• 回答数

    3

  • 浏览数

    140

天天开心好好好
首页 > 学术期刊 > 斐波那契数列的论文答辩

3个回答 默认排序
  • 默认排序
  • 按时间排序

bigbig米米

已采纳

A.斐波那契数列在欧美可谓是尽人皆知,于是在电影这种通俗艺术中也时常出现,比如在风靡一时的《达芬奇密码》里它就作为一个重要的符号和情节线索出现,在《魔法玩具城》里又是在店主招聘会计时随口问的问题。可见此数列就像黄金分割一样流行。可是虽说叫得上名,多数人也就背过前几个数,并没有深入理解研究。在电视剧中也出现斐波那契数列,比如:日剧《考试之神》第五回,义嗣做全国模拟考试题中的最后一道数学题~B.人类文明的斐波那契演进古老的<马尔萨斯理论>已经显灵马尔萨斯认为:每当社会财富快速积累,人口快速增长,就会出现:战争、瘟疫、饥荒、自然灾害来削减人口。2000年科技泡沫达到繁荣的极限,到处都是财富神话!然后盛极而衰,全球经济急转直下转入衰退、长期萧条。于是:911、阿富汗战争、伊拉克战争、 SARS、印度洋海啸、飓风袭击美利坚、禽流感、寒流袭击欧罗巴。这一切集中在一起接二连三地发生!2000年是自上世纪30年代全球经济大萧条后,一个长达约70年的经济增长周期的结束点,后面将是一个长期萧条周期。上世纪30年代全球经济大萧条导致了二次世界大战,被艾略特称之为:底部战争。现在又是一个与上世纪30年代全球经济大萧条同级别的经济萧条周期,2000年来的经济萧条将持续至 2021年才会结束(预测附在下面)。后面是否又会发生被艾略特称之为的:底部战争?至少有不良苗头:哈马斯执政、伊朗核问题纠缠,世界将走向何方? 是否还记得那个著名的: 1999年7月之上 (误差了2年) 恐怖大王从天而降 (911) 使安哥鲁摩阿大王为之复活 (美国发动反恐战争) 这期间由马尔斯借幸福之名统治四方 (唯一待验证) 社会群体心理、群体行为、群体价值观,乃至国际政治、经济、军事,一切皆是自相似系统分形几何运行阶段的反映和结果。 1、自2000年来的全球经济萧条将持续至2021年,说明未来将是长期萧条。 2、之前会有若干次小级别、温和的经济扩张和收缩,2010、2011、2018年是拐点。 3、2021年是一个黑暗的年份,人们悲观、恐惧、绝望的情绪会达到一个极点。到时绝大多数经济学家会一致悲观!接着柳岸花明经济开始复苏,经济学家们又挨了一记大耳光。 首先,列出一组计算公式: (公元1937年 – 公元1932年)X 3.618 + 公元1982年 = 公元2000年 (公元1966年 – 公元1942年)/1.382 + 公元1982年 = 公元1999年 (公元1837年 – 公元1789年)X 1.382 + 公元1932年 = 公元1998年 (公元1325年 – 公元950年)X 0.618 – (公元1650年 – 公元1490年) + (公元1789年– 公元1650年) + 公元1789年 = 公元2000年 其中: 公元950年 商业革命的起点 公元1325年 商业革命的结束点 公元1490年 资本主义革命的起点 公元1650年 资本主义革命的结束点 公元1789年 工业革命的起点 公元1837年 公元1789年后第一轮经济扩张的结束点 公元1932年 自公元1929年资本主义世界股灾的结束点 公元1937 年 公元1929年股灾后第一轮经济扩张的结束点 公元1942年 公元1929年股灾后第二轮经济扩张的起点 公元1966年 公元1929年股灾后第二轮经济扩张的结束点 公元1982年 70年代全球经济滞胀的结束点 0.618、1.382、3.618 是斐波那契比率,来源于斐波那契数列 前2个计算公式的含义: 自上世纪30年代资本主义世界经济大萧条以来,新的一个自公元1932年开始的上升5浪的经济扩张周期已经结束,结束点为公元2000年。那么接着是一个调整期(经济萧条期),如果是对公元1932年至公元2000年,长度68年的经济扩张周期的调整,那么它的长度应该比之前小一浪级的第4浪(公元 1966年至公元公元1982年,长16年)要长,那么斐波那契数列中最接近的数字是21年。