• 回答数

    6

  • 浏览数

    164

甜甜的daisy
首页 > 学术期刊 > 数学论文1000字七桥定理

6个回答 默认排序
  • 默认排序
  • 按时间排序

萤火虫696969

已采纳

数学研究性学习报告 (妙趣横生的数学)一:数学史上的三次危机。毕达哥拉斯是公元前五世纪古希腊的著名数学家与哲学家。他曾创立了一个合政治、学术、宗教三位一体的神秘主义派别:毕达哥拉斯学派。由毕达哥拉斯提出的著名命题“万物皆数”是该学派的哲学基石。而“一切数均可表成整数或整数之比”则是这一学派的数学信仰。然而,具有戏剧性的是由毕达哥拉斯建立的毕达哥拉斯定理却成了毕达哥拉斯学派数学信仰的“掘墓人”。毕达哥拉斯定理提出后,其学派中的一个成员希帕索斯考虑了一个问题:边长为1的正方形其对角线长度是多少呢?他发现这一长度既不能用整数,也不能用分数表示,而只能用一个新数来表示。希帕索斯的发现导致了数学史上第一个无理数√2 的诞生。小小√2的出现,却在当时的数学界掀起了一场巨大风暴。它直接动摇了毕达哥拉斯学派的数学信仰,使毕达哥拉斯学派为之大为恐慌。实际上,这一伟大发现不但是对毕达哥拉斯学派的致命打击。对于当时所有古希腊人的观念这都是一个极大的冲击。这一结论的悖论性表现在它与常识的冲突上:任何量,在任何精确度的范围内都可以表示成有理数。这不但在希腊当时是人们普遍接受的信仰,就是在今天,测量技术已经高度发展时,这个断言也毫无例外是正确的!可是为我们的经验所确信的,完全符合常识的论断居然被小小的√2的存在而推翻了!这应该是多么违反常识,多么荒谬的事!它简直把以前所知道的事情根本推翻了。更糟糕的是,面对这一荒谬人们竟然毫无办法。这就在当时直接导致了人们认识上的危机,从而导致了西方数学史上一场大的风波,史称“第一次数学危机”。 第二次数学危机导源于微积分工具的使用。伴随着人们科学理论与实践认识的提高,十七世纪几乎在同一时期,微积分这一锐利无比的数学工具为牛顿、莱布尼兹各自独立发现。这一工具一问世,就显示出它的非凡威力。许许多多疑难问题运用这一工具后变得易如翻掌。但是不管是牛顿,还是莱布尼兹所创立的微积分理论都是不严格的。两人的理论都建立在无穷小分析之上,但他们对作为基本概念的无穷小量的理解与运用却是混乱的。因而,从微积分诞生时就遭到了一些人的反对与攻击。其中攻击最猛烈的是英国大主教贝克莱。 罗素悖论与第三次数学危机。 十九世纪下半叶,康托尔创立了著名的集合论,在集合论刚产生时,曾遭到许多人的猛烈攻击。但不久这一开创性成果就为广大数学家所接受了,并且获得广泛而高度的赞誉。数学家们发现,从自然数与康托尔集合论出发可建立起整个数学大厦。因而集合论成为现代数学的基石。“一切数学成果可建立在集合论基础上”这一发现使数学家们为之陶醉。1900年,国际数学家大会上,法国著名数学家庞加莱就曾兴高采烈地宣称:“………借助集合论概念,我们可以建造整个数学大厦……今天,我们可以说绝对的严格性已经达到了……” 可是,好景不长。1903年,一个震惊数学界的消息传出:集合论是有漏洞的!这就是英国数学家罗素提出的著名的罗素悖论。 罗素构造了一个集合S:S由一切不是自身元素的集合所组成。然后罗素问:S是否属于S呢?根据排中律,一个元素或者属于某个集合,或者不属于某个集合。因此,对于一个给定的集合,问是否属于它自己是有意义的。但对这个看似合理的问题的回答却会陷入两难境地。如果S属于S,根据S的定义,S就不属于S;反之,如果S不属于S,同样根据定义,S就属于S。无论如何都是矛盾的。 其实,在罗素之前集合论中就已经发现了悖论。如1897年,布拉利和福尔蒂提出了最大序数悖论。1899年,康托尔自己发现了最大基数悖论。但是,由于这两个悖论都涉及集合中的许多复杂理论,所以只是在数学界揭起了一点小涟漪,未能引起大的注意。罗素悖论则不同。它非常浅显易懂,而且所涉及的只是集合论中最基本的东西。所以,罗素悖论一提出就在当时的数学界与逻辑学界内引起了极大震动。