chongyanyuan
1)函数解析式的求法: ①定义法(拼凑):②换元法:③待定系数法:④赋值法:(2)函数定义域的求法: 含参问题的定义域要分类讨论; 对于实际问题,在求出函数解析式后;必须求出其定义域,此时的定义域要根据实际意义来确定。(3)函数值域的求法: ①配方法:转化为二次函数,利用二次函数的特征来求值;②逆求法(反求法):通过反解,用y来表示x,再由x的取值范围,通过解不等式,得出y的取值范围;④换元法:通过变量代换转化为能求值域的函数,化归思想;⑤三角有界法:转化为只含正弦、余弦的函数,运用三角函数有界性来求值域;⑥基本不等式法:利用平均值不等式公式来求值域;⑦单调性法:函数为单调函数,可根据函数的单调性求值域。⑧数形结合:根据函数的几何图形,利用数型结合的方法来求值域函数的性质:函数的单调性、奇偶性单调性:定义:注意定义是相对与某个具体的区间而言。判定方法有:作差比较和图像法。应用:比较大小,证明不等式,解不等式。奇偶性:定义:注意区间是否关于原点对称,比较f(x) 与f(-x)的关系。f(x) -f(-x)=0 f(x) =f(-x) f(x)为偶函数; f(x)+f(-x)=0 f(x) =-f(-x) f(x)为奇函数。例:已知f(x)为奇函数,当x>0时,f(x)=x(1-x),则x<0时,f(x)=_______ 解:设x<0,那么-x>0代入f(x)=x(1-x),得f(-x)=-x(1+x), f(x)为奇函数 所以f(-x)=-f(x) 得f(x)=x(1+x),
小剑2016
教学过程: 一、复习引入:上一节课,我们主要学习了有关增长率的数学模型,这种模型在有关产量、产值、粮食、人口等等增长问题常被用到.这一节,我们学习有关物理问题的数学模型二、新授内容:例1(课本第86页 例2)设海拔 x m处的大气压强是 y Pa,y与 x 之间的函数关系式是 ,其中 c,k为常量,已知某地某天在海平面的大气压为Pa,1000 m高空的大气压为Pa,求:600 m高空的大气压强(结果保留3个有效数字)解:将 x = 0 , y =;x = 1000 , y =,代入 得: 将 (1) 代入 (2) 得: 计算得: ∴ 将 x = 600 代入, 得: 计算得:=×105(Pa)答:在600 m高空的大气压约为×105Pa.说明:(1)此题利用数学模型解决物理问题;(2)需由已知条件先确定函数式;(3)此题实质为已知自变量的值,求对应的函数值的数学问题;(4)此题要求学生能借助计算器进行比较复杂的运算.例2在测量某物理量的过程中,因仪器和观察的误差,使得n次测量分别得到,,……, 共n个数据,我们规定所测量的物理量的“最佳近似值”a是这样一个量:与其他近似值比较a与各数据差的平方和最小.依次规定,从,,……, 推出的a=________.(1994年全国高考试题)分析:此题应排除物理因素的干扰,抓准题中的数量关系,将问题转化为函数求最值问题.解:由题意可知,所求a应使y=(a-)+(a-)+…+(a-) 最小由于y=na-2(++…+)a+(++…+)若把a看作自变量,则y是关于a的二次函数,于是问题转化为求二次函数的最小值.因为n>0,二次函数f(a)图象开口方向向上.当a= (++…+),y有最小值.所以a= (++…+)即为所求.说明:此题在高考中是具有导向意义的试题,它以物理知识和简单数学知识为基础,并以物理学科中的统计问题为背景,给出一个新的定义,要求学生读懂题目,抽象其中的数量关系,将文字语言转化为符号语言,即y=(a-)+(a-)+…+(a-),然后运用函数的思想、方法去解决问题,解题关键是将函数式化成以a为自变量的二次函数形式,这是函数思想在解决实际问题中的应用.例3某种放射性元素的原子数N随时间t的变化规律是N=,其中,λ是正的常数.(1)说明函数是增函数还是减函数;(2)把t表示成原子数N的函数;(3)求当N=时,t的值.