另外,贝纳理论对时间周期的推导,公元2000年为一个重要的高点,公元2003年为一个重要的低点,下一个重要的低点是公元2021年,相互吻合。并且,公元2000年的全球经济繁荣的拐点、公元2003年的低点已经被全球经济运行的事实所确认。其中,第2个计算公式误差了1年。 第3个计算公式的含义: 公元1932年至公元2000年,长度68年的经济扩张的上升5浪,又是更大浪级一个上升5浪(公元1789年至公元2000年,长度211年)的第5子浪,公元2000年同时又是长211年上升5浪的结束点。该计算公式的结果误差了2年。那么,接下来的调整(经济萧条期)可就不是21年这么短,而是211年的 38.2%、50%、61.8%(斐波那契回荡) ,也就是长度几十年至百年级的。 第4个计算公式的含义: 公元1789年至公元2000年,长211年上升5浪的经济扩张周期,又是更大浪级公元950年至公元2000年千年浪(浪3)的第5子浪,说明公元 2000年同时又是长度1050年的一个千年浪(浪3)的结束点。那么说明接下来的调整(浪4,经济萧条期)将是对千年浪(浪3)的几百年级的。这种几百年级规模的调整不得不要从人类文明级别来考虑!之前:古罗马帝国于公元476年灭亡,之前是一个一千年的罗马帝国人类奴隶社会的文明(浪1),公元476 年后接着是一个长达474年动荡的、封建的黑暗中世纪(浪2)。并且,公元2000年的拐点(浪3的结束点)已经被全球经济运行的事实所证实,按照马尔萨斯的人口理论:每当社会财富快速积累,人口快速增长,就会出现:战争、瘟疫、饥荒、自然灾害来削减人口。公元2000年后马尔萨斯理论在不断被验证,而唯一还没有被证实的饥荒,气候如此大面积剧烈异常波动,难免会造成连续几年的粮食减产,马尔萨斯所提到的饥荒也是不难预期地。以后发生的事情还会继续不断地验证马尔萨斯理论,不信让你们的孩子的孩子......的孩子,来继续鉴证。(自然灾害频发粮食减产,低素质人口猛超生,已经为将来闹饥荒打下了伏笔。2007-2-15补)公元2000年一个时间窗口打开,之后将会战争、瘟疫、饥荒、自然灾害频发,这个逆流(浪4)的长度将是几百年长度的,未来的几百年全球人口将会被消减38.2%或50%或61.8%(斐波那契回荡),个人认为38.2%的可能性偏大,也就是说将有大量人口死于非命。即便是没被消减的,也是活的生不如死。事实已经证明公元2000年是一个千年级的时空 共振点。扩张/收缩、前进/倒退的交替式发展是自然生长、事物发展的自然法则,是不以人的意志为转移地。况且,人类社会本身就是自然的组成部分。 另外,非常精确的是: 浪3长度是浪2长度的2.236倍(又一个斐波那契比率) 浪3长度= 公元2000年– 公元950年= 1050年 浪2长度= 公元950年– 公元476年= 474年 1050年/2.236 = 470年,与浪2的474年仅很接近,仅误差4年。 非常巧合的是公元2000年已经被证实是全球经济运行的重要拐点,同时与上述4个计算公式的计算结果、贝纳理论的周期推导结果、还有400多年前的大预言时间出奇的一致!不知道大预言的作者是怎么计算的? 1999年7月之上 恐怖大王从天而降 使安哥鲁摩阿大王为之复活 这期间由马尔斯借幸福之名统治四方 至此我们应该明白,我们伟大的人生处于历史长河的何种阶段?下面的几百年级的调整(浪4),世界将是动荡不安的、到处都充满仇恨、敌对、剥削、压迫。有可能会是象伟大革命导师列宁所论述的:资本主义是腐朽的,资本主义是垂死的,无产阶级最终是资本主义的掘墓人。人类社会经过几百年的动荡和无产阶级革命(浪4),下一个千年浪(浪5)可能是人类文明的全球普遍社会主义阶段,下一个千年浪(浪5)也可能是一个延长浪,其中的第5子浪会上升到共产主义阶段,英特纳雄耐尔就一定会实现!! 而西方文明精确理论计算的未来: 根据波浪构造指导方针 1、浪2、4趋于等长,或呈斐波那契关系。 2、一个波浪结构中的5个子浪的第1子浪延长,这个波浪结构之后的调整浪幅度将小于等于第2子浪的底。