如G.弗雷格在收到罗素介绍这一悖论的信后伤心地说:“一个科学家所遇到的最不合心意的事莫过于是在他的工作即将结束时,其基础崩溃了。罗素先生的一封信正好把我置于这个境地。”戴德金也因此推迟了他的《什么是数的本质和作用》一文的再版。可以说,这一悖论就象在平静的数学水面上投下了一块巨石,而它所引起的巨大反响则导致了第三次数学危机。 危机产生后,数学家纷纷提出自己的解决方案。人们希望能够通过对康托尔的集合论进行改造,通过对集合定义加以限制来排除悖论,这就需要建立新的原则。“这些原则必须足够狭窄,以保证排除一切矛盾;另一方面又必须充分广阔,使康托尔集合论中一切有价值的内容得以保存下来。”1908年,策梅罗在自已这一原则基础上提出第一个公理化集合论体系,后来经其他数学家改进,称为ZF系统。这一公理化集合系统很大程度上弥补了康托尔朴素集合论的缺陷。除ZF系统外,集合论的公理系统还有多种,如诺伊曼等人提出的NBG系统等。公理化集合系统的建立,成功排除了集合论中出现的悖论,从而比较圆满地解决了第三次数学危机。但在另一方面,罗素悖论对数学而言有着更为深刻的影响。它使得数学基础问题第一次以最迫切的需要的姿态摆到数学家面前,导致了数学家对数学基础的研究。而这方面的进一步发展又极其深刻地影响了整个数学。如围绕着数学基础之争,形成了现代数学史上著名的三大数学流派,而各派的工作又都促进了数学的大发展等等。二:经典数学问题:七桥问题 著名古典数学问题之一。在哥尼斯堡的一个公园里,有七座桥将普雷格尔河中两个岛及岛与河岸连接起来。问是否可能从这四块陆地中任一块出发,恰好通过每座桥一次,再回到起点?欧勒于1736年研究并解决了此问题,他把问题归结为如下右图的“一笔画”问题,证明上述走法是不可能的。 有关图论研究的热点问题。18世纪初普鲁士的柯尼斯堡,普雷格尔河流经此镇,奈发夫岛位于河中,共有7座桥横跨河上,把全镇连接起来。当地居民热衷于一个难题:是否存在一条路线,可不重复地走遍七座桥。这就是柯尼斯堡七桥问题。L.欧拉用点表示岛和陆地,两点之间的连线表示连接它们的桥,将河流、小岛和桥简化为一个网络,把七桥问题化成判断连通网络能否一笔画的问题。他不仅解决了此问题,且给出了连通网络可一笔画的充要条件是它们是连通的,且奇顶点(通过此点弧的条数是奇数)的个数为0或2。 当Euler在1736年访问Konigsberg, Prussia(now Kaliningrad Russia)时,他发现当地的市民正从事一项非常有趣的消遣活动。Konigsberg城中有一条名叫Pregel的河流横经其中,这项有趣的消遣活动是在星期六作一次走过所有七座桥的散步,每座桥只能经过一次而且起点与终点必须是同一地点。 Euler把每一块陆地考虑成一个点,连接两块陆地的桥以线表示。 后来推论出此种走法是不可能的。他的论点是这样的,除了起点以外,每一次当一个人由一座桥进入一块陆地(或点)时,他(或她)同时也由另一座桥离开此点。所以每行经一点时,计算两座桥(或线),从起点离开的线与最后回到始点的线亦计算两座桥,因此每一个陆地与其他陆地连接的桥数必为偶数。 七桥所成之图形中,没有一点含有偶数条数,因此上述的任务无法完成. 欧拉的这个考虑非常重要,也非常巧妙,它正表明了数学家处理实际问题的独特之处——把一个实际问题抽象成合适的“数学模型”。这种研究方法就是“数学模型方法”。这并不需要运用多么深奥的理论,但想到这一点,却是解决难题的关键。 接下来,欧拉运用网络中的一笔画定理为判断准则,很快地就判断出要一次不重复走遍哥尼斯堡的7座桥是不可能的。也就是说,多少年来,人们费脑费力寻找的那种不重复的路线,根本就不存在。一个曾难住了那么多人的问题,竟是这么一个出人意料的答案! 1736年,欧拉在交给彼得堡科学院的《哥尼斯堡7座桥》的论文报告中,阐述了他的解题方法。他的巧解,为后来的数学新分支——拓扑学的建立奠定了基础。 数学的世界奥妙无穷,大家尽情驰骋吧!