解:(1)由于>0,λ>0,函数N=是属于指数函数y=类型的,所以它是减函数,即原子数N的值随时间t的增大而减少(2)将N=写成=根据对数的定义有-λt=ln所以t=- (lnN-ln)= (ln-lnN) (3)把N=代入t= (ln-lnN)得t= (ln-ln)= (ln-ln+ln2)= ln2.三、练习:1.如图,已知⊙O的半径为R,由直径AB的端点B作圆的切线,从圆周上任一点P引该切线的垂线,垂足为M,连AP设AP=x⑴写出AP+2PM关于x的函数关系式 ⑵求此函数的最值解:⑴过P作PD^AB于D,连PB 设AD=a则 ∴ ⑵当时 当时2.距离船只A的正北方向100海里处有一船只B,以每小时20海里的速度,沿北偏西60°角的方向行驶,A船只以每小时15海里的速度向正北方向行驶,两船同时出发,问几小时后两船相 距最近?解:设t小时后A行驶到点C,B行驶到点D,则BD=20 BC=100-15t过D作DE^BC于E DE=BDsin60°=10t BE=BDcos60°=10t∴EC=BC+BE=100-5t CD==∴t=时CD最小,最小值为200,即两船行驶小时相距最近3.一根均匀的轻质弹簧,已知在600N的拉力范围内,其长度与所受拉力成一次函数关系,现测得当它在100N的拉力作用下,长度为,在300N拉力作用下长度为,那么弹簧在不受拉力作用时,其自然长度是多少?解:设拉力是 x N (0≤x≤600) 时,弹簧的长度为 y m 设:y = k x + b 由题设: ∴所求函数关系是:y = x + ∴当 x = 0时,y = , 即不受拉力作用时,弹簧自然长度为 m四、小结:通过本节学习,进一步熟悉数学建模的方法,能运用数学模型解决一定的关于物理的实际问题,提高解决数学应用题的应变能力.五、课后作业:要使火车安全行驶,按规定,铁道转弯处的圆弧半径不允许小于600m如果某段铁路两端相距156m,弧所对的圆心角小于180o,试确定圆弧弓形的高所允许的取值范围分析:以弓形的高x为自变量,半径R为孙函数,求出R关于x的函数关系式 解:如图,设圆弧的半径OA=OB=Rm,圆弧弓形的高CD=xm,在RtΔBOD中,DB=78,OD=R-x则∴依题意 R≥600 即 ≥600 ∴≥0 解得 ≤ 或 ≥(不合题意) 答:圆弧弓形的高的允许值范围是(0,). 六、板书设计(略)
dt930014240
函数与方程是初中数学中两个最基本的概念,它们的形式虽然不同,但本质上是相互连接的,有密切关系。如:一元二次方程与二次函数。 我们知道形如ax2+bx+c=0的方程是一元二次方程,而形式为y= ax2+bx+c(a、b、c为常数,a≠0)是二次函数。它们在形式上几乎相同,差别只是一元二次方程的表达式等于0,而二次函数的表达式等于y。这种形式上的类似使得它们之间的关系格外密切,很多题型都是以此来命题。为什么会这样?主要是因为当二次函数中的变量y取0时,二次函数就变成一元二次方程。由此可见,方程中的很多知识点可以运用在函数中。下面,我们就它们间的具体运用详细的了解一下。
大学导数单调性极值的应用的背景: 利用导数研究函数单调性极值最值的理论就一个是导函数在某个区间大于0,则原函数在这个区间单调递增,导函数在某个区间小于0,则原函
函数的值域可以通过观察法、配方法、常数分离法、换元法、逆求法、基本不等式法、求导法、数形结合法和判别式法等方法来求。 一、配方法 将函数配方成顶点式的格式,再根
教学过程: 一、复习引入:上一节课,我们主要学习了有关增长率的数学模型,这种模型在有关产量、产值、粮食、人口等等增长问题常被用到.这一节,我们学习有关物理问题的
数学应用数学本科毕业论文篇2 试谈数学软件在高等数学教学中的应用 【摘要】高等数学是理工科大学生必修的一门基础课程,具有极其重要的作用.
哥们是二中的吧~你去找一个高二的借一下就行了,因为高一和高二的作业是完全相同的!