那么,浪4的调整比较可能的是与浪2趋于等长。浪4长度 = 公元950年 – 公元476年 = 474年也就是说,上面提到的公元2000年后的战争、瘟疫、饥荒、自然灾害频发来消减人口的逆流(浪4),其长度将持续474年。之后的浪5(社会主义至共产主义文明):浪1、3趋于等长,那么浪5将是延长浪,长度是浪1、3的1.618(斐波那契比率)倍。浪5长度 = (公元2000年 – 公元950年)X 1.618 = 1699年也就是说,西方文明自公元950年来的浪3(发展的驱动浪,它伴随商业贸易的兴起至资本主义的科技泡沫)已于公元2000年结束,之后的浪4(战乱、瘟疫、饥荒、自然灾害频发的调整浪)将是长度474年的调整,然后的浪5(发展的驱动浪,社会主义至共产主义文明)长度将是1699年,最后西方文明将于公元2000年 + 474年 + 1699年 = 公元4173年结束。 我们人类在地球上的文明史本身可能就是地球生命发展阶段的一个子浪而已。 通过对跨度几千年的中国历史朝代表分析,惊异地发现中华文明竟然也是以艾略特波浪的斐波那契方式演进! 先看中国封建社会: 浪Ⅰ 公元前221年 -- 公元220年 长度441年 统一、发展的秦、汉 浪Ⅱ 公元220年 -- 公元581年 长度361年 动荡、战乱、分裂的三国、两晋、南北朝 浪Ⅲ 公元581年 – 公元907年 长度326年 统一、发展的隋、唐 浪Ⅳ 公元907年 – 公元1279年 长度372年 动荡、战乱、分裂/并存的五代十国、宋、辽、西夏、金 浪Ⅴ 公元1279年 – 公元1911年 长度632年 统一、发展的元、明、清 并且: 1、中国封建社会的三大盛世“文景之治”、“贞观之治”、“康乾盛世”就出现在Ⅰ、Ⅲ、Ⅴ三个上升的驱动浪中。 2、浪Ⅴ是延长浪经历3个朝代,浪Ⅰ、Ⅲ未延长经历2个朝代。 3、每个驱动浪开头总有一个短命的朝代:秦、隋、元 4、元/隋 = 89年/37年 = 2.41 隋/秦 = 37年/15年 = 2.47 趋于一致 其间的斐波那契关系: 1、浪Ⅰ长度是浪Ⅲ长度的1.382倍(斐波那契比率),浪Ⅲ长度326年X 1.382 = 451年,与浪Ⅰ长度441年接近。 2、浪Ⅴ长度是浪Ⅰ长度的1.382倍(斐波那契比率),浪Ⅰ长度441年X 1.382 = 609年,与浪Ⅴ长度632年接近。也就是说,(公元220年 – 公元前221年)X 1.382 + 公元1279年 = 公元1888年公式含义:中国封建社会结束点公元1911年之前很多年,就可以通过波浪间的斐波那契关系计算出中国封建社会将于公元1888年结束。只误差了23年,对于长达2132年的中国封建社会而言,误差仅为1.08% 3、浪Ⅱ长度是浪Ⅰ长度的0.809倍(斐波那契比率),浪Ⅰ长度441年 X 0.809 =357年,与浪Ⅱ长度361年接近。 4、浪Ⅳ长度372年与浪Ⅱ长度361年趋于等长。 5、浪Ⅴ是延长浪,长度是浪Ⅰ至浪Ⅲ的1.618倍(斐波那契比率)。(441年 – 361年 + 326年)X 1.618 = 657年,与浪Ⅴ长度632年接近。也就是说,(公元220年 – 公元前221年 – 公元581年 + 公元220年 + 公元907年 – 公元581年)X 1.618 + 公元1279年 = 公元1936年 公式含义: 中国封建社会结束点公元1911年之前很多年,就可以通过波浪间的斐波那契关系计算出中国封建社会将于公元1936年结束。只误差了25年,对于长达2132年的中国封建社会而言,误差仅为1.17%然而公元前221年至公元1911年长达2132年的中国封建社会仅是更大浪级中华文明的第3子浪。 更大浪级的波浪间存在令人瞠目结舌的精确、完美的斐波那契关系: 浪1 约公元前21世纪 -- 公元前722年,长度约1300年,夏、商、周至春秋/战国前的中国奴隶社会文明。 浪2 公元前722年 -- 公元前221年,长度501年,动荡、战乱、分裂的春秋/战国。 浪3 公元前221年 -- 公元1911年,长度2132年,中国封建社会文明。 (因内容过长,后续略)