附录:永远的大师—欧拉欧拉(Euler,1707-1783),瑞士数学家及自然科学家。在1707年4月15日出生於瑞士的巴塞尔,1783年9月18日於俄国的彼得堡去逝。 欧拉出生於牧师家庭,自幼已受到父亲的教育。13岁时入读巴塞尔大学,15岁大学毕业,16岁获得硕士学位。 欧拉的父亲希望他学习神学,但他最感兴趣的是数学。在上大学时,他已受到约翰第一.伯努利的特别指导,专心 研究数学,直至18岁,他彻底的放弃当牧师的想法而专攻数学,於19岁时(1726年)开始创作文章,并获得巴黎科学院奖金。1727年,在丹尼尔.伯努利的推荐下,到俄国的彼得堡科学院从事研究工作。并在1731年接替丹尼尔第一.伯努利 ,成为物理学教授。在俄国的14年中,他努力不懈地投入研究,在分析学、数论及力学方面均有出色的表现。此外,欧拉还应俄国政府 的要求,解决了不少如地图学、造船业等的实际问题。1735年,他因工作过度以致右眼失明。在1741年,他受到普鲁士 腓特烈大帝的邀请到德国科学院担任物理数学所所长一职。他在柏林期间,大大的扩展了研究的内容,如行星运动、刚体运动、热力学、弹道学、人口学等,这些工作与他的数学研究互相推动着。与此同时,他在微分方程、曲面微分几何 及其他数学领域均有开创性的发现。 1766年,他应俄国沙皇喀德林二世敦聘重回彼得堡。在 1771年,一场重病使他的左眼亦完全失明。但他以其惊人的 记忆力和心算技巧继续从事科学创作。他通过与助手们的讨论以及直接口授等方式完成了大量的科学着作,直至生命的最后一刻。 欧拉是18世纪数学界最杰出的人物之一,他不但为数学界作出贡献,更把数学推至几乎整个物理的领域。此外,他 是数学史上最多产的数学家,写了大量的力学、分析学、几何学、变分法的课本,《无穷小分析引论》(1748),《微分学原理》(1755),以及《积分学原理》(1768-1770)都成为数学中的经典着作。 欧拉最大的功绩是扩展了微积分的领域,为微分几何及分析学的一些重要分支(如无穷级数、微分方程等)的产生 与发展奠定了基础。 欧拉把无穷级数由一般的运算工具转变为一个重要的研究科目。他计算出ξ函数在偶数点的值: 。他证明了a2k是有理数,而且可以伯努利数来表示。 此外,他对调和级数亦有所研究,并相当精确的计算出欧拉常数γ的值,,其值近似为 0.57721566490153286060651209... 在18世纪中叶,欧拉和其他数学家在解决物理方面的问过程中,创立了微分方程学。当中,在常微分方程方面,他 完整地解决了n阶常系数线性齐次方程的问题,对於非齐次方程,他提出了一种降低方程阶的解法;而在偏微分方程方面,欧拉将二维物体振动的问题,归结出了一、二、三维波动方程的解法。欧拉所写的《方程的积分法研究》更是 偏微分方程在纯数学研究中的第一篇论文。 在微分几何方面(微分几何是研究曲线、曲面逐点变化性质的数学分支),欧拉引入了空间曲线的参数方程,给 出了空间曲线曲率半径的解析表达方式。在1766年,他出版了《关於曲面上曲线的研究》,这是欧拉对微分几何最重要的贡献,更是微分几何发展史上一个里程碑。他将曲面表为 z=f(x,y),并引入一系列标准符号以表示z对x,y的偏导数 ,这些符号至今仍通用。此外,在该着作中,他亦得到了曲面在任意截面上截线的曲率公式。 欧拉在分析学上的贡献不胜枚举,如他引入了G函数和B 函数,这证明了椭圆积分的加法定理,以及最早引入二重积 分等等。在代数学方面,他发现了每个实系数多项式必分解为一次或二次因子之积,即a+bi的形式。欧拉还给出了费马小定 理的三个证明,并引入了数论中重要的欧拉函数φ(n),他研究数论的一系列成果奠定了数论成为数学中的一个独立分支。欧拉又用解析方法讨论数论问题,发现了ξ函数所满足的函数方程,并引入欧拉乘积。而且还解决了着名的柯尼斯 堡七桥问题。欧拉对数学的研究如此广泛,因此在许多数学的分支中也可经常见到以他的名字命名的重要常数、公式和定理。

