许多微生物可以产生此酶,并筛选出一些适用于工业化生产的优良菌株。随着该酶的应用发展,对耐热性普鲁兰酶的研究也逐渐增多,已成功克隆并表达了该酶的基因。国内1976年开始对一株产气气杆菌(Aerobacteraerogenes 10016)的普鲁兰酶进行研究,对该菌株的产酶条件、酶的分离提取及酶学性质作了报道,并研究了该酶的食品级提取技术。此外,陈朝银、刘涛等人从云南温泉水样中筛选到一株产普鲁兰酶高温栖热菌菌株,通过诱导等实验将该酶的酶活从0.069u/mL提高到170u/mL,酶产量提高了近2500倍左右,酶的最适作用温度及pH分别是75℃和4.5,具有一定的耐热和耐酸特性。 陈金全等从温泉水样中筛选到一株产耐热耐酸普鲁兰酶的野生菌株,并根据形态、生理生化特征、细胞化学组分分析及16SrDNA序列比对、基因组DNA的G+C摩尔百分含量、同源性比对等实验,鉴定其为脂环酸芽抱杆菌属(Alicyclobacillus)的一个新种,所产酶最适作用温度为60℃,最适pH值4.0,具有较好的耐热耐酸特性。杨云娟等利用毕赤酵母成功构建了普鲁兰酶表达量较高的基因工程菌,摇瓶发酵酶活可达350.8U/mL,最佳发酵条件下产量可达504.5-510.1U/mL .酶的最适作用温度为600C,最适pH值4.5,具有较好的耐热耐酸性。目前我国仍没有具备独立生产普鲁兰酶能力的厂商,要实现低成本、国产化的生产,还有很长的路要走。 技术应用于耐热脱支酶的研究,使耐热异淀粉酶的研究有了很大发展。Coleman等人将嗜热厌氧菌T. brockii普鲁兰酶基因克隆到B.subtilis中得到的克隆子分泌的普鲁兰酶数量高于出发菌株,Okada等人将Bacillus Steanther, onhiu:中编码热稳定异淀粉酶的基因克隆到B.subtilu:中,得到的转化菌株其异淀粉酶能在60 ℃稳定15分钟。Burchadf将。ostridium thermosulf urogenes DSM38%的嗜热异淀粉酶基因克隆并在E.coli中表达,所得酶的最适pH和最适温度与出发菌相同,而且在高温下仍能保持活性.Antranikiam等人将Pyrococcus舟riousous的异淀粉酶基因克隆到E.coli中并分离得到了酶蛋白。尽管如此,目前尚未有已将转基因的耐热性异淀粉酶工程菌应用到工业生产中的报道。众所周知,利用物理和化学诱变剂单独或复合处理微生物细胞是选育高产变种菌株行之有效的经典方法,它在为培育多种抗生素、氨基酸、核苷酸激酶(尤其是蛋白酶和淀粉酶)的高产变种菌株方面曾经起过极为重要的作用,至今仍然是方便易行和行之有效的方法之一。 主要参考文献: [1][美]惠斯特勒等编王雏文等译.淀粉的化学与工艺学[M].北京:中国食品出版社,1988 [2]张树政.酶制剂工业[M]. 北京: 科学出版社,1998 [3]邬显章.酶的工业生产技术[M]. 吉林: 吉林科学技术出版社,1988 [4]Taniguchi H, Sakano Y, Ohnishi M, Okada G(1985) Pullulanase[J].TanpakushitsuKakusan Koso. Ju1;30(8):989-992. Japanese [5] Jensen, B. F., and B. E. Norman. 1984. Bacillus acidopullulyticus pullulanase[J].:application and regulatory aspects for use in the food industry. Process Biochem.19:351-369 [6]Tomimura E, Zeman NW, Frankiewicz JR, Teague WM. [J]. Description of Bacillus naganoensis sp. nov.Int J Syst Bacteriol. I 990 Apr; 40(2):123-125 [7]吴燕萍,等. 微生物法生产普鲁兰酶的研究[J]. 生物学技术, 2003,8(6):14-17 [8]金其荣,等. 普鲁兰酶初步研究[J]. 微生物学通报, 2001,28(1):39-43 [9]程池. 普鲁兰酶Promozyme 200L. 及其生产菌种[J].食品与发酵工业,1992 ,(6) [10]唐宝英等.耐酸耐热普鲁兰酶菌株的筛选及发酵条件的研究[J].微生物学通报,2001 28(1):39-43 猜你喜欢: 1. 关于医学开题报告范文 2. 药学论文开题报告 3. 生物制药毕业论文开题报告范文 4. 药理学开题报告范文 5. 药品市场营销毕业论文开题报告 6. 药学论文题目大全

284 评论

相关问答

  • 灯光设计论文开题报告

    选题背景:灯具市场的设计方面的数据表现,大概分为哪几类,顾客对于市场上的现有灯具的认可程度,有数据最好,基于这些市场调查为背景,你选择灯具设计作为毕业设计。意义

    黑白配late 3人参与回答 2023-12-08
  • 发光字论文开题报告

    广告专业毕业论文开题报告 接地气的大学生活即将结束,大家都在认真的做毕业设计,而我们做毕业设计前要先写开题报告,我们该怎么去写开题报告呢?以下是我为大家收集的广

    美丽华华 3人参与回答 2023-12-10
  • 光学论文开题报告范文

    开题报告 怎么写呢?相信很多即将写 论文 的人都有此疑问,其实按照以下步骤去写,基本问题不会太大。 一、 毕业论文 的题目。 题目是毕业论文中心思想的

    宝宝的口红 4人参与回答 2023-12-07
  • 黑白木刻版画论文开题报告

    网上有类似的论文,你可以看看的。创作过程可以写的。关于格式,你们应该有论文指导老师吧

    阿雯雯777 3人参与回答 2023-12-11
  • 寿光蔬菜论文开题报告

    临沂经济技术开发区月亮湾社区、郯城县刘道口社区,都是很好的案例。 莒南县三义社区,到CNKI搜索下载。

    馋死宝宝啦 2人参与回答 2023-12-08