206 评论

真锈菜刀

递推公式斐波那契数列:0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...如果设F(n)为该数列的第n项(n∈N*),那么这句话可以写成如下形式:显然这是一个线性递推数列。通项公式(如上,又称为“比内公式”,是用无理数表示有理数的一个范例。)注:此时 通项公式推导方法一:利用特征方程(线性代数解法)线性递推数列的特征方程为: 解得 , .则 ∵ ∴ 解得 方法二:待定系数法构造等比数列1(初等代数解法)设常数 , .使得则 , 时,有……联立以上n-2个式子,得:∵ ,上式可化简得:那么……(这是一个以 为首项、以 为末项、 为公比的等比数列的各项的和)。, 的解为则方法三:待定系数法构造等比数列2(初等代数解法)已知a1=1,a2=1,an=a(n-1)+a(n-2)(n>=3),求数列{an}的通项公式。解 :设an-αa(n-1)=β(a(n-1)-αa(n-2))。得α+β=1。αβ=-1。构造方程x^2-x-1=0,解得α=(1-√5)/2,β=(1+√5)/2或α=(1+√5)/2,β=(1-√5)/2。所以。an-(1-√5)/2*a(n-1)=(1+√5)/2*(a(n-1)-(1-√5)/2*a(n-2))=[(1+√5)/2]^(n-2)*(a2-(1-√5)/2*a1)`````````1。an-(1+√5)/2*a(n-1)=(1-√5)/2*(a(n-1)-(1+√5)/2*a(n-2))=[(1-√5)/2]^(n-2)*(a2-(1+√5)/2*a1)`````````2。由式1,式2,可得。an=[(1+√5)/2]^(n-2)*(a2-(1-√5)/2*a1)``````````````3。an=[(1-√5)/2]^(n-2)*(a2-(1+√5)/2*a1)``````````````4。将式3*(1+√5)/2-式4*(1-√5)/2,化简得an=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}。方法四:母函数法。对于斐波那契数列{a(n)},有a(1)=a(2)=1,a(n)=a(n-1)+a(n-2)(n>2时)令S(x)=a(1)x+a(2)x^2+……+a(n)x^n+……。那么有S(x)*(1-x-x^2)=a(1)x+[a(2)-a(1)]x^2+……+[a(n)-a(n-1)-a(n-2)]x^n+……=x.因此S(x)=x/(1-x-x^2).不难证明1-x-x^2=-[x+(1+√5)/2][x+(1-√5)/2]=[1-(1-√5)/2*x][1-(1+√5)/2*x].因此S(x)=(1/√5)*{x/[1-(1+√5)/2*x]-x/[1-(1-√5)/2*x]}.再利用展开式1/(1-x)=1+x+x^2+x^3+……+x^n+……于是就可以得S(x)=b(1)x+b(2)x^2+……+b(n)x^n+……其中b(n)=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}.因此可以得到a(n)=b(n)==(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}