156 评论

喵咪天才

七桥问题Seven Bridges Problem 18世纪著名古典数学问题之一。在哥尼斯堡的一个公园里,有七座桥将普雷格尔河中两个岛及岛与河岸连接起来(如图)。问是否可能从这四块陆地中任一块出发,恰好通过每座桥一次,再回到起点?欧拉于1736年研究并解决了此问题,他把问题归结为如下右图的“一笔画”问题,证明上述走法是不可能的。 有关图论研究的热点问题。18世纪初普鲁士的柯尼斯堡,普雷格尔河流经此镇,奈发夫岛位于河中,共有7座桥横跨河上,把全镇连接起来。当地居民热衷于一个难题:是否存在一条路线,可不重复地走遍七座桥。这就是柯尼斯堡七桥问题。L.欧拉用点表示岛和陆地,两点之间的连线表示连接它们的桥,将河流、小岛和桥简化为一个网络,把七桥问题化成判断连通网络能否一笔画的问题。他不仅解决了此问题,且给出了连通网络可一笔画的充要条件是它们是连通的,且奇顶点(通过此点弧的条数是奇数)的个数为0或2。 当Euler在1736年访问Konigsberg, Prussia(now Kaliningrad Russia)时,他发现当地的市民正从事一项非常有趣的消遣活动。Konigsberg城中有一条名叫Pregel的河流横经其中,这项有趣的消遣活动是在星期六作一次走过所有七座桥的散步,每座桥只能经过一次而且起点与终点必须是同一地点。 Euler把每一块陆地考虑成一个点,连接两块陆地的桥以线表示。 后来推论出此种走法是不可能的。他的论点是这样的,除了起点以外,每一次当一个人由一座桥进入一块陆地(或点)时,他(或她)同时也由另一座桥离开此点。所以每行经一点时,计算两座桥(或线),从起点离开的线与最后回到始点的线亦计算两座桥,因此每一个陆地与其他陆地连接的桥数必为偶数。 七桥所成之图形中,没有一点含有偶数条数,因此上述的任务无法完成. 欧拉的这个考虑非常重要,也非常巧妙,它正表明了数学家处理实际问题的独特之处——把一个实际问题抽象成合适的“数学模型”。这种研究方法就是“数学模型方法”。这并不需要运用多么深奥的理论,但想到这一点,却是解决难题的关键。 接下来,欧拉运用网络中的一笔画定理为判断准则,很快地就判断出要一次不重复走遍哥尼斯堡的7座桥是不可能的。也就是说,多少年来,人们费脑费力寻找的那种不重复的路线,根本就不存在。一个曾难住了那么多人的问题,竟是这么一个出人意料的答案!最终成果 1736年,欧拉在交给彼得堡科学院的《哥尼斯堡7座桥》的论文报告中,阐述了他的解题方法。他的巧解,为后来的数学新分支——拓扑学的建立奠定了基础。 七桥问题和欧拉定理。欧拉通过对七桥问题的研究,不仅圆满地回答了哥尼斯堡居民提出的问题,而且得到并证明了更为广泛的有关一笔画的三条结论,人们通常称之为欧拉定理。对于一个连通图,通常把从某结点出发一笔画成所经过的路线叫做欧拉路。人们又通常把一笔画成回到出发点的欧拉路叫做欧拉回路。具有欧拉回路的图叫做欧拉图。

287 评论

芳芳Flora

简单地说七桥定理是 判断一个图形是不是能够一笔画成.

202 评论

qian520xing

没有答案哦~~欧拉连试了好几种走法都不行,这问题可真不简单!他算了一下,走法很多,共有

7×6×5×4×3×2×1=5040(种)。

欧拉集中精力研究了这个图形,发现中间每经过一点,总有画到那一点的一条线和从那一点画出来的一条线。这就是说,除起点和终点以外,经过中间各点的线必然是偶数。像上面这个图,因为是一个封闭的曲线,因此,经过所有点的线都必须是偶数才行。而这个图中,经过A点的线有五条,经过B、C、D三点的线都是三条,没有一个是偶数,从而说明,无论从那一点出发,最后总有一条线没有画到,也就是有一座桥没有走到。欧拉终于证明了,要想一次不重复地走完七座桥,那是不可能的。