324 评论

幸福顺延

黄金分割漫谈 分已知线段为两部分,使其中一部分是全线段与另一部分的比例中项,这就是在中学几何课本中提到的黄金分割问题。若C为线段AB的满足条件的分点,则可求得AC 约为 0.618AB。这个分割在课本上被称作黄金分割,我们有时也可说是将线段分成中末比、中外比或外内比。若用G来表示它,G 被称为黄金比或黄金分割数。黄金分割、黄金分割数都被冠以“黄金”二字,说明了它们的重要性与应用上的广泛性,同时也为它们平添了几分神秘的色彩。著名天文学家开普勒称黄金分割是“几何学中的一大宝藏”,就让我们揭开它的神秘面纱,共同来开采一下这座宝藏吧! 寻踪探迹话名称由来 最早对中末比有所了解的大约可追溯到毕达哥拉斯学派。该学派对正五边形、正十边形都很熟悉,并且把“五角星”作为成员联络标记,而这些图形的作法与中末比是密切联系的。如果相信毕达哥拉斯熟知正五边形与五角星的作图,那么可以推知他已掌握了中末比。古希腊著名的数学家、天文学家欧多克索斯最早对中末比做了系统的研究,他在深入探究五角星性质时,曾惊叹道:“中末比到底在这儿出现了!”对中末比的严格论述最早见于欧几里德的《几何原本》。到中世纪以后,中末比被披上更神秘的外衣,渐渐笼上了一层神秘的色彩。 文艺复兴时期,中末比问题引起了人们广泛的注意。1509年,意大利文艺复兴重要人物之一帕乔里出版《神圣的比例》一书。书中系统介绍了古希腊中外比,并称其为神圣比例。他认为世间一切事物都须服从这一神圣比例的法则。开普勒称中末比为“比例分割”,他写道:“毕达哥拉斯定理和中末比是几何中的双宝,前者好比黄金,后者堪称珠玉。”他是把黄金之喻给了毕达哥拉斯定理,而用珠玉来形容了中末比。最早正式在书中使用黄金分割这个名称的是欧姆(以欧姆定律闻名的G.S.欧姆之弟)。在他1835年出版的第二版《纯粹初等数学》一书中首次使用了这一名称。到19 世纪以后,这一名称才逐渐通行起来,成为现在人们所熟知的名称。 挂一漏万谈奇妙性质 黄金分割数G有着许多有趣的性质。最引人注目的是它与斐波那契数列的关系。 斐波那契是中世纪著名的学者。他在《算盘书》一书中提出了一道有趣的“兔子生殖问题”,由此引出了一个奇妙数列: 1,2,3,5,8,13,21,34,55,89,144,…… 规律是:从第三项开始每一项是前两项之和。后人称为斐波那契数列。它与黄金分割会有什么关系呢? 让我们计算一下斐波那契数列中每前一项与后一项之比,就会发现这个比值竟与黄金分割数G越来越接近,完全可以作为G的一阶、二阶……N阶近似。多么奇妙啊!其实可以证明这些比值正是以G作为它们的极限。 中外比与斐波那契数列的这种内在联系,为它大添了光彩,也使它具有了一种特殊的神秘感与迷人的魅力,使后来的许多数学家为之倾倒。 抛砖引玉粗说影响及应用 黄金分割无论是在理论上,还是实际生活中都有着极其广泛而又非常简单的应用,从而也在历史上产生了巨大的影响。古代,中末比主要是作为作图的方法而使用。到文艺复兴时期它又重新引起了当时人们的极大兴趣与注意,并产生了广泛的影响,得到了多方面的应用。如在绘画、雕塑方面,画家、雕塑家都希望从数学比例上解决最完美的形体,它的各部分的相互关系问题,以此作为科学的艺术理论用来指导艺术创造,来体现理想事物的完美结构。著名画家达芬奇在《论绘画》一书中就相信:“美感完全建立在各部分之间神圣的比例关系上,各特征必须同时作用,才能产生使观众如醉如痴的和谐比例。”在这一时期,艺术家们自觉地被黄金分割的魅力所诱惑而使数学研究与艺术创作紧密地结合起来,并对后来形式美学与实验美学产生了巨大影响。 十九世纪,德国美学家蔡辛提出黄金分割原理且对黄金分割问题进行理论阐述,并认为黄金分割是解开自然美和艺术美奥秘的关键。他用数学比例方法研究美学,启发了后人。德国哲学家、美学家、心理学家费希纳进行了实验美学的尝试,把黄金分割原理建立在广泛的心理学测试基础上,将美学研究与自然科学研究结合在一起,引起广泛的注意。直到本世纪50年代,实验美学的研究还十分活跃。直到最近,黄金分割原理仍然是一个充满了神奇之谜的科学美学问题。如在晶体学的准晶体结构研究领域中,黄金分割问题重新引起了物理学家和数学家们的兴趣。 它的实际应用,也有很多。最广为人道的例子是优选学中的黄金分割法,它是美国的基弗于1953年首先提出的。从1970年开始在我国推广并取得了很大的成绩。优选法的另一种方法――分数法,是取G的分数近似值,在实际中同样有着广泛应用。 真真假假道神秘传说 由于中末比具有各种独特的性质,随着它的影响越来越大,也就有了越来越多的关于它的传说。这些传说虚虚实实,令人扑朔迷离难辨真伪,但却一直为人们所津津乐道,广为流传。 有人研究得出黄金分割是人和动植物形态的一个结构原则。于是有了以下各种说法: 人体自身美,即人体最优美的身段遵循着G这个黄金分割比。据说在人们并未认识黄金分割之前制造的美的物品竟都恰好与黄金律暗合。如著名的爱神维纳斯与女神雅典纳的雕像下身与全身之比近于G。 据说芭蕾舞艺术的魅力也离不开G。芭蕾演员起舞时踮起脚尖,是为了展现符合G的身段比例的最优美的艺术形象。 在自然界中,G也是美的重要规律。据说特别令人心旷神怡的花,凭借的是G这个美的密码。 另外我们知道现在各国的国旗上,凡是“星”几乎无例外都画成五角星,据说就是因为五角星中多处暗含了G这个美的密码,从而使这个图形赏心悦目。 还据说报幕员处于黄金分割点处的位置时,会给观众留下一个美的印象。甚至有人说演奏弦乐器时,把“千斤”放在琴弦的黄金分割点获得的音色更优美和谐。 还有一种流行极广的说法是:黄金矩形(即两边的比等于G的矩形)比用任何其他比值作边的矩形都要美观。1876年,费希纳曾为此作过大规模的试验。结果表明喜欢黄金矩形的人数占全体的三分之一,在各种矩形中得票最多。 诸如此类的传说恐怕还有很多。一句话:哪里有G,哪里就有了美。黄金分割数G成了宇宙的美神!