291 评论

小群angela

本文首发于 2017-11-14 19:07 原地址: 区块链当中一个重要分支就是密码学。而密码学当中涉及到相当的数学知识。密码学和数学的关系可谓深之又深,甚至可以说信息安全的很大基石就是数学(密码学是信息安全中的一部分)。图论(Graph Theory)是数学的一个分支,属于应用数学,其以图为研究对象。 区块链当中一个重要分支就是密码学。而密码学当中涉及到相当的数学知识,比如:数论、初等数学、代数学、组合数学以及概率论等。若没有一点数学基础的话,密码学的研究将是进行不通的。密码学和数学的关系可谓深之又深,甚至可以说信息安全的很大基石就是数学(密码学是信息安全中的一部分)。学习和掌握一些数学知识是必要的,在此我主要分享一些有关于密码学的数学知识。 图论 (Graph Theory)是数学的一个分支,属于 应用数学 ,其以图为研究对象。图论中的图是由若干给定的点及连接两点的线所构成的图形,这种图形通常用来描述某些事物之间的某种特定的关系,用点代表事物,用连接两点的线表示相应两个事物间具有这种关系。图论的概念和结果来源非常广泛,既有来自生产实践的问题,也有来自理论研究的问题。历史上参与研究图论问题的人既有著名的数学家也有普通的业余爱好者。 谈到图论不得不提的就是著名的 哥尼斯堡七桥问题 。在贯穿古普鲁士哥尼斯堡城的普瑞格尔河上有七座桥连接两岸及河中的两个小岛,当地居民都很喜欢去岛上游玩,但有一个问题困扰着当地居民了很长的时间。在1736年,该市的一位市民向大数学家 欧拉 (Euler)提出了此问题。该问题是,从家里出发,七座桥每座桥都恰好通过一次,然后再回到家里,是否可以办到。事实上,当地居民以前曾反反复复试验了多次,不论怎么样行走,都不能成功的实现每座桥恰好只经过一次,但却没有人严格证明过。 欧拉将两岸分别用B和C两点进行表示,两岛分别用A和D来表示,A、B、C、D各点的位置并不重要,仅当两块陆地之间有桥时,把每座桥用连接对应点的一条边代替,每条边的曲直长短也不重要,于是欧拉将上图的实际场景抽象为下图,并且将此图形称为 图 (graph)。为了解决这个具体的问题,欧拉提出了判定一般图存在这种走法的充要条件,并给出了必要性证明,开创了图论( 一维拓扑 )的研究。这个结果发表于1736年,其把问题归结为一笔画问题,证明了从家里出发,七座桥每座桥都恰好通过一次,然后再回到家里,是不可以办到的。此论文被公认为第一篇图论文章,欧拉本人也被尊崇为图论和拓扑学之父。欧拉在解决此问题的同时给出了连通图可以一笔画的充要条件是:奇点的数目不是0个就是2个(连接到一点的数目如果是奇数条,就称为奇点,如果是偶数条就称为偶点,要想一笔画成必须中间点均是偶点,也就是说来去必须有对应,奇点只可能在两端,因此任何图如果要一笔画成,奇点要么没有要么在两端) 当时的数学界起初并未对欧拉解决七桥问题的意义有足够的认识,甚至有些人仅仅当其为一个数学游戏。图论诞生后并未及时获得足够的发展,直到200年后的1936年,匈牙利数学家科尼希出版了《有限图与无限图理论》,此为图论的第一部专著,其总结了图论200年的成果,是图论发展的第一座里程碑。此后,图论进入发展与突破的阶段,又经过了半个多世纪的发展,现已成长为数学科学的一个独立的重要学科。而且其分支很多,例如图论、算法图论、极值图论、代数图论、随机数图论、模糊图论、超图论等。特别值得一说的是,由于现代科学尤其是大型计算机的迅猛发展,使得图论大有用武之地,无论是数学、物理、化学、地理、生物等基础科学,还是信息、交通、战争、经济乃至社会科学的众多问题,都可以应用图论方法予以解决。当然, 图论也是计算机科学最重要的基础之一 。 注:一笔画        1)凡是由偶点组成的连通图,一定可以一笔画成。画时可以将任意一偶点作为起点,最后一定可以以此点为终点画完此图。        2)凡是只有两个奇点的连通图(其余都为偶点),一定可以一笔画成。画时必须将一个奇点作为起点,而另一个奇点将为终点。 3)其它情况的图都不能一笔画出。 // 奇点数除以二便可以算出此图需要几笔才能画成。 注: 欧拉通过对七桥问题的研究,不仅解决了哥尼斯堡居民提出的问题,而且得到并证明了更为广泛的有关一笔画的三条结论,人们将之称为 欧拉定理 。对于一个连通图,通常把某点出发        一笔画所经过的路线叫 欧拉路 ,同时将一笔画成又回到出发点的欧拉路称为 欧拉回路 ,而具有欧拉回路的图被称为 欧拉图 。 于中阳 Mercina-zy

204 评论

Me馍馍27

城中的居民经常沿河过桥散步。城中有位青年很聪明,爱思考,有一天,这位青年给大家提出了这样一个问题:能否一次走遍7座桥,而每座桥只许通过一次,最后仍回到起始地点。这就是举世闻名的七桥问题,当时的人们始终没有能找到答案。大数学家欧拉从朋友那里听到这个问题,很快便证明了这样的走法不存在。欧拉是这样解决问题的:把图中被河隔开的陆地看成A、B、C、D4个点,7座桥表示成7条连接这4个点的线,思考过程如下图:伟大的数学家欧拉,睿智地把这样一个实际问题抽象成了一个由点线组成的简单的几何图形,把要解决的问题转化成图(二)的一笔画问题了。这样一个抽象化的过程是欧拉解决这个问题时最精彩的思考,也是最值得我们学习的地方。因为图(二)不能一笔画成,所以人们不能一次走遍7座桥。1736年,欧拉把这题的结果发表在圣彼得堡科学院学报上,欧拉对“七桥问题”的研究是图论研究的开始,可以说,正是这个问题的研究使其成为“图论”的鼻祖。那么欧拉是如何判断图(二)不可以一笔画成呢?为了便于大家看懂,结合这个例子,我用自己的语言来说明一下一笔画问题的解题思路:这个图形中共有4个点7条线,每个点都是若干条路线的公共端点。如果一个点是偶数条线的公共端点,我们称这个点为双数点(或偶点);如果一个点是奇数条线的公共端点,我们称这个点为单数点(或奇点)。图(二)中A点是5条线的公共端点,B、C、D点都是3条线的公共端点,因此图(二)有4个奇点。一般,我们把起笔的点称为起点,停笔的点称为终点,其它的点称为路过点。显然一笔画图形中所有路过点如果有进去的线就必须有出来的线,从而每个点连接的线数必须有偶数个才能完成一笔画,如果路过点中出现奇点,必然就会出现没有走过的路线或重复路线。因此在一笔画图形中,只有起点和终点可以是奇点(起点可以只出不进,终点可以最后进这个点就不出了),也就是说最多只能有两个奇点,以一个奇点为起点,另一个奇点为终点。因为图(二)有4个奇点,因此图(二)不能一笔画成。另外两点说明:一、一笔画图形中所有的线必须是连续的,因为笔不离纸,如果一个图形由两个断开的部分组成,肯定不能一笔画。例如“国”这个字就不能一笔写出来。二、一笔画图形中的奇点都是成对出现的(因为每条线都有两个端点,所有线的端点和是偶数),图形中没有奇点,都是偶点时,可以一笔画成,但起点和终点必须选择同一点。结合以上说明,解决一笔画问题,第一步是找出图中所有点,判断其是奇点还是偶点;第二步是根据奇点的个数作出正确的判断;第三步是让孩子用铅笔试着画一画,验证自己的判断。

244 评论

相关问答

  • 数学论文初三1000字

    ouihbiubjibljkbhkvbhvlhjlhjvjhhhhvkjvjgcihgchfduduyfuyhbgybgyfiufty8itbvfuty

    嘎嘎哈哈笑笑 4人参与回答 2023-12-09
  • 数学小论文七年级600字

    1.中国古代在数的方面的贡献 算筹 根据史书的记载和考古材料的发现,古代的算筹实际上是一根根同样长短和粗细的小棍子,一般长为13--14cm,径粗0.2~0.3

    理想气体911 2人参与回答 2023-12-10
  • 七年级下册地理论文1000字

    ````````````````````````````````````````````````````````````````````````1000zi

    上官雨霖 5人参与回答 2023-12-09
  • 数学论文七年级300字

    由于 七年级数学 是重要的教学工作,教师要注重激发学生学习数学的兴趣。下面是我为大家整理的七年级数学教学论文,供大家参考。 【关键词】七年级新生 数学教学解

    许清池79 4人参与回答 2023-12-06
  • 初一数学论文1000字

    关于“0”0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,

    乐调人生百味 3人参与回答 2023-12-07