238 评论

相关问答

  • 有源滤波论文答辩

    “经过全桥整流”,显然是想得到直流电压。经过二阶低通滤波器目的是滤波,使得到的直流电压更平直,更理想。否则输出是像你说的海浪形。不是要得到有效值。直流的有效值即

    我们是MJ 6人参与回答 2023-12-12
  • 数列论文答辩自述

    其实应该要根据自己学的专业,然后根据自己的情况和学习到的东西进行总结。

    vivilovetu 4人参与回答 2023-12-07
  • 收益率序列波动性研究论文

    根据股票市场收益率序列呈尖峰厚尾、偏态、波动集聚和杠杆效应等特征,本文构建Skew-GED(SGED)分布下的变参数ARIMA+EGARCH动态混合预测模型来挖

    躲在WC数钱 4人参与回答 2023-12-10
  • 斐波那契数列研究论文

    黄金分割漫谈 分已知线段为两部分,使其中一部分是全线段与另一部分的比例中项,这就是在中学几何课本中提到的黄金分割问题。若C为线段AB的满足条件的分点,则可求得A

    A.灰~白~黑~ 2人参与回答 2023-12-07
  • 宁波大学论文答辩资格

    毕业论文答辩是一种有组织、有准备、有计划、有鉴定的比较正规的审查论文的重要形式。为了搞好毕业论文答辩,在举行答辩会前,校方、答辩委员会、答辩者(撰写毕业论文的作

    大宝想小宝 3人参与回答 2023-12-09